On solutions of one convolution equation generated by a “deep zero”

Author V. Dilnyi, I. Sheparovych
dilnyi@ukr.net
Institute of Physics and Mathematics, Drorobych State Pedagogical University

Abstract We consider a convolution type equation in the Smirnov spaces in a semi-strip. We obtain a description of solutions for the case when the characteristic function of the equation has a "deep zero" at infinity.
Keywords Hardy space; entire function; convolution equation
Reference 1. Koosis P. Introduction to Hp spaces. – Second edition. Cambridge Tracts in Mathematics, V.115, Cambridge University Press, Cambridge, 1998.

2. Sedletskii A.M. Equivalent definition of the Hardy spaces a half-plane and some offers, Math. USSR Sb., 96 (1975), 75–82.

3. Vinnitskii B. On zeros of functions analytic on a half plane and completeness of systems of exponents, Ukr. Math. Jour., 46 (1994), 484–500.

4. Vinnitskii B. On zeros of some classes of functions analytic on half-plane functions analytic in half-plane, Mat. Stud., 6 (1996), 67–72. (in Ukrainian)

5. Vinnitsky B. Solutions of gomogeneous convolution equation in one class of functions analytical in a semistrip, Mat. Stud., 7 (1997), 41–52. (in Ukrainian)

6. Lax P. Translation invariant subspaces, Acta math., 101 (1959), 163–178.

7. Gurariy V.P. The spectral analysis of the bounded functions on a semiaxis Teor. func., func. anal i ih prolozh., 5 (1965), 210–231. (in Russian)

8. Gurariy V.P. Group methods of a commutative Fourier analysis, Modern problems of mathematics. VINITI, 25 (1988), 1-312. (in Russian)

9. Vinnitskii B., Dil’nyi V. On extension of Beurling-Lax theorem, Math. Notes, 79 (2006), 362–368. 10. Dilnyi V. On cyclic functions in weighted hardy spaces, Journ. of Math. Phys., Anal., Geom., 7 (2011), 19–33.

11. Vynnyts’kyi B., Dil’nyi V. On solutions of homogeneous convolution equation generated by singularity, Mat. Stud., 19 (2003), 149–155.

12. Erikke B., Havin V. Indeterminacy principle in harmonic analysis, VINITI, Itogi nauki i tehniki. Commutative harmonic analysis, 72 (1991), 181–260. (in Russian)

13. Vynnytskyi B., Dil’nyi V. On necessary conditions for existence of solutions of convolution type equation, Mat. Stud., 16 (2001), 61–70. (in Ukrainian)

14. Dil’nyi V. On solutions of homogeneous convolution equation in a Hardy-Smirnov class of functions, Mat. Stud., 14 (2000), 171–174. (in Ukrainian)

15. Privalov I. Randeigenschaften analytischer Funktionen. – VEB Deutscher Verlag Wiss. Berlin, 1956. 16. Vynnytskyi B., Sharan V. On the factorization of one class of functions analytic on the half-plane, Mat. Stud., 14 (2000), 41–48.

17. Dilnyi V. Equivalent definition of some weighted Hardy spaces, Ukr. Math. Journ., 60 (2008), 1280–1284.

18. Dil’nyi V. On specification of an Nevanlinna-Weierstrass’ product, Mat. Stud., 28 (2007), 41–44. (in Ukrainian)

19. Dilnyi V. On the equivalence of some conditions for weighted Hardy spaces, Ukr. Math. Journ., 58 (2006), 1425–1432.

Pages 45-53
Volume 39
Issue 1
Year 2013
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML