O. B. Skaskiv, O. Yu. Zadorozhna

TWO OPEN PROBLEMS FOR ABSOLUTELY CONVERGENT DIRICHLET SERIES

O. B. Skaskiv, O. Yu. Zadorozhna. Two open problems for absolutely convergent Dirichlet series,
Mat. Stud. 38 (2012), 106-112.

For the absolutely convergent in a half-plane Dirichlet series we establish upper estimates without exceptional sets.
О. Б. Скаскив, О. Ю. Задорожна. Две открытых проблемы для абсолютно сходяшихся рядов Дирихле // Мат. Студії. - 2012. - Т.38, №1. - С.106-112.

Для абсолютно сходящихся в полуплоскости рядов Дирихле устанавливаются оценки сверху без исключительного множества.

1. Introduction. Let $\Lambda=\left(\lambda_{n}\right)_{n=0}^{\infty}$ be a sequence of nonnegative numbers such that $0=$ $\lambda_{0}<\lambda_{n}<\lambda_{n+1}(1 \leq n \uparrow+\infty)$ and $S^{a}(\Lambda)$ be the class of absolutely convergent in the complex half-plane $\Pi_{a}=\{z=\sigma+i t \in \mathbb{C}: \sigma<a, t \in \mathbb{R}\},-\infty<a \leq+\infty$, Dirichlet series of the form

$$
\begin{equation*}
F(z)=\sum_{n=0}^{+\infty} a_{n} e^{z \lambda_{n}}, \quad z=\sigma+i t \tag{1}
\end{equation*}
$$

For $F \in S^{a}(\Lambda)$ and $\sigma<a$ we define by $M(\sigma, F)=\sup \{|F(\sigma+i t)|: t \in \mathbb{R}\}$ the maximum modulus of the function F and by $\mu(\sigma, F)=\max \left\{\left|a_{n}\right| \exp \left\{\sigma \lambda_{n}\right\}: n \geq 0\right\}$ the maximal term.

The class of nonnegative continuous on $[0 ;+\infty)$ functions $l(x)$ such that $l(x) \rightarrow+\infty$ $(x \rightarrow+\infty)$ is denoted by L_{0}, the subclass of functions $l \in L_{0}$ such that $l(x) \nearrow+\infty$ as $0 \leq$ $x \uparrow+\infty$ is denoted by L. The subclass of functions $l \in L_{0}$ such that $\frac{x}{l(x)} \nearrow+\infty(x \rightarrow+\infty)$ is denoted by L_{1}.

We introduce the following classes of Dirichlet series. For $\psi \in L$ let $S_{\psi}(\Lambda)$ denote the class of entire Dirichlet series (1) (i.e. $F \in S(\Lambda) \stackrel{\text { def }}{=} S^{+\infty}(\Lambda)$) such that $\sharp\left\{n: a_{n} \neq 0\right\}=+\infty$ and

$$
\begin{equation*}
\left|a_{n}\right| \leq \exp \left\{-\lambda_{n} \psi\left(\lambda_{n}\right)\right\} \quad\left(n \geq n_{0}\right) . \tag{2}
\end{equation*}
$$

For $\psi \in L_{1}$ let $S_{\psi}^{0}(\Lambda)$ denote the class of Dirichlet series $F \in S^{0}(\Lambda)$ such that

$$
\begin{equation*}
\left|a_{n}\right| \leq \exp \left\{\frac{\lambda_{n}}{\psi\left(\lambda_{n}\right)}\right\}, \quad n \geq n_{0} \tag{3}
\end{equation*}
$$

We remark that condition (2) is equivalent to the inequality $\ln \mu(x, F) \leq x \Phi(x)(x \in$ $\left.\left(x_{0},+\infty\right)\right)$ and condition (3) is equivalent to $\ln \mu(x, F) \leq \Phi_{0}(1 /|x|)\left(x \in\left(x_{0}, 0\right)\right), x_{0}<0$, where Φ, Φ_{0} are some functions from the class L.

