УДК 512.568.2+515.122.4

S. Bardyla, O. Gutik

ON \mathscr{H} -COMPLETE TOPOLOGICAL SEMILATTICES

S. Bardyla, O. Gutik. On *H*-complete topological semilattices, Mat. Stud. 38 (2012), 118–123.

In the paper we describe the structure of \mathscr{AH} -completions and \mathscr{H} -completions of the discrete semilattices (\mathbb{N} , min) and (\mathbb{N} , max). We give an example of an \mathscr{H} -complete topological semilattice which is not \mathscr{AH} -complete. Also for an arbitrary infinite cardinal λ we construct an \mathscr{H} -complete topological semilattice of cardinality λ which has 2^{λ} many open-and-closed continuous homomorphic images which are not \mathscr{H} -complete topological semilattices. The constructed examples give a negative answer to Question 17 in the paper J. W. Stepp, Algebraic maximal semilattices, Pacific J. Math., 58 (1975), no.1, 243–248.

С. Бардыла, О. Гутик. O \mathcal{H} -полных топологических полурешетках // Мат. Студії. — 2012. — Т.38, №2. — С.118—123.

Описывается структура \mathscr{AH} -пополнений и \mathscr{H} -пополнений дискретных полурешеток (\mathbb{N} , min) и (\mathbb{N} , max). Приводится пример \mathscr{H} -полной топологической полурешетки, не являющейся \mathscr{AH} -полной. Для произвольного бесконечного кардинала λ строится \mathscr{H} -полная топологическая полурешетка мощности λ , имеющая 2^{λ} открыто-замкнутых непрерывных гомоморфных образов, не являющихся \mathscr{H} -полными топологическими полурешетками. Построенные примеры дают отрицательный ответ на вопрос 17, сформулированный в работе J. W. Stepp, $Algebraic\ maximal\ semilattices$, Pacific J. Math., **58** (1975), \mathbb{N} 1, 243–248.

In this paper all topological spaces will be assumed to be Hausdorff. We shall follow the terminology of [1, 3], and [4]. For a subset A of a topological space X by $\operatorname{cl}_X(A)$ we denote the closure of A in X. A filter \mathscr{F} on a set S is called free if $\bigcap \mathscr{F} = \varnothing$.

A semilattice is a set endowed with a commutative idempotent associative operation. If E is a semilattice, then the semilattice operation on E determines the partial order \leq on E

$$e \leqslant f$$
 if and only if $ef = fe = e$.

This order is called *natural*. An element e of a semilattice E is called *minimal* (*maximal*) if $f \leq e$ ($e \geq f$) implies f = e for $f \in E$. A semilattice E is said to be *linearly ordered* or a *chain* if the natural order on E is linear.

If S is a topological space equipped with a continuous semigroup operation then S is called a *topological semigroup*. A *topological semilattice* is a topological semigroup which is algebraically a semilattice.

Let \mathscr{TS} be a category whose objects are topological semigroups and morphisms are homomorphisms between topological semigroups. A topological semigroup $X \in \mathrm{Ob}\,\mathscr{TS}$ is called \mathscr{TS} -complete if for each object $Y \in \mathrm{Ob}\,\mathscr{TS}$ and a morphism $f \colon X \to Y$ of the category \mathscr{TS} the image f(X) is closed in Y.

²⁰¹⁰ Mathematics Subject Classification: 06B30, 06F30, 22A26, 54C10, 54H12.

Keywords: topological semilattice, free filter, complete semigroup, chain.

By a \mathscr{TS} -completion of a topological semigroup X we understand any \mathscr{TS} -complete topological semigroup $\tilde{X} \in \operatorname{Ob} \mathscr{TS}$ containing X as a dense subsemigroup. A \mathscr{TS} -completion \tilde{X} of X is called *universal* if each continuous homomorphism $h\colon X\to Y$ to a \mathscr{TS} -complete topological semigroup $Y\in\operatorname{Ob}\mathscr{TS}$ extends to a continuous homomorphism $\tilde{h}\colon \tilde{X}\to Y$.

It is well-known that for the category \mathscr{TG} of topological groups and their continuous homomorphisms, each object $G \in \text{Ob}\,\mathscr{TG}$ has a \mathscr{TG} -completion and each \mathscr{TG} -completion of G is universal ([8]).

In the category of topological semigroups the situation is totally different. We show this on the example of the discrete topological semigroups (\mathbb{N}, \min) and (\mathbb{N}, \max) . We shall study \mathscr{H} -completions and $\mathscr{A}\mathscr{H}$ -completions of discrete topological semigroup (\mathbb{N}, \min) and (\mathbb{N}, \max) in the category $\mathscr{A}\mathscr{H}$ (resp. \mathscr{H}) whose objects are Hausdorff topological semigroups and morphisms are continuous homomorphisms (resp. isomorphic topological embeddings) between topological semigroups.

The notion of \mathcal{H} -completion was introduced by J. W. Stepp in [9], where he showed that for each locally compact topological semigroup S there exists an \mathcal{H} -complete topological semigroup T which contains S as a dense subsemigroup.

J. W. Stepp ([10]) proved that a discrete semilattice E is \mathscr{H} -complete if and only if any maximal chain in E is finite. In [6] O. Gutik and K. Pavlyk remarked that a topological semilattice is \mathscr{H} -complete (\mathscr{AH} -complete) if and only if it is \mathscr{H} -complete (\mathscr{AH} -complete) as a topological semigroup. In [7] O. Gutik and D. Repovš studied properties of linearly ordered \mathscr{H} -complete topological semilattices and proved the following characterization theorem.

Theorem 1 ([7, Theorem 2]). A linearly ordered topological semilattice E is \mathcal{H} -complete if and only if the following conditions hold:

- (i) E is complete;
- (ii) $x = \sup A$ for $A = \downarrow A$ implies $x \in \operatorname{cl}_E A$;
- (iii) $x = \inf B$ for $B = \uparrow B$ implies $x \in \operatorname{cl}_E B$.

Also, in [7] O. Gutik and D. Repovš proved that each linearly ordered \mathcal{H} -complete topological semilattice is \mathcal{AH} -complete and showed that every linearly ordered semilattice is a dense subsemilattice of an \mathcal{H} -complete topological semilattice. In [2] I. Chuchman and O. Gutik proved that any \mathcal{H} -complete locally compact topological semilattice and any \mathcal{H} -complete topological weakly U-semilattice contain minimal idempotents.

In [10, Question 17] J. W. Stepp asked the following question: Is each \mathscr{H} -complete topological semilattice \mathscr{AH} -complete? In the present paper we answer this Stepp's question in the negative by constructing an example of an \mathscr{H} -complete topological semilattice which is not \mathscr{AH} -complete. Also we construct an \mathscr{H} -complete topological semilattice of arbitrary infinite cardinality λ which has 2^{λ} many open-and-closed continuous homomorphic images which are not \mathscr{H} -complete topological semilattices.

Let \mathbb{N} denote the set of positive integers. For each free filter \mathscr{F} on \mathbb{N} consider the topological space $\mathbb{N}_{\mathscr{F}} = \mathbb{N} \cup \{\mathscr{F}\}$ in which all points $x \in \mathbb{N}$ are isolated while the sets $F \cup \{\mathscr{F}\}$, $F \in \mathscr{F}$, form a neighborhood base at the unique non-isolated point \mathscr{F} .

The semilattice operation min (resp., max) of \mathbb{N} extends to a continuous semilattice operation min (resp., max) on $\mathbb{N}_{\mathscr{F}}$ such that $\min\{n,\mathscr{F}\} = \min\{\mathscr{F},n\} = n$ and $\min\{\mathscr{F},\mathscr{F}\} = \mathscr{F}$ (resp., $\max\{n,\mathscr{F}\} = \max\{\mathscr{F},n\} = \mathscr{F} = \max\{\mathscr{F},\mathscr{F}\}$) for all $n \in \mathbb{N}$. By $\mathbb{N}_{\mathscr{F},\min}$ (resp., $\mathbb{N}_{\mathscr{F},\max}$) we shall denote the topological space $\mathbb{N}_{\mathscr{F}}$ with the semilattice operation min (resp., max). Simple verifications show that $\mathbb{N}_{\mathscr{F},\min}$ and $\mathbb{N}_{\mathscr{F},\max}$ are topological semilattices.

- **Theorem 2.** (i) For each free filter \mathscr{F} on \mathbb{N} the topological semilattices $\mathbb{N}_{\mathscr{F},\min}$ and $\mathbb{N}_{\mathscr{F},\max}$ are \mathscr{AH} -complete.
- (ii) Each \mathcal{H} -completion of the discrete semilattice (\mathbb{N}, \min) (resp., (\mathbb{N}, \max)) is topologically isomorphic to the topological semilattice $\mathbb{N}_{\mathscr{F},\min}$ (resp., $\mathbb{N}_{\mathscr{F},\max}$) for some free filter \mathscr{F} on \mathbb{N} . (iii) The topological semilattice (\mathbb{N}, \min) (resp., (\mathbb{N}, \max)) has no universal \mathscr{AH} -completion.
- *Proof.* (i) By Theorem 1, we have that the topological semilattices $\mathbb{N}_{\mathscr{F},\min}$ and $\mathbb{N}_{\mathscr{F},\max}$ are \mathscr{H} -complete. Since $\mathbb{N}_{\mathscr{F},\min}$ and $\mathbb{N}_{\mathscr{F},\max}$ are linearly ordered semilattices, Theorem 3 of [7] implies that the topological semilattices $\mathbb{N}_{\mathscr{F},\min}$ and $\mathbb{N}_{\mathscr{F},\max}$ are \mathscr{AH} -complete.
- (ii) We shall prove the statement for the semilattice (\mathbb{N} , min). In the case of (\mathbb{N} , max) the proof is similar. Let S be an \mathcal{H} -complete topological semilattice containing (\mathbb{N} , min) as a dense subsemilattice. Since the closure of a linearly ordered subsemilattice in a Hausdorff topological semigroup is a linearly ordered topological semilattice (see [6, Corollary 19] and [7, Lemma 1]), we conclude that S is linearly ordered and $S \setminus \mathbb{N}$ is a singleton $\{a\}$. Then since (\mathbb{N} , min) is a dense subsemilattice of S, the continuity of the semilattice operation in S implies that $a \cdot a = a$ and $a \cdot n = n \cdot a = n$ for any $n \in \mathbb{N}$. Let $\mathcal{B}(a)$ be the filter of neighborhoods of the point a in S. This filter induces the free filter $\mathscr{F} = \{F \subset \mathbb{N} : F \cup \{a\} \in \mathcal{B}(a)\}$. Then we can identify the topological semilattice S with $\mathbb{N}_{\mathscr{F}, \min}$ by the topological isomorphism $f: S \to \mathbb{N}_{\mathscr{F}, \min}$ such that $f(a) = \mathscr{F}$ and f(n) = n for every $n \in \mathbb{N}$.
- (iii) Suppose the contrary: there exists a universal \mathscr{AH} -completion S of the discrete semilattice (\mathbb{N}, \max) . Then by statement (ii), the semilattice S can be identified with the semilattice $\mathbb{N}_{\mathscr{F},\max}$ for some free filter \mathscr{F} on \mathbb{N} . Let \mathscr{F}' be any free filter on \mathbb{N} such that $\mathscr{F}' \not\subset \mathscr{F}$. Then the identity embedding $\mathrm{id}_{\mathbb{N}} \colon (\mathbb{N}, \max) \to \mathbb{N}_{\mathscr{F}',\max}$ cannot be extended to a continuous homomorphism $h \colon \mathbb{N}_{\mathscr{F},\max} \to \mathbb{N}_{\mathscr{F}',\max}$, witnessing that the \mathscr{AH} -completion S of (\mathbb{N}, \min) is not universal.

Later on, by $E_2 = \{0, 1\}$ we denote the discrete topological semilattice with the semilattice operation min.

- **Theorem 3.** Let \mathscr{F} be a free filter on \mathbb{N} and $F \in \mathscr{F}$ be a set with infinite complement $\mathbb{N} \setminus F$. Then the following statements hold:
- (i) the closed subsemilattice $E = (\mathbb{N}_{\mathscr{F},\min} \times \{0\}) \cup ((\mathbb{N} \setminus F) \times \{1\})$ of the direct product $\mathbb{N}_{\mathscr{F},\min} \times E_2$ is \mathscr{H} -complete;
- (ii) the subset $I = \mathbb{N}_{\mathscr{F},\min} \times \{0\}$ is an open-and-closed ideal in E, and the quotient semilattice E/I with the quotient topology is discrete and not \mathscr{H} -complete;
- (iii) the semilattice E is not \mathscr{AH} -complete.
- Proof. (i) The definition of the topological semilattice $\mathbb{N}_{\mathscr{F},\min} \times E_2$ implies that E is a closed subsemilattice of $\mathbb{N}_{\mathscr{F},\min} \times E_2$. Suppose the contrary: the topological semilattice E is not \mathscr{H} -complete. Since the closure of a subsemilattice in a topological semigroup is a semilattice (see Corollary 19 of [6]), we conclude that there exists a topological semilattice S which contains E as a dense subsemilattice and $S \setminus E \neq \emptyset$. We fix an arbitrary $a \in S \setminus E$. Then for every open neighborhood U(a) of the point a in S we have that the set $U(a) \cap E$ is infinite. By Theorem 2, the subspace $\mathbb{N}_{\mathscr{F},\min} \times \{0\}$ of E with the induced semilattice operation from E is an \mathscr{H} -complete topological semilattice. Therefore, there exists an open neighborhood U(a) of the point E in E in E in E and hence the set E in E is infinite.

Next we shall show that $a \cdot x = x$ for any $x \in E \setminus \{(\mathscr{F}, 0)\}$. Since the set $U(x) \cap ((\mathbb{N} \setminus F) \times \{1\})$ is infinite, the continuity of the semilattice operation in E implies that $a \cdot x = x$ for any $x \in (\mathbb{N} \setminus F) \times \{1\}$. Now fix any point $y \in \mathbb{N} \times \{0\} \subset E$. By the definition of the semilattice operation on E, we can find a point $x_y \in (\mathbb{N} \setminus F) \times \{1\}$ with $x_y \cdot y = y$ and conclude that

$$a \cdot y = a \cdot (x_y \cdot y) = (a \cdot x_y) \cdot y = x_y \cdot y = y.$$

Since $(\mathscr{F}, 0)$ is a cluster point of the set $\mathbb{N} \times \{0\}$, the continuity of the semilattice operation implies that $a \cdot (\mathscr{F}, 0) = (\mathscr{F}, 0)$.

Since $W(\mathscr{F},0)=(F\cup\{\mathscr{F}\})\times\{0\}$ is a neighborhood of the point $(\mathscr{F},0)=a\cdot(\mathscr{F},0)$, the continuity of the semilattice operation yields the existence of neighborhoods U(a) and $V(\mathscr{F},0)$ of the points a and $(\mathscr{F},0)$ in S such that $U(a)\cdot V(\mathscr{F},0)\subset W(\mathscr{F},0)$. Now choose any point $(n,1)\in U(a)\cap \left((\mathbb{N}\setminus F)\times\{1\}\right)$ and find a point $(m,0)\in V(\mathscr{F},0)$ such that $m\geq n$. Then

$$(n,0) = (n,1) \cdot (m,1) \in U(a) \cdot U(\mathscr{F},0) \subset W(\mathscr{F},0) = (F \cup \{\mathscr{F}\}) \times \{0\},$$
 which contradicts the choice of $n \in \mathbb{N} \setminus F$.

(ii) The definition of the semilattice E implies that $I = \mathbb{N}_{\mathscr{F},\min} \times \{0\}$ is an open-and-closed ideal in E. Then the quotient semilattice E/I (endowed with the quotient topology) is a discrete topological semilattice, topologically isomorphic to the discrete semilattice (\mathbb{N} , min). By Theorem 1, the semilattice E/I is not \mathscr{H} -complete.

Statement
$$(iii)$$
 follows from statement (ii) .

Corollary 1. For a free filter \mathscr{F} on \mathbb{N} , each closed subsemilattice of the semilattice $\mathbb{N}_{\mathscr{F},\min} \times E_2$ is \mathscr{AH} -complete if and only if \mathscr{F} is the filter of cofinite subsets of \mathbb{N} .

- *Proof.* (\Leftarrow) If \mathscr{F} is the filter of cofinite subsets of \mathbb{N} , then the space $\mathbb{N}_{\mathscr{F},\min} \times E_2$ is compact. Then each closed subset of $\mathbb{N}_{\mathscr{F},\min} \times E_2$ is compact and hence each closed subsemilattice of the semilattice $\mathbb{N}_{\mathscr{F},\min} \times E_2$ is \mathscr{AH} -complete.
- (\Rightarrow) If \mathscr{F} is a free filter on \mathbb{N} containing a set $F \subseteq \mathbb{N}$ with the infinite complement $\mathbb{N} \setminus F$, then $E = (\mathbb{N}_{\mathscr{F},\min} \times \{0\}) \cup ((\mathbb{N} \setminus F) \times \{1\})$ is a closed subsemilattice of the topological semilattice $\mathbb{N}_{\mathscr{F},\min} \times E_2$ and Theorem 3 implies that E is not \mathscr{AH} -complete.

The proof of the following theorem is similar to the proof of Theorem 3 with some simple modifications.

Theorem 4. Let \mathscr{F} be a free filter on \mathbb{N} and $F \in \mathscr{F}$ be a set with infinite complement $\mathbb{N} \setminus F$. Then the following assertions hold:

- (i) the closed subsemilattice $E = (\mathbb{N}_{\mathscr{F}, \max} \times \{0\}) \cup ((\mathbb{N} \setminus F) \times \{1\})$ of the direct product $\mathbb{N}_{\mathscr{F}, \max} \times E_2$ is \mathscr{H} -complete;
- (ii) the subset $I = \mathbb{N}_{\mathscr{F}, \max} \times \{0\}$ is an open-and-closed ideal in E, and the quotient semilattice E/I with the quotient topology is discrete and not \mathscr{H} -complete;
- (iii) the semilattice E is not \mathscr{AH} -complete.

The proof of the following corollary is similar to Corollary 1 and it follows from Theorem 4.

Corollary 2. For a free filter \mathscr{F} on \mathbb{N} , each closed subsemilattice of the semilattice $\mathbb{N}_{\mathscr{F},\max} \times E_2$ is \mathscr{AH} -complete if and only if \mathscr{F} is the filter of cofinite subsets of \mathbb{N} .

We remark that Theorems 3 and 4 give a negative answer on Question 17 from [10]. Also, Theorems 3 and 4 imply the following corollary.

Corollary 3. There exists a countable locally compact \mathcal{H} -complete topological semilattice E with an open-and-closed ideal I such that I is an \mathscr{AH} -complete semilattice and the Rees quotient semigroup E/I with the quotient topology is not \mathscr{H} -complete.

Remark 1. A Hausdorff partially ordered space X is called \mathscr{H} -complete if X is a closed subspace of every Hausdorff partially ordered space in which it is contained ([5]). A linearly ordered topological semilattice E is \mathscr{H} -complete if and only if E is an \mathscr{H} -complete partially ordered space ([5]). In [11] Yokoyama showed that a partially ordered space X without an infinite antichain is an \mathscr{H} -complete partially ordered space if and only if X is a directed complete and down-complete poset such that $\sup L$ and $\inf L$ are contained in the closure of L for any nonempty chain L in X. Theorems 3 and 4 imply that there exists an \mathscr{H} -complete topological semilattice without an infinite antichain which is not an \mathscr{H} -complete partially ordered space. Also Theorem 3 implies that there exists a countable \mathscr{H} -complete locally compact topological semilattice E without an infinite antichain which contains a maximal chain L which is not directed complete, and L does not have a maximal element.

Let λ be any infinite cardinal and let $0 \notin \lambda$. On the set $E_{\lambda} = \{0\} \cup \lambda$ endowed with the discrete topology we define the semilattice operation by the formula $x \cdot y = \begin{cases} x, & \text{if } x = y, \\ 0, & \text{if } x \neq y. \end{cases}$

Theorem 5. Let \mathscr{F} be a free filter on \mathbb{N} and $F \in \mathscr{F}$ be a set with infinite complement $\mathbb{N} \setminus F$. Then for each infinite cardinal λ the following statements hold:

- (i) the closed subsemilattice $E = (\mathbb{N}_{\mathscr{F},\max} \times \{0\}) \cup ((\mathbb{N} \setminus F) \times \lambda)$ of the direct product $\mathbb{N}_{\mathscr{F},\max} \times E_{\lambda}$ is \mathscr{H} -complete;
- (ii) for each subset $\kappa \subset \lambda$ the subset $I_{\kappa} = (\mathbb{N}_{\mathscr{F},\max} \times \{0\}) \cup ((\mathbb{N} \setminus F) \times \kappa)$ is an open-and-closed ideal in E, and the quotient semilattice E/I_{κ} with the quotient topology is discrete and not \mathscr{H} -complete;
- (iii) the semilattice E is not \mathscr{AH} -complete.
- Proof. (i) Assuming that the topological semilattice E is not \mathscr{H} -complete, find a topological semilattice T containing E as a dense subsemilattice with non-empty complement $T \setminus E$. Fix any element $e \in T \setminus E$. By Theorem 1, the topological semilattice $E^0 = \mathbb{N}_{\mathscr{F},\max} \times \{0\}$ is \mathscr{H} -complete and hence is closed in T. Then there exists an open neighborhood U(e) of the point e in T such that $U(e) \cap E^0 = \varnothing$. By the continuity of the semilattice operation in T, there exists an open neighborhood $V(e) \subseteq U(e)$ of the point e in T such that $V(e) \cdot V(e) \subseteq U(e)$. By Theorem 4, for each $a \in \lambda$, the subsemilattice $E_a = (\mathbb{N}_{\mathscr{F},\max} \times \{0\}) \cup ((\mathbb{N} \setminus F) \times \{a\})$ of the direct product $\mathbb{N}_{\mathscr{F},\max} \times E_{\lambda}$ is \mathscr{H} -complete and hence is closed in T. This implies that $V(e) \cap E_a \neq \varnothing$ for infinitely many points $a \in \lambda$, and hence $(V(e) \cdot V(e)) \cap E^0 \neq \varnothing$. This contradicts the choice of the neighborhood U(e). The obtained contradiction implies that the topological semilattice E is \mathscr{H} -complete.
- (ii) The definition of the semilattice E implies that $I_{\kappa} = (\mathbb{N}_{\mathscr{F},\max} \times \{0\}) \cup ((\mathbb{N} \setminus F) \times \kappa)$ is an open-and-closed ideal in E. Then we have that the quotient semilattice E/I_{κ} with the quotient topology is a discrete topological semilattice. Also, E/I_{κ} is topologically isomorphic to the orthogonal sum of λ infinitely many of (\mathbb{N}, \max) with isolated zero. This implies that the semilattice E/I_{κ} is not \mathscr{H} -complete.

Statement (iii) follows from statement (ii).

Remark 2. The topological semilattices E and I_{κ} from Theorem 5 are metrizable locally compact spaces for each free countably generated filter \mathscr{F} on \mathbb{N} and any $\kappa \subset \lambda$.

Remark 3. It can be shown that continuous homomorphisms into the discrete semilattice $(\{0,1\}, \min)$ separate points of the topological semilattices E considered in Theorems 4 and 5.

Since for each subset $\kappa \subset \lambda$ the natural homomorphism $\pi \colon E \to E/I_{\kappa}$ is an open-and-closed map, Theorem 5 implies the following corollary.

Corollary 4. Let \mathscr{F} be a free filter on \mathbb{N} containing a set $F \in \mathscr{F}$ with infinite complement $\mathbb{N} \setminus F$. Then for each infinite cardinal λ there exist 2^{λ} many continuous open-and-closed surjective homomorphic images of the topological semilattice

$$E = (\mathbb{N}_{\mathscr{F}, \max} \times \{0\}) \cup ((\mathbb{N} \setminus F) \times \lambda) \subset \mathbb{N}_{\mathscr{F}, \max} \times E_{\lambda},$$

which are not \mathcal{H} -complete.

Acknowledgements. We thank Professor T. O. Banakh for his comments and suggestions. The authors are also grateful to the referee for several useful comments and suggestions.

REFERENCES

- J.H. Carruth, J.A. Hildebrant, R.J. Koch, The theory of topological semigroups, Vol. I, Marcel Dekker, Inc., New York and Basel, 1983; Vol. II, Marcel Dekker, Inc., New York and Basel, 1986.
- 2. I. Chuchman, O. Gutik, On H-closed topological semigroups and semilattices, Algebra Discrete Math., (2007), №1, 13–23.
- 3. R. Engelking, General topology, 2nd ed., Heldermann, Berlin, 1989.
- 4. G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M.W. Mislove, D.S. Scott, Continuous lattices and domains, Cambridge Univ. Press, Cambridge, 2003.
- O. Gutik, D. Pagon, D. Repovš, On chains in H-closed topological pospaces, Order, 27 (2010), №1, 69–81.
- O. Gutik, K. Pavlyk, Topological Brandt λ-extensions of absolutely H-closed topological inverse semigroups, Visnyk Lviv. Univ. Ser. Mekh.-Mat., 61 (2003), 98–105.
- O. Gutik, D. Repovš, On linearly ordered H-closed topological semilattices, Semigroup Forum, 77 (2008), №3, 474–481.
- 8. D.A. Raikov, On a completion of topological groups, Izv. Akad. Nauk SSSR, 10 (1946), №6, 513–528. (in Russian)
- 9. J.W. Stepp, A note on maximal locally compact semigroups, Proc. Amer. Math. Soc., 20 (1969), 251–253.
- 10. J. W. Stepp, Algebraic maximal semilattices, Pacific J. Math., 58 (1975), №1, 243–248.
- 11. T. Yokoyama, On completeness of H-closed pospaces, arXiv:1004.3038v1.

Department of Mechanics and Mathematics Ivan Franko National University of Lviv sbardyla@yahoo.com o_gutik@franko.lviv.ua ovgutik@yahoo.com

> Received 14.05.2012 Revised 22.08.2012