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ON ESTIMATES OF A FRACTIONAL COUNTERPART OF THE
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derivative of a meromorphic function, Mat. Stud. 39 (2013), 107-112.

We consider the problem of finding lower bounds for growth of solutions of a fractional
differential equation in the complex plane. We estimate a fractional integral of the logarithmic
derivative of a meromorphic function.
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PaccmarpuBaeTcst ipobiiemMa OIEHKH CHU3Y pocTa perennit auddepeHnuajibHoro ypaBHe-
HUsI JIPOOHOTO MOPSIJIKA B KOMILIEKCHOIT m1ockocTu. OnieHnBaeTcst ApOOHbBIN HHTErpaJl Jorapud-
MHUYECKOU ITPOU3BOIHON MepOMOPQHOH DyHKIMH.

Let f be a meromorphic function in C, f(0) # 0, c0. We use the standard notation of the
Nevanlinna theory ([7]).

There are two standard ways to estimate the growth of solutions of ordinary differential
equations in a complex domain. The first one is based on the Wiman-Valiron theory (see
monographs [20], [19], [14]), which is very effective for the complex plane when solutions are
of finite order of growth. However, there are some principal restrictions for application of the
Wiman-Valiron method when the complex domain is not the whole plane, e.g. the unit disk,
an angle, as well as when solutions are of infinite order. Concerning recent development of
the Wiman-Valiron method we address the reader to the papers [15], [17], [18], [1], [6].

On the other hand, estimates of the logarithmic derivative % have been successfully
applied in all mentioned cases for obtaining lower bounds for growth of solutions of ordinary
differential equations (see e.g. |9, 2, 3, 4]). One of the typical, but not the best possible
estimate is (cf. [8])

kr 21

/dto/‘%

where T'(r, f) is the Nevanlinna characteristic of a meromorphic function f. Note that logari-
thmic derivative estimates have various applications in the theory of entire and meromorphic
functions ([7]).

dp = O(T(K*r, f)), k>1, r— +oo,
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In contrast to ordinary differential equations, the analytic theory of fractional differential
equations with variable coefficients was initiated only recently ([11], [13]). Such equations
are widely used for modeling of diffusion phenomena and anomalous relaxation (|5, 12]).

Let h € L(0,a), a > 0. The Riemann-Liouville fractional integral of order o > 0 for h is
defined as

T

D=h(z) = ﬁ / (x — ) h(t)dt, x € (0,a),
D°h(x) = h(x), D*h(x) = dCZP D_(p_o‘)h(az)}, ac(p—1p, peN,

where I'(«) is the Gamma function.
In the papers [11] and [13] the following equation is studied

Du(t) = a(t)u(t), t>0, (1)
where a(t) = A(tY), A(z) is analytic in |z| < ro, D*u(t) = D*u(t) — % is the Caputo-

(L
Dzhrbashyan fractional derivative. In particular, in [13]| the following theorem is proved.

Theorem A ([13]|). Suppose that A is a polynomial of degree m > 0. The solution u(t) of
equation (1) satisfying the initial condition u(0) = uy has the form u(t) = v(t*), where v is
an entire function whose order does not exceed HTm

Essentially, lack of a fractional analogue of the logarithmic derivative estimate did not
allow to obtain a lower bound for the growth of the solution of (1) in Theorem A.
Problem 1. Find a reasonable estimate for £ ff (z) in the class of meromorphic (analytic)

functions in C of finite order of growth.

Remark 1. Writing D®f(z) we mean that the operator is taken of variable r = |z|. Since
DTaf(z) equals infinity at zeros (and poles) of f, it makes sense to consider the integral
means with respect to the circles centered at the origin. Deriving uniform estimates for a
meromorphic function f we have to omit even rays emanating from the origin and containing
poles, because the Riemann-Liouville operator D f is represented by a divergent integral in
this case.

Here we give a contribution, which will probably help to solve Problem 1. According to

formula (17.11) in [16, p. 241] we have

Daf o1 <f/ )
=D +
/ / ).

where the error term R; has the form

R =~ / (e — 2D £() / (%) (5)ds. @)

a

In view of these relationships, we search for an estimate of the value

/D“ 1|f re’” || a€(0,1).
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Theorem 1. Let f be a meromorphic function in C, f(0) # 0,00, {¢,} be the sequence of
its zeros and poles, o € (0,1), f € (1 + 00). Then for some rq > 0 and a constant C(«, [3)

r/2

/UHUTW| <oop(TL) L [0, s,

ro Toz—l t2

where n(t,0, 00, f) is the counting function of {c,}.
Moreover, C(§,a) = O(m) as B — 1+, a — 1—.
Corollary 1. For every € > 0 we have I,[f](r) = O(r(P=2+9)") as r — +oo.
The following problem is left open.
Problem 2. Find an estimate for D*'R(z, f), a € (0,1), where R(z, f) is given by (2).

Proof of Theorem 1. Let 1 < k < % We have

r

G 1 Flfaen)
P | f(rei®)| B I'l—a) / | f(tei#)] ( t)~*dt.

0

We use the following well-known estimate of the logarithmic derivative ([7])

|fl(2)| 45T (s
|f<2)|_ S—|z| ZZl .zl < s

|cql<s

Therefore

Y R T V0 P
”‘//Eu—wvwwﬁ f)tdidy <

ot [ g ] )-

legl<s

= riow <I+ZJ> (3)

leql<s

We put s = kr. Then

I= 47?5T(3,f)< / + / >%dt <
r—2(s—r) .

1 dt 1 )
S 47TST(S, f) <m / (S _ t)2 + (S — T)z / (T’ — t) dt) =

0 r—2(s—r)

1 L
= AnsT (s, f) <2a(8 —r)(s—1t)lo

<@<1+ 2 >T(s,f)

= 20\3 1-a

< C(k,a)T

(s —r)e = ro
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We have to estimate J, = fo OW | ;wt)c |d<,0dt. Without loss of generality we may assume

that ¢, > 1. By Theorem 1.7 ([10, p. 7 8]) we have for some C' > 0

2m
d 2
/—w.SCln .zl < 1.
11— ze—#%| 1—|z|
0

Hence
c
dy 7 In 172, t > cy;
T 1S Yew 2 (5)
[teie — ¢, cn=r, t<cg
0 cq

Note that the choice of £ yields the inequality %cq < %k}?“ < r. We split the integral J; in the

following way
2¢q/3 r
J—(/ /)T—t adt/’te“o—c| ZJq1+Jq2. (6)

2¢q/3
Using (5) we get

2¢q/3 2cq/3

S e -«
JqléC/(r t) In 2 dt§01n6/(r—t)adt§01n6r . 7)

Cq 1—-= Cq 1—a ¢

0 0

In order to estimate Jy; we consider three cases: i) ¢, < 5;1ii) § < ¢, <7, andiii) r < ¢, < kr.
In the case i) applying (5) and using a property of the fractional integral ([16, (2.44)])
we obtain

T

//|r—t y dtgc/ (r—tt)‘“ 1“1 2c_th§C’1n6F(1—oz)D°‘_1<%> < C(O‘). (8)

te — ¢ - ro
3cq/2 0 3cq/2
Similarly
ﬁ 2 cq 3cq/2
—t) 2 —t) 2
// dgpdth/(r ) tdt+0/(r 2 <
\tew—cq\ Cq 1-= t 11—
2¢q/3 0 2¢q/3 B ¢q
1 3/2
C 2 C 1 2 C
< /ln dT+—3/—ln u d’i‘fﬂ. 9)
(r —cy)™ 1—7 (r—=2aye J 7 71 ra
2/3 2701
It now follows from (6), (8), and (9) that
C l-a
g < g™ . (10)
¢

q

We then consider the case iii), i.e. r < ¢, < kr. Making use of (5) and Hélder’s inequality,
where ap < 1 < p, %+ 1% =1, we deduce

qugc/ Ty 2 = <
2¢, Cq 1— o gtz g 1—7
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([P ) [y ) <
<O ([ (2 ) <

Jo'
Cq

It remains to consider the case § < ¢, < r. Similarly to the previous cases we obtain

r

F =t 2 _fe 9
Jq2§0/ (r=t", tdt+c/<7" )2 g
Cq - t 1—7q
2¢q/3 ! Cq
C | c 2o d
O e e P N ) S e MY L
cy Cq - T cy Cq T—17
2/3
c | o/ oy b
S—/(l—r) “In d7'+—(/(1—7')_apd7') (/( Tl>pd7->p <
cg‘ -7 cg“ Cq T
2/3 1 1
2 1
(Z—1)ter In 22\p \¥
<, ¢k ) >(/< Tl>pd7) Clen)
cy cy 1—ap / T re
We see that

(11)

We now able to give an upper estimate for Z,[f]|(r). It follows from (4), (7), (10), and
(11) that

Tl—a

C
cq<3 q 5 <cq<kr

ro /r-afl t

r/2
< C(T(kr, f) —|—n(k7’,0,oo,f)) N 1 /dn(t,O,oo,f)) <

T2 N(k2r,0,00,f)

(Tlor ) tbroe. ), L [ nit0oe. ) dt)<C(T(kr,f>+ et
< < —

B C ro rafl t2
0
r/2

/
1 /n(t,o,oo,f>czt) < Cla, k)(m::,f) . /n(t,o,;o,ﬁdt)
0

,,aafl t?

Here we used inequality ([7]) n =
assertion of the theorem when 3 € (1,4). The general case follows from the monotonicity of
O

the Nevanlinna characteristic.
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(kr, 0,00, f) < N(2r0.00.0) Choosing k = /3, we arrive to the

simplify the proof.
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