УДК 517.98

Yu. G. Kovalev

1D NONNEGATIVE SCHRÖDINGER OPERATORS WITH POINT INTERACTIONS

Yu. G. Kovalev. 1D nonnegative Schrödinger operators with point interactions, Mat. Stud. 39 (2013), 150–163.

Let Y be an infinite discrete set of points in \mathbb{R} , satisfying the condition $\inf\{|y-y'|,\ y,y'\in Y,\ y'\neq y\}>0$. In the paper we prove that the systems $\{\delta(x-y)\}_{y\in Y},\ \{\delta'(x-y)\}_{y\in Y},\ \{\delta'(x-y)\}_{y\in Y},\ \{\delta'(x-y)\}_{y\in Y},\ \{\delta(x-y),\ \delta'(x-y)\}_{y\in Y}\}$ form Riesz bases in the corresponding closed linear spans in the Sobolev spaces $W_2^{-1}(\mathbb{R})$ and $W_2^{-2}(\mathbb{R})$. As an application, we prove the transversalness of the Friedrichs and Kreın nonnegative selfadjoint extensions of the nonnegative symmetric operators $A_0,\ A'$, and H_0 defined as restrictions of the operator $A = -\frac{d^2}{dx^2},\ \mathrm{dom}(A) = W_2^2(\mathbb{R})$ to the linear manifolds $\mathrm{dom}(A_0) = \{f \in W_2^2(\mathbb{R}) \colon f(y) = 0,\ y \in Y\},\ \mathrm{dom}(A') = \{g \in W_2^2(\mathbb{R}) \colon g'(y) = 0,\ y \in Y\},\ \mathrm{and}\ \mathrm{dom}(H_0) = \{f \in W_2^2(\mathbb{R}) \colon f(y) = 0,\ f'(y) = 0,\ y \in Y\},\ \mathrm{respectively}.$ Using the divergence forms, the basic nonnegative boundary triplets for $A_0'',\ A''''$, and H_0'' are constructed.

Ю. Г. Ковалев. 1D неотрицательные операторы Шрёдингера с точечными взаимодействиями // Мат. Студії. – 2013. – Т.39, №2. – С.150–163.

Пусть Y бесконечное дискретное множество точек в \mathbb{R} , удовлетворяющее условию $\inf\{|y-y'|,\ y,y'\in Y,\ y'\neq y\}>0$. Мы показываем, что системы $\{\delta(x-y)\}_{y\in Y},\ \{\delta'(x-y)\}_{y\in Y},\ \{\delta(x-y)\}_{y\in Y},\ \{\delta(x-y)\}_{y\in Y},\ \{\delta(x-y)\}_{y\in Y},\ \delta'(x-y)\}_{y\in Y}$ образуют базисы Рисса в соответствующих замкнутых линейных оболочках в пространствах Соболева $W_2^{-1}(\mathbb{R})$ и $W_2^{-2}(\mathbb{R})$. В приложении мы доказываем трансверсальность неотрицательных самосопряженных расширений Фридрихса и Крейна неотрицательных симметрических операторов $A_0,\ A'$ и H_0 , определенных как сужение оператора $A=-\frac{d^2}{dx^2},\ \mathrm{dom}(A)=W_2^2(\mathbb{R})$ на линейные многообразия $\mathrm{dom}(A_0)=\{f\in W_2^2(\mathbb{R})\colon f(y)=0,\ y\in Y\},\ \mathrm{dom}(A')=\{g\in W_2^2(\mathbb{R})\colon g'(y)=0,\ y\in Y\}$ и $\mathrm{dom}(H_0)=\{f\in W_2^2(\mathbb{R})\colon f(y)=0,\ f'(y)=0,\ y\in Y\}$ соответственно. Используя дивергентную форму, построены базисные неотрицательные граничные тройки для $A_0^*,\ A'^*$ и H_0^* .

1. Introduction. Let \mathbb{Z} be the set of all integers and let $\mathbb{Z}_{-} = \{j \in \mathbb{Z}, j \leq -1\}$, $\mathbb{Z}_{+} = \{j \in \mathbb{Z}, j \geq 1\}$. By \mathbb{J} we will denote one of the sets \mathbb{Z} , \mathbb{Z}_{-} , \mathbb{Z}_{+} . Let Y be a finite or infinite monotone sequence of points in \mathbb{R} . When Y is infinite we will suppose that

$$\inf\{|y_j - y_k|, \ j \neq k\} = d > 0. \tag{1}$$

For an infinite Y, the following three cases are possible

$$Y = \{y_j, \ j \in \mathbb{Z}\}, \text{ if } \inf\{Y\} = -\infty \text{ and } \sup\{Y\} = +\infty,$$

 $Y = \{y_j, \ j \in \mathbb{Z}_-\}, \text{ if } y_{-1} = \sup\{Y\} < +\infty, \ Y = \{y_j, \ j \in \mathbb{Z}_+\}, \text{ if } y_1 = \inf\{Y\} > -\infty.$

Clearly, the notation $Y = \{y_j, : j \in \mathbb{J}\}$ serves all these cases.

²⁰¹⁰ Mathematics Subject Classification: 34L40, 46E35, 47A20, 47B25, 81Q10.

Keywords: point interaction; Riesz basis; boundary triplet; the Friedrichs extension; the Kreĭn extension. doi:10.30970/ms.39.2.150-163

Let $W_2^{\pm 1}(\mathbb{R})$, $W_2^{\pm 2}(\mathbb{R})$ be Sobolev spaces. Define in the Hilbert space $L_2(\mathbb{R})$ the linear operators

$$dom(A_0) = \{ f \in W_2^2(\mathbb{R}) \colon f(y) = 0, \ y \in Y \}, \ A_0 := -\frac{d^2}{dx^2}, \tag{2}$$

$$dom(A') = \{ g \in W_2^2(\mathbb{R}) \colon g'(y) = 0, \ y \in Y \}, \ A' := -\frac{d^2}{dx^2}, \tag{3}$$

$$dom(H_0) = \{ f \in W_2^2(\mathbb{R}) : f(y) = 0, \ f'(y) = 0, \ y \in Y \}, \ H_0 := -\frac{d^2}{dx^2}.$$
 (4)

The operators A_0 , A', and H_0 are basic for investigations of Hamiltonians on the real line corresponding to the δ , δ' and $\delta - \delta'$ interactions, respectively ([1]). They are symmetric, densely defined, closed, and nonnegative ([1]), and are restrictions of the selfadjoint and nonnegative operator A defined by

$$dom(A) = W_2^2(\mathbb{R}), \ A = -\frac{d^2}{dx^2}.$$
 (5)

In addition, the operators A_0 and A' are symmetric extensions of the operator H_0 . The adjoint operators are given by

$$\operatorname{dom}(A_0^*) = W_2^1(\mathbb{R}) \cap W_2^2(\mathbb{R} \setminus Y), \ A_0^* = -\frac{d^2}{dx^2},$$

$$\operatorname{dom}(A'^*) = \{ g \in W_2^2(\mathbb{R}) : g'(y+) = g'(y-), \ y \in Y \}, \ A'^* = -\frac{d^2}{dx^2},$$

$$\operatorname{dom}(H_0^*) = W_2^2(\mathbb{R} \setminus Y), \ H_0^* = -\frac{d^2}{dx^2}.$$
(6)

It is well known ([1]) that

$$\delta_y = \delta(x - y) \in W_2^{-1}(\mathbb{R}) \setminus L_2(\mathbb{R}), \ (\delta_y)' = \delta'(x - y) \in W_2^{-2}(\mathbb{R}) \setminus W_2^{-1}(\mathbb{R}), \tag{7}$$

where $\delta(x-y)$ and $\delta'(x-y)$ are the delta-function and its derivative.

We have the following chain of Hilbert spaces $W_2^2(\mathbb{R}) \subset W_2^1(\mathbb{R}) \subset L_2(\mathbb{R}) \subset W_2^{-1}(\mathbb{R}) \subset W_2^{-2}(\mathbb{R})$ The triplets $W_2^2(\mathbb{R}) \subset L_2(\mathbb{R}) \subset W_2^{-2}(\mathbb{R})$ and $W_2^1(\mathbb{R}) \subset L_2(\mathbb{R}) \subset W_2^{-1}(\mathbb{R})$ are rigged Hilbert spaces, i.e., the Hilbert space $W_2^{-2}(\mathbb{R})$ ($W_2^{-1}(\mathbb{R})$, respectively) is the set of all continuous anti-linear functionals on $W_2^2(\mathbb{R})$ (on $W_2^1(\mathbb{R})$, respectively, [6]).

Let $Y = \{y_j \in \mathbb{R}, j \in \mathbb{J}\}$ be a discrete set in \mathbb{R} satisfying (1). Define the following subspaces

$$\Phi = \overline{\operatorname{span}} \left\{ \delta'(x-y), \ y \in Y \right\} \quad \text{(the closure in } \quad W_2^{-2}(\mathbb{R})),$$

$$\Psi_{-1} = \overline{\operatorname{span}} \left\{ \delta(x-y), \ y \in Y \right\} \quad \text{(the closure in } \quad W_2^{-1}(\mathbb{R})),$$

$$\Psi_{-2} = \overline{\operatorname{span}} \left\{ \delta(x-y), \quad y \in Y \right\} \quad \text{(the closure in } \quad W_2^{-2}(\mathbb{R})),$$

$$\Omega = \overline{\operatorname{span}} \left\{ \delta(x-y), \ \delta'(x-y), \quad y \in Y \right\} \quad \text{(the closure in } \quad W_2^{-2}(\mathbb{R})).$$

Clearly, $\Psi_{-1} \subseteq \Psi_{-2}$. It is known ([1]) that $\Phi \cap L_2(\mathbb{R}) = \{0\}$, $\Psi_{-2} \cap L_2(\mathbb{R}) = \{0\}$, $\Omega \cap L_2(\mathbb{R}) = \{0\}$. Therefore, the operators A', A_0 , and H_0 are densely defined and

$$dom(A') = \{ f \in W_2^2(\mathbb{R}) \colon (f, \varphi) = 0, \ \varphi \in \Phi \}, \tag{8}$$

$$dom(A_0) = \{ f \in W_2^2(\mathbb{R}) \colon (f, \psi) = 0, \ \psi \in \Psi_{-2} \}, \tag{9}$$

$$dom(H_0) = \{ f \in W_2^2(\mathbb{R}) : (f, \omega) = 0, \ \omega \in \Omega \}.$$
 (10)

In this paper we establish some new connections between the Sobolev spaces $W_2^1(\mathbb{R})$, $W_2^2(\mathbb{R})$ and the Hilbert space ℓ_2 . Using these connections we prove that

- $\Psi_{-1} = \Psi_{-2}$;
- the systems $\{\delta(x-y_j)\}_{j\in\mathbb{J}}$, $\{\delta'(x-y_j)\}_{j\in\mathbb{J}}$, $\{\delta(x-y_j), \delta'(x-y_j)\}_{j\in\mathbb{J}}$ form the Riesz bases of the subspaces Ψ_{-2} , Φ , and Ω , respectively;
- the Friedrichs and Krein extensions of A', A_0 , and H_0 are mutually transversal.

Finally, we construct basic positive boundary triplets ([2], [3]) for A'^* , A_0^* , and H_0^* and give descriptions of all nonnegative selfadjoint extensions.

2. The Sobolev spaces $W_2^1(\mathbb{R})$, $W_2^2(\mathbb{R})$ and the Hilbert space ℓ_2 . In this Section we establish some connections between the Hilbert spaces $W_2^1(\mathbb{R})$, $W_2^2(\mathbb{R})$ and the Hilbert space $\ell_2(\mathbb{J})$.

Proposition 1. Suppose Y is infinite and (1) holds. Then

1) If $g \in W_2^2(\mathbb{R})$ then the sequences $\{g(y_j), y_j \in Y\}$ and $\{g'(y_j), y_j \in Y\}$ belong to $\ell_2(\mathbb{J})$. Moreover, there exists a positive constants c such that

$$\|\{g(y_j)\}\|_{\ell_2(\mathbb{J})} \le c\|g\|_{W_2^2(\mathbb{R})}, \ \|\{g'(y_j)\}\|_{\ell_2(\mathbb{J})} \le c\|g\|_{W_2^2(\mathbb{R})}, \ \forall g \in W_2^2(\mathbb{R}).$$

2) If $\{a_j, j \in \mathbb{J}\}$, $\{b_j, j \in \mathbb{J}\} \in \ell_2(\mathbb{J})$ then there exists a function $g \in W_2^2(\mathbb{R})$ such that $g(y_j) = a_j, g'(y_j) = b_j, \forall j \in \mathbb{J}$.

Proof. 1) Let $g \in W_2^2(\mathbb{R})$. One can verify that the equalities

$$g(y_j) = \frac{1}{2} \int_{\mathbb{R}} e^{-|x-y_j|} (g(x) - \operatorname{sgn}(x - y_j) g'(x)) dx, \ g'(y_j) = \frac{1}{2} \int_{\mathbb{R}} e^{-|x-y_j|} (g'(x) - \operatorname{sgn}(x - y_j) g''(x)) dx$$

hold. Further

$$|g(y_j)| \le \frac{1}{2} \sum_{n \in \mathbb{J}} \left(\int_{y_{n-1}}^{y_n} e^{-2|x-y_j|} dx \right)^{1/2} \left(\int_{y_{n-1}}^{y_n} |g(x) - \operatorname{sgn}(x - y_j) g'(x)|^2 dx \right)^{1/2} = \frac{1}{2} \sum_{n \in \mathbb{J}} M_{jn} h_n,$$

where $\{h_n, n \in \mathbb{J}\} \in \ell_2(\mathbb{J})$ because

$$\sum_{n \in \mathbb{J}} h_n^2 = \sum_{n \in \mathbb{J}} \int_{y_{n-1}}^{y_n} |g(x) - \operatorname{sgn}(x - y_j) g'(x)|^2 dx \le$$

$$\le 2 \sum_{n \in \mathbb{J}} \int_{y_{n-1}}^{y_n} \left(|g(x)|^2 + |g'(x)|^2 \right) dx \le 2 ||g||_{W_2^2(\mathbb{R})}^2 < \infty,$$

$$\sum_{n \in \mathbb{J}} M_{jn} = \sum_{n \in \mathbb{J}} \left(\int_{y_{n-1}}^{y_n} e^{-2|x - y_j|} dx \right)^{1/2} \le \sum_{n \in \mathbb{J}} \frac{1}{\sqrt{2}} \left\{ \begin{array}{c} e^{-|y_n - y_j|}, & n \le j, \\ e^{-|y_{n-1} - y_j|}, & n \ge j + 1, \end{array} \right\} \le$$

$$\le \sqrt{2} \sum_{m \in \mathbb{Z}} e^{-|m|d} = \sqrt{2} \frac{e^d + 1}{e^d - 1}.$$

Let M be the linear operator in $\ell_2(\mathbb{J})$ given by the matrix $||M_{jn}||_{j,n\in\mathbb{J}}$. Then the Holmgren bound of M ([1, Appendix C]) satisfies

$$||M||_H = \left(\sup_{j \in \mathbb{J}} \sum_{n \in \mathbb{J}} |M_{jn}|\right)^{1/2} \left(\sup_{n \in \mathbb{J}} \sum_{j \in \mathbb{J}} |M_{jn}|\right)^{1/2} \le \sqrt{2} \frac{e^d + 1}{e^d - 1} < \infty.$$

It follows that M is bounded in $\ell_2(\mathbb{J})$. Hence

$$\sum_{j \in \mathbb{J}} |g(y_j)|^2 \le \frac{1}{4} \sum_{j \in \mathbb{J}} \left(\sum_{n \in \mathbb{J}} M_{jn} h_n \right)^2 = \frac{1}{4} \|Mh\|_{\ell_2(\mathbb{J})}^2 \le
\le \frac{1}{4} \|M\|_H^2 \|g\|_{W_2^2(\mathbb{R})}^2 \le \left(\frac{1}{\sqrt{2}} \frac{e^d + 1}{e^d - 1} \right)^2 \|g\|_{W_2^2(\mathbb{R})}^2 = c_1^2 \|g\|_{W_2^2(\mathbb{R})}^2 < \infty.$$
(11)

Similarly $\sum_{j\in\mathbb{J}} |g'(y_j)|^2 \le c_2^2 ||g||_{W_2^2(\mathbb{R})}^2 < \infty$. So, $\{g(y_j), y_j \in Y\}, \{g'(y_j), y_j \in Y\} \in \ell_2(\mathbb{J})$.

$$f_{\alpha}(t) = \begin{cases} e \cdot \exp\left(\frac{\alpha^2}{t^2 - \alpha^2}\right) \frac{-\alpha^2(a + bt)}{t^2 - \alpha^2}, & |t| \leq \alpha; \\ 0, & \text{otherwise.} \end{cases}$$

Clearly $f_{\alpha}(t) \in W_2^2(\mathbb{R})$ and $f_{\alpha}(0) = a$. Further

$$f_{\alpha}'(t) = \begin{cases} e \cdot \exp\left(\frac{\alpha^2}{t^2 - \alpha^2}\right) \frac{\alpha^2}{(t^2 - \alpha^2)^3} \left(bt^4 + 2at^3 + 2b\alpha^2t^2 + b\alpha^4\right), & |t| \le \alpha; \\ 0, & \text{otherwise,} \end{cases}$$

and $f'_{\alpha}(0) = b$.

$$f_{\alpha}''(t) = \begin{cases} e \cdot \exp\left(\frac{\alpha^2}{t^2 - \alpha^2}\right) \frac{\alpha^2(-2bt^7 - 6at^6 - 12b\alpha^2t^5 - 4a\alpha^2t^4 - 2b\alpha^4t^3 + 6a\alpha^4t^2 + 8b\alpha^6t)}{(t^2 - \alpha^2)^5}, & |t| \leq \alpha; \\ 0, & \text{otherwise.} \end{cases}$$

Let $\{a_k, k \in \mathbb{J}\}, \{b_k, k \in \mathbb{J}\} \in \ell_2(\mathbb{J}),$

$$g_k(x) = f_{d/2}(x - y_k) = \begin{cases} e \cdot \exp\left(\frac{(d/2)^2}{(x - y_k)^2 - (d/2)^2}\right) \frac{-(d/2)^2(a_k + b_k(x - y_k))}{(x - y_k)^2 - (d/2)^2}, & |x - y_k| \le d/2; \\ 0, & \text{otherwise,} \end{cases}$$

and $g(x) = \sum_{k \in \mathbb{J}} g_k(x)$, then $g(y_k) = a_k$, $g'(y_k) = b_k$. Now we show that the function g(x) belongs to $W_2^2(\mathbb{R})$.

$$\int_{\mathbb{R}} |g(x)|^2 dx = \int_{\mathbb{R}} \sum_{k \in \mathbb{J}} |g_k(x)|^2 dx \le$$

$$\le \sum_{k \in \mathbb{J}} \int_{y_k - d/2}^{y_k + d/2} e^2 \cdot \exp\left(\frac{2(d/2)^2}{(x - y_k)^2 - (d/2)^2}\right) \frac{(d/2)^4 |a_k + b_k(x - y_k)|^2}{((x - y_k)^2 - (d/2)^2)^2} dx =$$

$$= \sum_{k \in \mathbb{J}} e^2 (d/2)^4 \int_{-d/2}^{d/2} \exp\left(\frac{2(d/2)^2}{t^2 - (d/2)^2}\right) \frac{|a_k + b_k t|^2}{(t^2 - (d/2)^2)^2} dt \le$$

$$\le 2e^2 (d/2)^4 \sum_{k \in \mathbb{J}} \left[|a_k|^2 \int_{-d/2}^{d/2} \exp\left(\frac{2(d/2)^2}{t^2 - (d/2)^2}\right) \frac{dt}{(t^2 - (d/2)^2)^2} +$$

+
$$|b_k|^2 \int_{-d/2}^{d/2} \exp\left(\frac{2(d/2)^2}{t^2 - (d/2)^2}\right) \frac{t^2 dt}{(t^2 - (d/2)^2)^2}$$
.

Set

$$I_1 = \int_{-d/2}^{d/2} \exp\left(\frac{2(d/2)^2}{t^2 - (d/2)^2}\right) \frac{dt}{(t^2 - (d/2)^2)^2}, \quad I_2 = \int_{-d/2}^{d/2} \exp\left(\frac{2(d/2)^2}{t^2 - (d/2)^2}\right) \frac{t^2 dt}{(t^2 - (d/2)^2)^2},$$

then we obtain $\int_{\mathbb{R}} |g(x)|^2 dx \leq 2e^2 (d/2)^4 \left(\|a\|_{\ell_2(\mathbb{J})}^2 I_1 + \|b\|_{\ell_2(\mathbb{J})}^2 I_2 \right) < \infty$. Similarly

$$\int_{\mathbb{R}} |g'(x)|^2 dx \le e^2 (d/2)^4 \left(\|a\|_{\ell_2(\mathbb{J})}^2 P_1 + \|b\|_{\ell_2(\mathbb{J})}^2 P_2 \right) < \infty,$$

$$\int_{\mathbb{R}} |g''(x)|^2 dx \le e^2 (d/2)^4 \left(\|a\|_{\ell_2(\mathbb{J})}^2 S_1 + \|b\|_{\ell_2(\mathbb{J})}^2 S_2 \right) < \infty.$$

So,
$$g(x) \in W_2^2(\mathbb{R})$$
.

Corollary 1. If $f \in W_2^1(\mathbb{R})$ then the sequence $\{f(y_j), y_j \in Y\}$ belongs to $\ell_2(\mathbb{J})$.

Proof. Due to inequality (11) we have

$$\|\{f(y_j), y_j \in Y\}\|_{\ell_2(\mathbb{J})}^2 \le \left(\frac{1}{\sqrt{2}} \frac{e^d + 1}{e^d - 1}\right)^2 \|f\|_{W_2^1(\mathbb{R})}^2 < \infty.$$

Proposition 2. If $f \in W_2^1(\mathbb{R} \setminus Y)$ then the sequence $\{f(y_j+) - f(y_j-), y_j \in Y\}$ belongs to $\ell_2(\mathbb{J})$.

Proof. Let g(x) from $W_2^1(\mathbb{R} \setminus Y)$ be real, then the equalities

$$g^{2}(y_{j-1}) - g^{2}(y_{j-1}+)e^{-(y_{j}-y_{j-1})} = \int_{y_{j-1}+}^{y_{j-}} e^{-|x-y_{j}|} (g^{2}(x) + 2g(x)g'(x))dx,$$

$$g^{2}(y_{j-1}+) - g^{2}(y_{j}-)e^{-(y_{j}-y_{j-1})} = \int_{y_{j-1}+}^{y_{j-}} e^{-|x-y_{j-1}|} (g^{2}(x) - 2g(x)g'(x))dx$$

$$(12)$$

hold. From (12) we have

$$(g^{2}(y_{j-1}) + g^{2}(y_{j-1}+))(1 - e^{-(y_{j}-y_{j-1})}) =$$

$$= \int_{y_{j-1}+}^{y_{j}-} \left[g^{2}(x)(e^{-|x-y_{j}|} + e^{-|x-y_{j-1}|}) + 2g(x)g'(x)(e^{-|x-y_{j}|} - e^{-|x-y_{j-1}|}) \right] dx \le$$

$$\leq \int_{y_{j-1}+}^{y_{j}-} \left[2g^{2}(x) + 4|g(x)g'(x)| \right] dx \le \int_{y_{j-1}+}^{y_{j}-} \left[4g^{2}(x) + 2g'^{2}(x) \right] dx.$$

Since $1 - e^{-(y_j - y_{j-1})} \ge 1 - e^{-d}$, we obtain

$$\sum_{j \in \mathbb{J}} (g^2(y_j -) + g^2(y_{j-1} +))(1 - e^{-d}) \le \int_{\mathbb{R} \setminus Y} \left[4g^2(x) + 2g'^2(x) \right] dx,$$

and hence

$$\sum_{j \in \mathbb{J}} (g^2(y_j -) + g^2(y_j +)) < \infty.$$
 (13)

Consider $f(x) = f_R(x) + i f_I(x)$ from $W_2^1(\mathbb{R} \setminus Y)$, then for $f_R(x)$ and $f_I(x)$ inequality (13) holds and hence $\sum_{j \in \mathbb{J}} (|f(y_j-)|^2 + |f(y_j+)|^2) < \infty$. Since $|f(y_j+) - f(y_j-)|^2 \le 2(|f(y_j-)|^2 + |f(y_j+)|^2)$, we obtain that $\{f(y_j+) - f(y_j-), \}$

 $j \in \mathbb{J} \in \ell_2(\mathbb{J}).$

3.1. Applications. Let A be an unbounded self-adjoint operator in a Hilbert space H and let $H_{+2} \subset H_{+1} \subset H \subset H_{-1} \subset H_{-2}$ be the chain of rigged Hilbert spaces ([6]) constructed by means of A: $H_{+2} = \text{dom}(A)$, $H_{+1} = \text{dom}(|A|^{1/2})$ with norms $||f||_k = (|A|^{k/2}f||^2 +$ $||f||^2$)^{1/2}, $k \in \{1,2\}$. The "negative" Hilbert spaces H_{-k} ($k \in \{1,2\}$) are the completion of H with respect to the norms

$$||f||_{-k} = \sup_{g \in H_k, ||g||_k = 1} |(f, g)|.$$

The operator A has an extension $\mathbf{A} \in \mathcal{L}(H_k, H_{k-2}), k \in \{0,1\} \ (H_0 := H) \text{ and } |\mathbf{A}|^{1/2} \in$ $\mathcal{L}(H_k, H_{k-1}), k \in \{-1, 0\}$ is an extension of $|A|^{1/2}$. The resolvent $R_z = (A - zI)^{-1}, z \in \rho(A)$ has an extension $\mathbf{R}_z = (\mathbf{A} - zI)^{-1} \in \mathcal{L}(H_{-k}, H_{-k+2}), k \in \{0, 1, 2\}$. Let Φ be a subspace in H_{-2} such that

$$\Phi \cap H = \{0\},\tag{14}$$

then the operator A' defined by

$$dom(A') = \left\{ f \in H_{+2} \colon (f, \varphi) = 0 \quad \text{for all} \quad \varphi \in \Phi \right\}, \ A' = A \upharpoonright dom(A')$$
 (15)

is a closed, densely defined symmetric operator with the defect numbers equal to $\dim \Phi$. For the defect subspace $\mathfrak{N}_z(A') = \ker(A'^* - zI)$ the formula $\mathfrak{N}_z(A') = \mathbf{R}_z \Phi$ holds.

Suppose that A is a nonnegative operator. Then as it is well known, A is the Friedrichs extension of A' if and only if $\Phi \cap H_{-1} = \{0\}$.

The operator A given by (5) is nonnegative and self-adjoint in $H = L_2(\mathbb{R})$. Set for convenience

$$H_{+2} = \text{dom}(A) = W_2^2(\mathbb{R}), \ H_{+1} = \text{dom}(A^{1/2}) = W_2^1(\mathbb{R}), \ H_{-1} = W_2^{-1}(\mathbb{R}), \ H_{-2} = W_2^{-2}(\mathbb{R}).$$

As mentioned above, (see (7)) one has $\delta_y = \delta(x-y) \in H_{-1} \setminus H$, $(\delta_y)' = \delta'(x-y) \in H_{-2} \setminus H_{-1}$. Let $Y = \{y_j \in \mathbb{R}, j \in \mathbb{J}\}$ be a discrete set in \mathbb{R} satisfying (1).

The defect subspaces of A', A_0 , and H_0 are given by (see [1])

$$\mathfrak{N}_{\lambda}(A') = \overline{\operatorname{span}} \left\{ \operatorname{sgn}(x - y_j) \exp(i\sqrt{\lambda}|x - y_j|), \ j \in \mathbb{J} \right\},$$

$$\mathfrak{N}_{\lambda}(A_0) = \overline{\operatorname{span}} \{ \exp(i\sqrt{\lambda}|x - y_j|), \ j \in \mathbb{J} \},$$

$$\mathfrak{N}_{\lambda}(H_0) = \overline{\operatorname{span}} \{ \exp(i\sqrt{\lambda}|x - y_j|), \ \operatorname{sgn}(x - y_j) \exp(i\sqrt{\lambda}|x - y_j|), \ j \in \mathbb{J} \},$$

respectively.

3.2. Riesz bases. Recall [8] that a countable set of vectors $\{g_j\}$ forms a Riesz basis in a separable Hilbert space \mathfrak{H} if $\overline{\text{span}}\{g_j\}=\mathfrak{H}$ and there exist two positive numbers a_1 and a_2 such that for each positive integer n and each collection of complex numbers $\{c_1, c_2, \dots c_n\}$ one has

$$a_2 \sum_{j=1}^n |c_j|^2 \le \left\| \sum_{j=1}^n c_j g_j \right\|_{\mathfrak{H}}^2 \le a_1 \sum_{j=1}^n |c_j|^2.$$

Since $\{e_j\}_{j\in\mathbb{J}}$ forms a Riesz basis \mathfrak{H} , every $f\in\mathfrak{H}$ has an expansion $f=\sum_{j\in\mathbb{J}}c_je_j$ with $\sum_{j\in\mathbb{J}}|c_j|^2<\infty$, and conversely, if $\sum_{j\in\mathbb{J}}|c_j|^2<\infty$ then the series $\sum_{j\in\mathbb{J}}c_je_j$ converges in \mathfrak{H} .

Proposition 3. The systems $\{\delta(x-y_j)\}_{j\in\mathbb{J}}$, $\{\delta'(x-y_j)\}_{j\in\mathbb{J}}$ and $\{\delta(x-y_j), \delta'(x-y_j)\}_{j\in\mathbb{J}}$ form Riesz bases of the subspaces Ψ_{-2} , Φ and Ω , respectively.

Proof. We will show that $\{\delta(x-y_j), \ \delta'(x-y_j)\}_{j\in\mathbb{J}}$ is a Riesz basis of the subspace Ω . Let $f = \sum_j a_j \delta(x-y_j) + b_j \delta'(x-y_j) \in \Omega$, where $\{a_j\}_{j\in\mathbb{J}}, \ \{b_j\}_{j\in\mathbb{J}} \in l_2(\mathbb{J})$, then using the first statement of Propositions (1) we get

$$\left\| \sum_{j} a_{j} \delta(x - y_{j}) + b_{j} \delta'(x - y_{j}) \right\|_{H_{-2}}^{2} = \sup_{g \in H_{+2}, \|g\|_{H_{+2}} = 1} |(f, g)|^{2} =$$

$$= \sup_{g \in H_{+2}, \|g\|_{H_{+2}} = 1} \left| \sum_{j} a_{j} g(y_{j}) + b_{j} g'(y_{j}) \right|^{2} \le$$

$$\le 2 \left(\sup_{g \in H_{+2}, \|g\|_{H_{+2}} = 1} \sum_{j} |a_{j}|^{2} \sum_{j} |g(y_{j})|^{2} + \sup_{g \in H_{+2}, \|g\|_{H_{+2}} = 1} \sum_{j} |b_{j}|^{2} \sum_{j} |g'(y_{j})|^{2} \right) =$$

$$= C_{1} \|a\|_{\ell_{2}(\mathbb{J})}^{2} + C_{2} \|b\|_{\ell_{2}(\mathbb{J})}^{2} < \infty.$$

On the other hand, using the second statement of Proposition (1) we have

$$\sup_{g \in H_{+2}, \|g\|_{H_{+2}} = 1} \left| \sum_{j} a_j g(y_j) + b_j g'(y_j) \right|^2 \ge \left| \sum_{j} a_j \frac{\overline{a_j}}{\|a\|} + b_j \frac{\overline{b_j}}{\|b\|} \right|^2 = (\|a\|_{\ell_2(\mathbb{J})} + \|b\|_{\ell_2(\mathbb{J})})^2.$$

Therefore, the system $\{\delta(x-y_j), \ \delta'(x-y_j)\}_{j\in\mathbb{J}}$ forms a Riesz basis of the subspace Ω . The other statements can be proved similarly.

3.3. Transversalness of the Friedrichs and Kreĭn extensions. Let H be a separable Hilbert space and let \mathcal{A} be a densely defined closed symmetric and nonnegative operator. Denote by \mathcal{A}^* the adjoint to \mathcal{A} , by $\widetilde{\mathcal{A}}$ a nonnegative selfadjoint extension of \mathcal{A} . It is well known ([1]) that the operator \mathcal{A} admits at least one nonnegative self-adjoint extension \mathcal{A}_F called the *Friedrichs extension*, which is defined as follows. Denote by $\mathcal{A}[\cdot,\cdot]$ the closure of the sesquilinear form (see [10])

$$\mathcal{A}[f,g] = (\mathcal{A}f,g), \ f,g \in \text{dom}(\mathcal{A}),$$

and let $\mathcal{D}[\mathcal{A}]$ be the domain of this closure. According to the first representation theorem ([10]) there exists a nonnegative self-adjoint operator \mathcal{A}_F associated with $\mathcal{A}[\cdot,\cdot]$, i.e., $(\mathcal{A}_F h, \psi)$ = $\mathcal{A}[h, \psi]$, $\psi \in \mathcal{D}[\mathcal{A}]$, $h \in \text{dom}(\mathcal{A}_F)$. Clearly $\mathcal{A} \subset \mathcal{A}_F \subset \mathcal{A}^*$, where \mathcal{A}^* is the adjoint operator to \mathcal{A} . It follows that $\text{dom}(\mathcal{A}_F) = \mathcal{D}[\mathcal{A}] \cap \text{dom}(\mathcal{A}^*)$. By the second representation theorem, the equalities $\mathcal{D}[\mathcal{A}] = \text{dom}(\mathcal{A}_F^{1/2})$ and $\mathcal{A}[\phi, \psi] = (\mathcal{A}_F^{1/2}\phi, \mathcal{A}_F^{1/2}\psi)$, $\phi, \psi \in \mathcal{D}[\mathcal{A}]$ hold.

M. G. Kreĭn in [14] discovered one more nonnegative self-adjoint extension of \mathcal{A} having extremal property to be minimal (in the sense of the corresponding quadratic forms) among others nonnegative self-adjoint extensions of \mathcal{A} . This extension we will denote by \mathcal{A}_K and call it the *Kreĭn extension* of \mathcal{A} .

Recall that two selfadjoint extensions $\widetilde{\mathcal{A}}_1$ and $\widetilde{\mathcal{A}}_2$ of a symmetric operator \mathcal{A} are called disjoint if $\operatorname{dom}(\widetilde{\mathcal{A}}_1) \cap \operatorname{dom}(\widetilde{\mathcal{A}}_2) = \operatorname{dom}(\mathcal{A})$ and $\operatorname{transversal}$ if $\operatorname{dom}(\widetilde{\mathcal{A}}_1) + \operatorname{dom}(\widetilde{\mathcal{A}}_2) = \operatorname{dom}(\mathcal{A}^*)$. We need the following statement ([4], [16]).

Proposition 4. The Friedrichs and Kreĭn extensions \mathcal{A}_F and \mathcal{A}_K are transversal if $\mathfrak{N}_z \subset \text{dom}(\mathcal{A}_K^{1/2})$ at least for one (hence for all) $z \in \mathbb{C} \setminus [0, \infty)$.

In what follows we will consider our operators (2)–(4) in the p-representation by means of the Fourier transform

$$\widehat{f}(p) = (\mathcal{F}f)(p) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x)e^{-ipx}dx.$$

Note that

$$(\mathcal{F}\delta_y)(p) = \widehat{\delta}_y(p) = \frac{1}{\sqrt{2\pi}} e^{-ipy}, \ (\mathcal{F}\delta'_y)(p) = \widehat{\delta}'_y(p) = \frac{ipe^{-ipy}}{\sqrt{2\pi}},$$

and the Fourier transformation \mathcal{F} is a unitary operator from $L_2(\mathbb{R}, dx)$ onto $L_2(\mathbb{R}, dp)$. In addition

$$\operatorname{dom}(\widehat{A}) = \widehat{H}_{+2} = \left\{ \hat{f} \in L_2(\mathbb{R}, dp) : \int_{\mathbb{R}} |\widehat{f}(p)|^2 (p^4 + 1) dp < \infty \right\}, \ (\widehat{A}\widehat{f})(p) = p^2 \widehat{f}(p),
\operatorname{dom}(\widehat{A}^{1/2}) = \widehat{H}_{+1} = \left\{ \hat{f} \in L_2(\mathbb{R}, dp) : \int_{\mathbb{R}} |\widehat{f}(p)|^2 (p^2 + 1) dp < \infty \right\}, \ (\widehat{A}^{1/2}\widehat{f})(p) = |p|\widehat{f}(p).
\operatorname{dom}(\widehat{A}') = \left\{ \hat{f} \in \widehat{H}_{+2} : \int_{\mathbb{R}} p e^{ipy_j} \widehat{f}(p) dp = 0, \ j \in \mathbb{J} \right\}, \ (\widehat{A}'\widehat{f})(p) = p^2 \widehat{f}(p)
\operatorname{dom}(\widehat{A}_0) = \left\{ \hat{f} \in \widehat{H}_{+2} : \int_{\mathbb{R}} e^{ipy_j} \widehat{f}(p) dp = 0, \ j \in \mathbb{J} \right\}, \ (\widehat{A}_0\widehat{f})(p) = p^2 \widehat{f}(p),
\operatorname{dom}(\widehat{H}_0) = \left\{ \hat{f} \in \widehat{H}_{+2} : \int_{\mathbb{R}} e^{ipy_j} \widehat{f}(p) dp = 0, \ \int_{\mathbb{R}} p e^{ipy_j} \widehat{f}(p) dp = 0 \ j \in \mathbb{J} \right\}, \ (\widehat{H}_0\widehat{f})(p) = p^2 \widehat{f}(p).$$

The pairs of operators $\langle \widehat{A}, A \rangle$, $\langle \widehat{A'}, A' \rangle$, $\langle \widehat{A}_0, A_0 \rangle$, and $\langle \widehat{H}_0, H_0 \rangle$ are unitary equivalent since $\mathcal{F}A = \widehat{A}\mathcal{F}$. Clearly, $\widehat{H}_{+2} = \mathcal{F}H_{+2}$, $\widehat{H}_{+1} = \mathcal{F}H_{+1}$,

$$\widehat{H}_{-1} = \mathcal{F}H_{-1} = \left\{ \widehat{f}(p) : \frac{\widehat{f}(p)}{p^2 + 1} \in \widehat{H}_{+1} \right\}, \ \|\widehat{f}(p)\|_{\widehat{H}_{-1}}^2 = \int_{\mathbb{R}} \frac{|\widehat{f}(p)|^2}{p^2 + 1} \, dp,$$

$$\widehat{H}_{-2} = \mathcal{F}H_{-2} = \left\{ \widehat{f}(p) : \frac{\widehat{f}(p)}{p^4 + 1} \in \widehat{H}_{+2} \right\}, \ \|\widehat{f}(p)\|_{\widehat{H}_{-2}}^2 = \int_{\mathbb{R}} \frac{|\widehat{f}(p)|^2}{p^4 + 1} \, dp,$$

$$\widehat{\mathbf{A}}\widehat{f} = p^2 \widehat{f}(p), \quad \widehat{\mathbf{A}} : \widehat{H}_{+1} \to \widehat{H}_{-1}, \quad L_2(\mathbb{R}) \to \widehat{H}_{-2}.$$

Let
$$\widehat{\Phi} = \mathcal{F}\Phi$$
, $\widehat{\Psi}_{-1} = \mathcal{F}\Psi_{-1}$, $\widehat{\Psi}_{-2} = \mathcal{F}\Psi_{-2}$, $\widehat{\Omega} = \mathcal{F}\Omega$. Then
$$\widehat{\Phi} = \overline{\operatorname{span}}\{pe^{-ipy_j}, \ j \in \mathbb{J}\}, \quad \widehat{\Psi}_{-2} = \overline{\operatorname{span}}\{e^{-ipy_j}, \ j \in \mathbb{J}\},$$

$$\widehat{\Psi}_{-1} = \overline{\operatorname{span}}\{e^{-ipy_j}, \ j \in \mathbb{J}\}, \quad \widehat{\Omega} = \overline{\operatorname{span}}\{e^{-ipy_j}, \ pe^{-ipy_j}, \ j \in \mathbb{J}\}.$$

Theorem 1. The equality $\Psi_{-2} = \Psi_{-1}$ holds.

Proof. Let $f \in \Psi_{-2}$, then $f = \sum_k c_k \delta(x - y_k)$, $\sum_{k \in \mathbb{J}} |c_k|^2 < \infty$. Using Corollary (1) we have

$$||f||_{H_{-1}}^2 = \sup_{g \in H_1, ||g||_1 = 1} |(f, g)|^2 = \sup_{g \in H_1, ||g||_1 = 1} \left| \sum_{k \in \mathbb{J}} c_k g(y_k) \right|^2 \le \sum_{k \in \mathbb{J}} |c_k|^2 \sup_{g \in H_1, ||g||_1 = 1} \sum_{k \in \mathbb{J}} |g(y_k)|^2 < \infty.$$

Therefore, $\Psi_{-2} \subset H_{-1}$ and $\Psi_{-2} = \Psi_{-1}$.

Corollary 2. The systems $\{e^{-ipy_j}\}_{j\in\mathbb{J}}$, $\{pe^{-ipy_j}\}_{j\in\mathbb{J}}$ and $\{\frac{e^{-ipy_j}}{p^2+1}\}_{j\in\mathbb{J}}$, $\{\frac{pe^{-ipy_j}}{p^2+1}\}_{j\in\mathbb{J}}$ form Riesz bases of the subspaces $\widehat{\Psi}_{-1}$, $\widehat{\Phi}$ and $\widehat{\mathfrak{N}}_{-1}(\widehat{A}_0)$, $\widehat{\mathfrak{N}}_{-1}(\widehat{A}')$, respectively.

Proof. Since the operator \mathcal{F} unitarily maps H_{-2} onto \widehat{H}_{-2} , by Proposition 3, the systems $\{e^{-ipy_j}\}_{j\in\mathbb{J}}$ and $\{pe^{-ipy_j}\}_{j\in\mathbb{J}}$ form Riesz bases of $\widehat{\Psi}_{-1}$ and $\widehat{\Phi}$, respectively. Let $\widehat{\mathfrak{N}}_{-1}(\widehat{A}') = \ker(\widehat{A}'^*+I)$, $\widehat{\mathfrak{N}}_{-1}(\widehat{A}_0) = \ker(\widehat{A}_0^*+I)$. Then $\widehat{\mathfrak{N}}_{-1}(\widehat{A}') = (\widehat{\mathbf{A}}+I)^{-1}\widehat{\Phi}$, $\widehat{\mathfrak{N}}_{-1}(\widehat{A}_0) = (\widehat{\mathbf{A}}+I)^{-1}\widehat{\Psi}_{-1}$, and $\left\{\frac{pe^{-ipy_j}}{p^2+1}\right\}_{j\in\mathbb{J}}$ is a Riesz basis of $\widehat{\mathfrak{N}}_{-1}(\widehat{A}') \subset H$, $\left\{\frac{e^{-ipy_j}}{p^2+1}\right\}_{j\in\mathbb{J}}$ is a Riesz basis of $\widehat{\mathfrak{N}}_{-1}(\widehat{A}_0) \subset \widehat{H}_{+1}$.

Theorem 2. The equality $\Phi \cap H_{-1} = \{0\}$ holds.

Proof. Let $g \in \widehat{\Phi}$, then $g(p) = \sum_k c_k p e^{-ipy_k}$, but by Corollary (2) $\int_{\mathbb{R}} \frac{1}{p^2+1} \left| \sum_k c_k p e^{-ipy_k} \right|^2 dp = \infty$, hence g does not belong to \widehat{H}_{-1} , i.e. $\widehat{\Phi} \cap \widehat{H}_{-1} = \{0\}$ and $\Phi \cap H_{-1} = \{0\}$.

Corollary 3. The Friedrichs and Krein extensions of the operators H_0 , A', A_0 are transversal.

Proof. Let $u \in \widehat{\mathfrak{N}}_{-1}(\widehat{H}_0)$, then $u(p) = \sum_k a_k \frac{e^{-ipy_k}}{p^2+1} + b_k \frac{pe^{-ipy_k}}{p^2+1}$. Using Corollary (2) we have

$$\sup_{f \in \text{dom}(\widehat{H}_{0})} \frac{|(\widehat{H}_{0}f, u)|^{2}}{(\widehat{H}_{0}f, f)} = \sup_{f \in \text{dom}(\widehat{H}_{0})} \frac{\left| \int_{\mathbb{R}} p^{2} f(p) \overline{u(p)} dp \right|^{2}}{\int_{\mathbb{R}} p^{2} |f(p)|^{2} dp} \leq \sup_{f \in \text{dom}(\widehat{H}_{0})} \frac{\int_{\mathbb{R}} p^{4} |f(p)|^{2} dp \int_{\mathbb{R}} |u(p)|^{2} dp}{\int_{\mathbb{R}} p^{2} |f(p)|^{2} dp} \leq \int_{\mathbb{R}} \left(\left| \sum_{k} \frac{a_{k} e^{-ipy_{k}}}{p^{2} + 1} \right|^{2} + \left| \sum_{k} \frac{b_{k} p e^{-ipy_{k}}}{p^{2} + 1} \right|^{2} \right) dp < \infty.$$

So, $\widehat{\mathfrak{N}}_{-1}(\widehat{H}_0) \subset \operatorname{dom}(\widehat{H}_{0K}^{1/2})$. Therefore, due to Proposition 4 the extensions \widehat{H}_{0F} and \widehat{H}_{0K} as well as H_{0F} and H_{0K} are transversal.

Transversalness of the Friedrichs and Kreĭn extensions of the operators A' and A_0 can be proved similarly.

Corollary 4. The operator A is the Friedrichs extension of the operator A'.

Proof. Since
$$\Phi \cap H_{-1} = \{0\}$$
, we get that $A'_F = A$.

3.4. Basic boundary triplets for operators A_0^* , A'^* and H_0^* . Let S be a closed densely defined symmetric operator with equal defect numbers in \mathfrak{H} . Let \mathcal{H} be some Hilbert space, Γ_1 and Γ_2 be linear mappings of dom (S^*) into \mathcal{H} . A triplet $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ is called a boundary triplet for adjoint operator S^* ([7], [11], [9]), if

$$(S^*x, y) - (x, S^*y) = (\Gamma_1 x, \Gamma_0 y)_{\mathcal{H}} - (\Gamma_0 x, \Gamma_1 y)_{\mathcal{H}} \quad \text{for all} \quad x, y \in \text{dom}(S^*), \tag{16}$$

and a mapping $\Gamma: x \mapsto \{\Gamma_0 x, \Gamma_1 x\}, x \in \text{dom}(S^*) \text{ is a surjection of } \text{dom}(S^*) \text{ onto } \mathcal{H} \oplus \mathcal{H}.$

Let S be a densely defined and nonnegative operator. Suppose that the Friedrichs and Kreĭn extensions of S are transversal. The boundary triplet $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ for S^* is called basic ([2], [3] rigid for positive definite S [17]) if $\ker(\Gamma_0) = \dim(S_F)$, $\ker(\Gamma_1) = \dim(S_K)$. A basic boundary triplet is positive [2] and (see [3]) $S_K[x, y] = (S^*x, y) - (\Gamma_1 x, \Gamma_0 y)_{\mathcal{H}}, x, y \in \dim(S^*)$.

Proposition 5 ([2]). Let S be a densely defined and nonnegative operator with transversal Friedrichs and Kreĭn extensions and let $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ be a basic boundary triplet for S^* . Then the mapping

$$\Theta \mapsto S_{\Theta} := S^* \upharpoonright \mathbf{\Gamma}^{-1}\Theta = S^* \upharpoonright \left\{ f \in \text{dom}(S^*) : (\Gamma_0 f, \Gamma_1 f) \in \Theta \right\}$$
 (17)

establishes a bijective correspondence between the set of all selfadjoint nonnegative linear relations Θ in \mathcal{H} and the set of all nonnegative selfadjoint extensions of $S_{\Theta} \subseteq S^*$ of S.

Assume that

(A) L_1 and L_2 are two closed densely defined operators in the Hilbert space \mathfrak{H} taking values in a Hilbert space H and such that $L_1 \subset L_2$.

Theorem 3 ([5]). Let condition (**A**) be fulfilled. If the operator $\mathcal{A} = L_2^* L_1$ is densely defined and $\mathcal{A}^* = L_1^* L_2$, then

- 1) the operator $A_F = L_1^* L_1$ is the Friedrichs extension of A;
- 2) the Friedrichs and Kreĭn extensions of A are transversal;
- 3) the operator

$$\operatorname{dom} \mathcal{A}_K = \{ f \in \operatorname{dom}(L_2) \colon P_{\overline{\operatorname{ran}}(L_1)} L_2 f \in \operatorname{dom}(L_2^*) \}, \\ \mathcal{A}_K f = L_2^* P_{\overline{\operatorname{ran}}(L_1)} L_2 f = L_1^* L_2 f, \ f \in \operatorname{dom}(\mathcal{A}_K)$$

is the Kreĭn extension of A and

$$\mathcal{D}[\mathcal{A}_K] = \operatorname{dom}(L_2), \ \mathcal{A}_K[u, v] = (P_{\overline{\operatorname{ran}}(L_1)} L_2 u, P_{\overline{\operatorname{ran}}(L_1)} L_2 v), \ u, v = \operatorname{dom}(L_2).$$

The operator $\mathcal{A} = L_2^* L_1$ called an operator in the divergence form.

According to V. E. Lyantse and O. G. Storozh ([15]) a pair $\{\mathcal{H}, \Gamma\}$ is called a boundary pair for $L_1 \subset L_2$, if \mathcal{H} is a Hilbert space, $\Gamma \in \mathcal{L}(\text{dom}(L_2), \mathcal{H})$ and $\text{ker}(\Gamma) = \text{dom}(L_1)$, $\text{ran}(\Gamma) = \mathcal{H}$. Let $\{\mathcal{H}, \Gamma\}$ be a boundary pair for $L_1 \subset L_2$. Then there exists a linear operator $G \in \mathcal{L}(\text{dom}(L_1^*), \mathcal{H})$ such that $\{\mathcal{H}, G\}$ is a boundary pair for $L_2^* \subset L_1^*$ and the Green identity

$$(L_1^*f, u)_H - (f, L_2 u)_{\mathfrak{H}} = (Gf, \Gamma u)_{\mathcal{H}}, \ f \in \text{dom}(L_1^*), \ u \in \text{dom}(L_2)$$
 (18)

holds. The set $\{\mathcal{H}, G, \Gamma\}$ is called the boundary triplet for a pair of the operators $L_1 \subset L_2$.

Theorem 4. Let condition (A) be fulfilled and let $\{\mathcal{H}, G, \Gamma\}$ be a boundary triplet for $L_1 \subset L_2$. If the operator $\mathcal{A} = L_2^* L_1$ is densely defined and $\mathcal{A}^* = L_1^* L_2$, then

- 1. the triplet $\Pi = \{\mathcal{H}, \Gamma, GP_{\overline{\text{ran}}(L_1)}L_2\}$ is a basic for \mathcal{A}^* ;
- 2. the mapping

$$\Theta \mapsto \mathcal{A}_{\Theta} := \mathcal{A}^* \upharpoonright \Gamma^{-1}\Theta = \mathcal{A}^* \upharpoonright \left\{ f \in \text{dom}(\mathcal{A}^*) : (\Gamma f, GP_{\overline{\text{ran}}(L_1)} L_2 f) \in \Theta \right\}$$
 (19)

establishes a bijective correspondence between all nonnegative selfadjoint extensions of the operator A and all nonnegative selfadjoint linear relations Θ in \mathcal{H} .

Proof. By Theorem 3, the Friedrichs and Kreı̆n extensions of \mathcal{A} are transversal, $\mathcal{D}[\mathcal{A}_K] = \operatorname{dom}(L_2)$, $\mathcal{D}[\mathcal{A}_F] = \operatorname{dom}(L_1)$. Hence, $\{\mathcal{H}, \Gamma\}$ is a boundary pair for \mathcal{A} . Let $x \in \operatorname{dom}(\mathcal{A}^*) = \operatorname{dom}(L_1^*L_2)$ and $y \in \operatorname{dom}(L_2)$. Then $P_{\overline{\operatorname{ran}}(L_1)}L_2x = L_2x - P_{\ker(L_1^*)}L_2x \in \operatorname{dom}(L_1^*)$. Using Theorem 3 and (18) we get

$$\mathcal{A}_{K}[x,y] = (P_{\overline{\text{ran}}(L_{1})}L_{2}x, L_{2}u)_{H} = (L_{1}^{*}P_{\overline{\text{ran}}(L_{1})}L_{2}x, y)_{5} - (GP_{\overline{\text{ran}}(L_{1})}L_{2}x, \Gamma y)_{\mathcal{H}} = (L_{1}^{*}L_{2}x, y)_{5} - (GP_{\overline{\text{ran}}(L_{1})}L_{2}x, \Gamma y)_{\mathcal{H}} = (\mathcal{A}^{*}x, y)_{5} - (GP_{\overline{\text{ran}}(L_{1})}L_{2}x, \Gamma y)_{\mathcal{H}}.$$

In particular, for $x, y \in \text{dom}(\mathcal{A}^*)$ taking into account that the form $\mathcal{A}_K[x, y]$ is Hermitian, we have $(\mathcal{A}^*x, y) - (x, \mathcal{A}^*y) = (GP_{\overline{\text{ran}}(L_1)}L_2x, \Gamma y)_{\mathcal{H}} - (\Gamma x, GP_{\overline{\text{ran}}(L_1)}L_2y)_{\mathcal{H}}$. Thus, the triplet $\Pi = \{\mathcal{H}, \Gamma, GP_{\overline{\text{ran}}(L_1)}L_2\}$ is basic for S^* . From Proposition 5 we get that statement (2) holds true.

Consider in $L_2(\mathbb{R})$ the following operators

$$dom(\mathcal{L}_0) = \{ f \in W_2^1(\mathbb{R}) \colon f(y) = 0, y \in Y \}, \ \mathcal{L}_0 = i \frac{d}{dx}, \tag{20}$$

$$dom(\mathcal{L}) = W_2^1(\mathbb{R}), \ \mathcal{L} = i\frac{d}{dx}.$$
 (21)

From (20) it follows that \mathcal{L}_0 is a densely defined symmetric operator and its adjoint \mathcal{L}_0^* is given by

$$\operatorname{dom}(\mathcal{L}_0^*) = W_2^1(\mathbb{R} \setminus Y), \ \mathcal{L}_0^* = i\frac{d}{dx}. \tag{22}$$

The operator \mathcal{L} is a selfadjoint extension of \mathcal{L}_0 . So, we have $\mathcal{L}_0 \subset \mathcal{L} \subset \mathcal{L}_0^*$. From (3)–(22) it follows that

$$A_0 = \mathcal{L}\mathcal{L}_0, \ A' = \mathcal{L}_0\mathcal{L}, \ H_0 = \mathcal{L}_0^2, \ A = \mathcal{L}^2, \ A_0^* = \mathcal{L}_0^*\mathcal{L}, \ A'^* = \mathcal{L}\mathcal{L}_0^*, \ H_0^* = \mathcal{L}_0^{*2}.$$
 (23)

Using representation (23) and Theorem 3 the explicit expressions for the Friedrichs and Kreĭn extensions of A_0 , A' and H_0 and their transversalness have been obtained in [5]. In the next statements for the operators A'^* , A_0^* and H_0^* explicit expressions for the basic boundary triplets and abstract boundary conditions for all nonnegative selfadjoint extensions are obtained.

Proposition 6. Set

$$\mathcal{H} = \begin{cases} \mathbb{C}^m, & Y \text{ consists of } m \text{ points}; \\ \ell_2(\mathbb{J}), & Y \text{ is infinite}, \end{cases} \quad \text{dom}(\Gamma) = W_2^1(\mathbb{R} \setminus Y),$$

$$\Gamma u = \{i(u(y_j +) - u(y_j -)), j \in \mathbb{J}\}, \operatorname{dom}(G) = W_2^1(\mathbb{R}), Gf = \{f(y_j), j \in \mathbb{J}\}.$$

Then

- (i) $\{\mathcal{H}, \Gamma, G\}$ is the boundary triplet for pair $\mathcal{L} \subset \mathcal{L}_0^*$;
- (ii) the triplet $\Pi = \{\mathcal{H}, \Gamma, G\mathcal{L}_0^*\}$ is basic for A'^* , where $G\mathcal{L}_0^*$ is given by the relation $G\mathcal{L}_0^*f = \{if'(y_j), j \in \mathbb{J}\}, f \in \text{dom}(A'^*);$
- (iii) the mapping

$$\Theta \mapsto A'_{\Theta} = A'^* \upharpoonright \{ f \in \text{dom}(A'^*) : (\{ i(f(y_j +) - f(y_j -)), j \in \mathbb{J} \}, \{ if'(y_j), j \in \mathbb{J} \}) \in \Theta \}$$

establishes a one-to-one correspondence between all nonnegative selfadjoint extensions of the operator A' and all nonnegative selfadjoint linear relation Θ in \mathcal{H} .

Proof. By the definition of a boundary triplet for the pair $L_1 \subset L_2$, where $L_1 = \mathcal{L}$, $L_2 = \mathcal{L}_0^*$ we get $\operatorname{dom}(\Gamma) = \operatorname{dom}(L_2) = \operatorname{dom}(\mathcal{L}_0^*) = W_2^1(\mathbb{R} \setminus Y)$ and $\operatorname{ker}(\Gamma) = \operatorname{dom}(\mathcal{L}) = W_2^1(\mathbb{R})$. Similarly, $\operatorname{dom}(\Phi) = \operatorname{dom}(L_1^*) = \operatorname{dom}(\mathcal{L}) = W_2^1(\mathbb{R})$, $\operatorname{ker}(\Phi) = \operatorname{dom}(L_2^*) = \operatorname{dom}(\mathcal{L}_0) = \{u \in W_2^1(\mathbb{R}) : u(y) = 0, y \in Y\}$. Further, the Green identity

$$(L_1^*f, u)_{\mathfrak{H}} - (f, L_2 u)_H = \int_{\mathbb{R}} i f'(x) \overline{u(x)} dx - \int_{\mathbb{R}} f(x) \overline{i u'(x)} dx =$$

$$= i \sum_{j \in \mathbb{J}} \left(\int_{I_j} f'(x) \overline{u(x)} dx + \int_{I_j} f(x) \overline{u'(x)} dx \right) = i \sum_{j \in \mathbb{J}} f(x) \overline{u(x)} \Big|_{y_j}^{y_{j+1}} =$$

$$= i \sum_{j \in \mathbb{J}} f(y_j) \left(\overline{u(y_j -) - u(y_j +)} \right) = \sum_{j \in \mathbb{J}} f(y_j) \overline{i (u(y_j +) - u(y_j -))} = (Gf, \Gamma u)_{\mathcal{H}}$$

holds. Due to Propositions 1 and 2 the operators Γ and G are bounded. Hence the triplet $\{\mathcal{H}, G, \Gamma\}$ is the boundary triplet for the pair $\mathcal{L} \subset \mathcal{L}_0^*$.

Further, since $\ker(\mathcal{L}) = \{0\}$ and applying Theorem 4 we get (ii) and (iii).

Recall [5], that

$$P_{\overline{\text{ran}}(\mathcal{L}_0)}\mathcal{L}_0^* f = if' - i \sum_k \frac{1}{d_k} (f(y_{k+1} - 0) - f(y_k + 0)) \chi_k, \ f \in \text{dom}(\mathcal{L}_0^*),$$

where the functions $\{\frac{\chi_k}{\sqrt{d_k}}\}_{k\in\mathbb{J}}$ (χ_k is the characteristic function of the interval $[y_k,y_{k+1}]$, $d_k = |y_k - y_{k+1}|$) form an orthonormal basis of $\ker(\mathcal{L}_0^*)$ and $d_k = |y_k - y_{k+1}|$, $k \in \mathbb{J}$.

Proposition 7. Set

$$\mathcal{H} = \begin{cases} \mathbb{C}^m, & Y \text{ consists of } m \text{ points}; \\ \ell_2(\mathbb{J}), & Y \text{ is infinite}, \end{cases} \quad \text{dom}(\Gamma) = W_2^1(\mathbb{R}), \quad \Gamma u = \{iu(y_j), \ j \in \mathbb{J}\}, \\ \text{dom}(G) = W_2^1(\mathbb{R} \setminus Y), \quad Gf = \{(f(y_j +) - f(y_j -)), \ j \in \mathbb{J}\}, \end{cases}$$

then

- (i) $\{\mathcal{H}, \Gamma, G\}$ is a boundary triplet for the pair $\mathcal{L}_0 \subset \mathcal{L}$;
- (ii) the triplet $\Pi = \{\mathcal{H}, \Gamma, GP_{\overline{\text{ran}}(\mathcal{L}_0)}\mathcal{L}\}$ is a basic for A_0^* , where

$$GP_{\overline{\operatorname{ran}}(\mathcal{L}_{0})}\mathcal{L}f =$$

$$= \left\{ if'(y_{j}+) - if'(y_{j}-) - i\frac{f(y_{j+1}-) - f(y_{j}+)}{y_{j+1} - y_{j}} + i\frac{f(y_{j}-) - f(y_{j-1}+)}{y_{j} - y_{j-1}}, \ j \in \mathbb{J} \right\},$$

 $f \in \text{dom}(A_0^*);$

(iii) the mapping

$$\Theta \mapsto A_{0\Theta} = A_0^* \upharpoonright \left\{ f \in \text{dom}(A_0^*) : \left(\{ iu(f_j), \ j \in \mathbb{J} \}, \right. \right. \\ \left\{ if'(y_j +) - if'(y_j -) - i \frac{f(y_{j+1} -) - f(y_j +)}{y_{j+1} - y_j} + i \frac{f(y_j -) - f(y_{j-1} +)}{y_j - y_{j-1}}, \ j \in \mathbb{J} \right\} \right) \in \Theta \right\}$$

establishes a one-to-one correspondence between all nonnegative selfadjoint extensions of the operator A_0 and all nonnegative selfadjoint linear relation Θ in \mathcal{H} .

Proposition 8. Set

$$\mathcal{H} = \begin{cases} \mathbb{C}^{2m}, & Y \text{ consists of } m \text{ points}; \\ \ell_2(\mathbb{J}) \otimes \mathbb{C}^2, & Y \text{ is infinite}, \end{cases} \quad \text{dom}(\Gamma) = W_2^1(\mathbb{R} \setminus Y),$$

$$\Gamma u = \{ (iu(y_j -), iu(y_j +)), \ j \in \mathbb{J} \}, \ \text{dom}(G) = W_2^1(\mathbb{R} \setminus Y), Gf = \{ (f(y_j -), f(y_j +)), \ j \in \mathbb{J} \}.$$

Then

- (i) $\{\mathcal{H}, \Gamma, G\}$ is a boundary triplet for pair $\mathcal{L}_0 \subset \mathcal{L}_0^*$;
- (ii) the triplet $\Pi = \{\mathcal{H}, \Gamma, GP_{\overline{\text{ran}}(\mathcal{L}_0)}\mathcal{L}_0^*\}$ is basic for H_0^* , where

$$GP_{\overline{\text{ran}}(\mathcal{L}_0)}\mathcal{L}_0^* f =$$

$$= \left\{ \left(if'(y_j -) - i \frac{f(y_j -) - f(y_{j-1} +)}{y_j - y_{j-1}}, if'(y_j +) - i \frac{f(y_{j+1} -) - f(y_j +)}{y_{j+1} - y_j} \right), \ j \in \mathbb{J} \right\},$$

 $f \in \text{dom}(H_0^*);$

(iii) the mapping

$$\Theta \mapsto H_{0\Theta} = H_0^* \upharpoonright \left\{ f \in \text{dom}(H_0^*) \colon \left\{ \left(-if(y_j -), if(y_j +) \right), \ j \in \mathbb{J} \right\}, \right. \\ \left. \left\{ \left(if'(y_j -) - i \frac{f(y_j -) - f(y_{j-1} +)}{y_j - y_{j-1}}, if'(y_j +) - i \frac{f(y_{j+1} -) - f(y_j +)}{y_{j+1} - y_j} \right), \ j \in \mathbb{J} \right\} \in \Theta \right\}$$

establishes a one-to-one correspondence between all nonnegative selfadjoint extensions of the operator H_0 and all nonnegative selfadjoint linear relations Θ in \mathcal{H} .

Other boundary triplets for H_0^* have been constructed in [12] and in [13].

REFERENCES

- 1. Albeverio S., Gesztesy F., Hegh-Krohn R., Holden H., Solvable models in quantum mechanics. Texts and Monographs in Physics. Springer-Verlag, New York.
- 2. Arlinskiĭ Yu.M. Positive spaces of boundary values and sectorial extensions of a nonnegative symmetric operator// Ukrain. Math. Journ. − 1988. − V.40, №1. − P. 8–14. (in Russian)
- 3. Arlinskii Yu., Hassi S., Sebestyen Z., de Snoo H. On the class of extremal extensions of a nonnegative operators// Operator Theory: Advan. and Appl. 2001. V.127. P. 41–81.
- 4. Arlinskiĭ Yu.M., Tsekanovskiĭ E.R. The von Neumann problem for nonnegative symmetric operators// Integral equation and operator theory. 2005. P. 315–356.
- Arlinskiĭ Yu.M., Kovalev Yu.G. Operators in divergence form and their Friedrichs and Kreĭn extensions// Opuscula mathematica. – 2011. – V.31, №4. – P. 501–517.
- Berezansky Yu.M., Expansions in eigenfunction of selfadjoint operators. "Naukova Dumka", Kiev, 1965 (in Russian). English translation in Translations of Mathematical Monographs. Amer. Math. Soc. Providence, 1968, V.17.
- 7. Bruk V.M. On one class of boundary value problems with a spectral parameter in the boundary condition// Mat. Sbornik. − 1976. − V.100, №2. − P. 210–216. (in Russian)
- 8. Gohberg I.C., Kreĭn M.G., Introduction to the theory of linear nonselfadjoint operators. M: Nauka, 1965 (in Russian). English translation in Translations of Mathematical Monographs, V.18, Amer. Math. Soc., Providence, R.I., 1969.

- 9. Gorbachuk M.L., Gorbachuk V.I., Boundary value problems for differential-operator equations. K.: Naukova Dumka, 1984. (in Russian)
- 10. Kato T., Perturbation theory for linear operators. Springer-Verlag, 1966.
- 11. Kochubeĭ A.N. On extensions of symmetric operators and symmetric binary relations// Math. Zametki. 1975. V.17, №1. P. 41–48. (in Russian)
- 12. Kochubeĭ A.N. One dimensional point interactions// Ukr. Math. J. − 1989. − V.41, №10. − P. 90–95.
- 13. Kostenko A.S., Malamud M.M. 1-D Schrödinger operators with local point interactions on a discrete set// J. Differ. Equations. − 2010. − V.249, №2. − P. 253–304.
- 14. Kreĭn M.G. The theory of selfadjoint extensions of semibounded Hermitian transformations and its applications, I// Mat. Sbornik. − 1947. − V.20, №3. − P. 431–495. (in Russian)
- 15. Lyantse V.E., Storozh O.G., Methods of the theory of unbounded operators. K.: Naukova Dumka, 1983. (in Russian)
- 16. Malamud M.M. On some classes of Hermitian operators with gaps// Ukrainian Mat. J. 1992. V.44, N^2 2. P. 215–234. (in Russian)
- 17. Pipa H.M., Storozh O.G. Accretive perturbations of proper extensions for positively definite operator// Mat. Stud. − 2006. − V.25, №2. − P. 181–190. (in Ukrainian)

Department of Mathematical Analysis East Ukrainian National University yury_kovalev@ukr.net yury.kovalev.lugansk@gmail.com

Received 20.03.2012