Reference |
1. K. Astala, A remark on quasiconformal mappings
and BMO-functions, Michigan Math. J., 30 (1983), 209-212.
2. K. Astala, F.W. Gehring, Injectivity, the
BMO norm and the universal Teichmuller space, J. Anal. Math.,
46 (1986), 16-57.
3. B. Bojarski, V. Gutlyanskii,
V. Ryazanov, On Beltrami equations with two characteristics,
Complex Variables and Elliptic Equations, 54 (2009), ¹10,
933-950.
4. M. Brakalova, J. Jenkins, On solutions of the
Beltrami equation. II., Publ. Inst. Math. (Beograd) (N.S.),
75 (2004), ¹89, 3-8.
5. J. Dugundji, Topology, Allyn and Bacon, Inc.,
Boston, 1966.
6. H. Federer, Geometric Measure Theory, Springer: Berlin etc.,
1969.
7. F.W. Gehring, Rings and quasiconformal
mappings in space, Trans. Amer. Math. Soc., 103 (1962),
353-393.
8. V.Ya. Gutlyanskii, V.I. Ryazanov, U. Srebro,
E. Yakubov, The Beltrami Equation: A Geometric Approach,
Developments in Mathematics, V.26, Springer, New York etc., 2012.
9. A. Ignat'ev, V. Ryazanov, Finite mean oscillation in the
mapping theory}, Ukrainian Math. Bull., {2} (2005), ¹3,
395-417.
10. F. John, L. Nirenberg, On functions of
bounded mean oscillation}, Comm. Pure Appl. Math., {14}
(1961), 415-426.
11. P.M. Jones, Extension theorems for
BMO, Indiana Univ. Math. J., 29 (1980), 41-66.
12. Yu. Kolomoitsev, V. Ryazanov,
Uniqueness of approximate solutions of the Beltrami equations,
Proc. Inst. Appl. Math. \& Mech. NASU, 19 (2009), 116-124.
13. D. Kovtonyuk, V. Ryazanov, R. Salimov, E. Sevost’yanov,
On mappings in the Orlicz-Sobolev classes, www.arxiv.org,
arXiv:1012.5010v4 [math.CV].
14. K. Kuratowski, Topology, V.1,
Academic Press, New York and London, 1966.
15. K. Kuratowski, Topology, V.2,
Academic Press, New York and London, 1968.
16.
O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in Modern
Mapping Theory, Springer Monographs in Mathematics, Springer, New
York etc., 2009.
17. O. Martio, V. Ryazanov, M. Vuorinen, BMO
and Injectivity of Space Quasiregular Mappings, Math. Nachr.,
205 (1999), 149-161.
18. R. Nakki,
Boundary behavior of quasiconformal mappings in $n$-space, Ann.
Acad. Sci. Fenn. Ser. A., 484 (1970), 1-50.
19. H.M. Reimann, T. Rychener, Funktionen
Beschrankter Mittlerer Oscillation, Springer, Berlin etc., 1975.
20. V. Ryazanov, E. Sevost'yanov, Toward the theory of ring
$Q$-homeomorphisms, Israel Math. J., 168 (2008),
101-118.
21.
V. Ryazanov, E. Sevost'yanov, Equicontinuity of mappings
quasiconformal in the mean, Ann. Acad. Sci. Fen., Math., 36
(2011), 231-244.
22. V. Ryazanov, U. Srebro, E. Yakubov,
Degenerate Beltrami equation and radial $Q-$homeomorphisms,
2003, 34 p., Preprint of Department of Mathematics, University of
Helsinki, 2003.
23. V. Ryazanov, U. Srebro, E. Yakubov,
On ring solutions of Beltrami equations, J. Anal. Math.,
96 (2005), 117-150.
24. V. Ryazanov, U. Srebro, E. Yakubov,
The Beltrami equation and ring homeomorphisms, Ukrainian Math.
Bull., 4 (2007), ¹1, 79-115.
25. V. Ryazanov, U. Srebro, E. Yakubov,
Integral conditions in the theory of Beltrami equations,
Complex Variables and Elliptic Equations, DOI:
10.1080/17476933.2010.534790 (expected at 2012)
26. V. Ryazanov, U. Srebro, E. Yakubov, On strong
solutions of the Beltrami equations, Complex Variables and Elliptic
Equations, 55 (2010), ¹1-3, 219-236.
27. V. Ryazanov, U. Srebro, E. Yakubov,
On integral conditions in the mapping theory, Ukr. Math. Bull.,
7 (2010), ¹1, 73-87.
28. E. Spanier, Algebraic Topology, New York etc.,
McGraw-Hill, 1966.
29. J. Vaisala, Lectures on $n$-Di\-men\-si\-o\-nal
Quasiconformal Mappings, Lecture Notes in Math. 229,
Springer-Verlag, Berlin etc., 1971.
30. M. Vuorinen,
Conformal Geometry and Quasiregular Mappings, Lecture Notes in
Math. 1319, Springer-Verlag, Berlin etc., 1988.
|