Integral and differential test for convergence of operator series(in Ukrainian)

Author V. Yu. Slyusarchuk
V.Ye.Slyusarchuk@NUWM.rv.ua
i i

Abstract We obtain the integral and differential conditions for convergence of operator series.
Keywords operator series; integral test; differential test
Reference 1. Slyusarchuk V.Yu. Conditions of converging operator series $\sum_{n=1}^\infty n^{-A}$// Nauk. Visnik of Chernivtsi University. 2009. V.485. P. 113117. (in Ukrainian)

2. Slyusarchuk V.Yu. Operator analogue of DAlemberts test// Mathematics today 09. Kiev: Izdat. Osvita Ukraine. 2009. V.15. P. 101115. (in Russian)

3. Slyusarchuk V.Yu. Operator analogue of Cauchys test// Mat. Stud. 2010. V.33, 1. P. 97100. (in Ukrainian)

4. Slyusarchuk V.Yu. Operator analogue of Bertrands test// Mat. Stud. 2011. V.35, 2. P. 181195. (in Ukrainian)

5. Slyusarchuk V.Yu. Operator analogue of Kummers test// Mat. Stud. 2011. V.36, 2. P. 188196. (in Ukrainian)

6. Fichtengolz G.M. Differential and integral calculus. V.2, Moskow: Nauka, 1966, 800 p. (in Russian)

7. Slyusarchuk V.E. Some conditions for convergence of numerical series// Mathematics today 90. Kiev: Vishcha shkola. 1990. P. 94105. (in Russian)

8. Slyusarchuk V.Yu. General theorems of converging numerical series. Rivne: Rivne State Technical University Publishing House, 2001, 240 p. (in Ukrainian)

9. Krasnoselskii M.A., Lifshic E.A., Sobolev A.V. Positive linear systems: method of positive operators. Moskow: Nauka, 1985, 256 p. (in Russian)

Pages 178-189
Volume 39
Issue 2
Year 2013
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML