Elements of high order in Artin-Shreier extensions of finite fields(in Ukrainian)

Author R. B. Popovych
rombp07@gmail.com
Lviv Polytechnic National University

Abstract We construct explicitly in any finite field of the form $F_{p^p}$ elements with multiplicative order larger than $4^p$.
Keywords finite field; multiplicative order
Reference 1. Agrawal M., Kayal N., Saxena N. PRIMES is in P// Ann. of Math. 2004. V.160, 2. P. 781793.

2. Ahmadi O., Shparlinski I.E., Voloch J.F. Multiplicative order of Gauss periods// Int. J. Number Theory. 2010. V.6, 4. P. 877882.

3. Berrizbeitia P. Sharpening Primes is in P for a large family of numbers// Math. Comp. 2005. V.74, 252. P. 20432059.

4. Cheng Q. On the construction of finite field elements of large order// Finite Fields Appl. 2005. V.11, 3. P. 358366.

5. Gao S. Elements of provable high orders in finite fields// Proc. Amer. Math. Soc. 1999. V.127, 6. P. 16151623.

6. Lidl R., Niederreiter H., Finite Fields. Cambridge University Press, 1997. 755 p.

7. Popovych R. Elements of high order in finite fields of the form $F_{q} [x]/\Phi _{r} (x)$// Finite Fields Appl. 2012. V.18, 4. P. 700710.

8. Popovych R. Elements of high order in finite fields of the form $F_{q} [x]/(x^{m} -a)$// Finite Fields Appl. 2013. V.19, 1. P. 8692.

9. Voloch J.F. Elements of high order on finite fields from elliptic curves// Bull. Austral. Math. Soc. 2010. V.81. P. 425429.

Pages 115-118
Volume 39
Issue 2
Year 2013
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML