Elements of high order in Artin-Shreier extensions of finite fields(in Ukrainian)

Author R. B. Popovych
rombp07@gmail.com
Lviv Polytechnic National University

Abstract We construct explicitly in any finite field of the form $F_{p^p}$ elements with multiplicative order larger than $4^p$.
Keywords finite field; multiplicative order
Reference 1. Agrawal M., Kayal N., Saxena N. PRIMES is in P// Ann. of Math. – 2004. – V.160, ¹2. – P. 781–793.

2. Ahmadi O., Shparlinski I.E., Voloch J.F. Multiplicative order of Gauss periods// Int. J. Number Theory. – 2010. – V.6, ¹4. – P. 877–882.

3. Berrizbeitia P. Sharpening Primes is in P for a large family of numbers// Math. Comp. – 2005. – V.74, ¹252. – P. 2043–2059.

4. Cheng Q. On the construction of finite field elements of large order// Finite Fields Appl. – 2005. – V.11, ¹3. – P. 358–366.

5. Gao S. Elements of provable high orders in finite fields// Proc. Amer. Math. Soc. – 1999. – V.127, ¹6. – P. 1615–1623.

6. Lidl R., Niederreiter H., Finite Fields. – Cambridge University Press, 1997. – 755 p.

7. Popovych R. Elements of high order in finite fields of the form $F_{q} [x]/\Phi _{r} (x)$// Finite Fields Appl. – 2012. – V.18, ¹4. – P. 700–710.

8. Popovych R. Elements of high order in finite fields of the form $F_{q} [x]/(x^{m} -a)$// Finite Fields Appl. – 2013. – V.19, ¹1. – P. 86–92.

9. Voloch J.F. Elements of high order on finite fields from elliptic curves// Bull. Austral. Math. Soc. – 2010. – V.81. – P. 425–429.

Pages 115-118
Volume 39
Issue 2
Year 2013
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML