Moment conditions for functions with zero integrals over congruent balls

Author V. V. Volchkov, Vit. V. Volchkov
Department of Mathematics and Information Technologies, Donetsk National University

Abstract We consider the question of precise conditions ensuring that a function having zero integrals over all balls of fixed radius is equal to zero. We completely investigate the case where together with zero integrals over congruent balls a function has zero first moments over these balls.
Keywords spherical means; mean periodicity
Reference 1. Volchkov V.V. Integral Geometry and Convolution Equations. Dordrecht: Kluwer Acad. Publ., 2003. 454 p.

2. Volchkov V.V., Volchkov Vit.V. Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group. London: Springer, 2009. 671 p.

3. Zalcman L. A bibliographic survey of the Pompeiu problem in: Fuglede B. et al. (eds.), Approximation by Solutions of Partial Differential Equations. Dordrecht: Kluwer Acad. Publ., 1992. P. 185194.

4. Zalcman L. Supplementary bibliography to a bibliographic survey of the Pompeiu problem// Radon Transforms and Tomography, Contemp. Math. 2001. V.278. P. 6974.

5. Stein E., Weiss G. Introduction to Fourier Analysis on Euclidean Spaces. New Jersey: Princeton University Press, 1971. 332 p.

6. Vilenkin N.Y. Special Functions and the Theory of Group Representations. Moscow: Nauka, 1991. 576 p.

7. Treves J.F. Lectures on Linear Partial Differential Equations with Constant Coefficients. Rio de Janeiro: Fasiculo Publicado Pelo Instituto de Matematica Pura e Aplicada do Conselho Nacional de Pesquisas, 1961. 243 p.

8. Suetin P.K. Classical Orthogonal Polynomials. Moscow: Nauka, 1979. 328 p. (in Russian)

9. Volchkov V.V., Volchkov Vit.V. Convolution equations on multidimensional domains and the reduced Heisenberg group// Mat. Sbornik. 2008. V.199, 8. P. 2960.

Pages 84-92
Volume 39
Issue 1
Year 2013
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML