Reference |
1. Slyusarchuk V.Yu. Conditions of converging operator series
$\sum_{n=1}^\infty n^{-A}$// Nauk. Visnik of Chernivtsi
University. – 2009. – V.485. – P. 113–117. (in Ukrainian)
2. Slyusarchuk V.Yu. Operator analogue of D’Alembert’s test// Mathematics today ’09. – Kiev: Izdat. “Osvita
Ukraine”. – 2009. – V.15. – P. 101–115. (in Russian)
3. Slyusarchuk V.Yu. Operator analogue of Cauchy’s test// Mat. Stud. – 2010. – V.33, ¹1. – P. 97–100. (in
Ukrainian)
4. Slyusarchuk V.Yu. Operator analogue of Bertrand’s test// Mat. Stud. – 2011. – V.35, ¹2. – P. 181–195.
(in Ukrainian)
5. Slyusarchuk V.Yu. Operator analogue of Kummer’s test// Mat. Stud. – 2011. – V.36, ¹2. – P. 188–196.
(in Ukrainian)
6. Fichtengolz G.M. Differential and integral calculus. – V.2, Moskow: Nauka, 1966, 800 p. (in Russian)
7. Slyusarchuk V.E. Some conditions for convergence of numerical series// Mathematics today ’90. – Kiev:
Vishcha shkola. – 1990. – P. 94–105. (in Russian)
8. Slyusarchuk V.Yu. General theorems of converging numerical series. – Rivne: Rivne State Technical
University Publishing House, 2001, 240 p. (in Ukrainian)
9. Krasnosel’skii M.A., Lifshic E.A., Sobolev A.V. Positive linear systems: method of positive operators. –
Moskow: Nauka, 1985, 256 p. (in Russian)
|