2010 Mathematics Subject Classification: 30B50.
Keywords: analytic function, Dirichlet series, maximal term.

In 2000 P. V. Filevych ([1]) proved the following theorem.
Theorem A ([1]). Let $\psi \in L$, condition

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \frac{\ln n}{\lambda_{n} \psi\left(\lambda_{n}\right)}=q<1 \tag{4}
\end{equation*}
$$

holds and $h \in L_{0}$. Then

$$
\left(\forall F \in S_{\psi}(\Lambda)\right)\left(\exists x_{0}\right)\left(\forall x \geq x_{0}\right): \quad M(x, F)<\mu(x, F) h(\ln \mu(x, F))
$$

holds if and only if

$$
\begin{equation*}
\left(\forall l_{1}, l_{2} \in L\right)\left(\exists n_{0}\right)\left(\forall n \geq n_{0}\right): \quad n<l_{1}(n)+h\left(l_{2}(n) \psi\left(\lambda_{n}\right)\right) . \tag{5}
\end{equation*}
$$

Using the ideas of the proof of Theorem A (Theorem 2 in [1]) one can prove the following assertion.

Proposition 1. If $\psi \in L, h \in L_{0}$ and conditions (4), (5) hold, then

$$
\left(\forall d \in L_{0}\right)\left(\forall F \in S_{\psi}(\Lambda)\right)\left(\exists x_{0}\right)\left(\forall x \geq x_{0}\right): \quad M(x, F)<\mu(x, F) h(x d(x)) .
$$

Note that since the function $\ln \mu(x, F)$ is convex (i.e. $\ln \mu(x, F) / x \rightarrow+\infty(x \rightarrow+\infty)$), sufficiency in Theorem A follows from Proposition 1. Proposition 1 implies also that by conditions (4), (5)

$$
\left(\forall F \in S_{\psi}(\Lambda)\right)\left(\exists c>0\left(\exists x_{0}\right)\left(\forall x \geq x_{0}\right): \quad M(x, F)<\mu(x, F) h(c x)\right.
$$

Question 1. What is the exact value of the constant c in the previous inequality?
Conjecture 1. Sharp values are $c=\tau+\varepsilon$, where $\varepsilon>0$ is arbitrary,

$$
\begin{equation*}
\tau=\varlimsup_{t \rightarrow+\infty} \frac{h^{-1}(n(t))}{\psi(t)}, \quad n(t)=\sum_{\lambda_{n} \leq t} 1 \tag{6}
\end{equation*}
$$

and h^{-1} is the inverse function to function $h \in L$.
Consider first the following problem.
Problem 1. Set an analogue of Theorem A or Proposition 1 for the class $S^{0}(\Lambda)$.
So, we consider Dirichlet series $F \in S^{0}(\Lambda)$ of the form (1). Next, we assume that conditions

$$
\begin{equation*}
q:=\varlimsup_{n \rightarrow+\infty} \frac{\ln n}{\lambda_{n}} \psi\left(\lambda_{n}\right)<\theta<+\infty \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup \left\{\left|a_{n}\right|: n \geq 0\right\}=+\infty \tag{8}
\end{equation*}
$$

hold.
Remark 1. It is easy to see from (7) that $\ln n=o\left(\lambda_{n}\right)(n \rightarrow+\infty)$ and thus every Dirichlet series of form (1) has the abscissa of absolutely convergence $\sigma_{a} \geq 0$ as (3) and (7) hold. In the case of $\sup \left\{\left|a_{n}\right|: n \geq 0\right\}=+\infty$ from conditions (3) and (7) we obtain that $\sigma_{a}=0$.

The following theorem shows that direct analogues of Theorem A for the class $S^{0}(\Lambda)$ can not be obtained.

Theorem 1. Let $h \in L, \Phi \in L$ be arbitrary functions. For all sequences $\Lambda=\left(\lambda_{n}\right)_{n=0}^{\infty}$ such that $0=\lambda_{0}<\lambda_{n}<\lambda_{n+1}(1 \leq n \uparrow+\infty)$ there exist some function $F \in S^{0}(\Lambda)$ such that condition (8) is satisfied and

$$
\begin{gather*}
\frac{M(x, F)}{\mu(x, F) h(\ln \mu(x, F))} \rightarrow+\infty \quad(x \rightarrow-0), \tag{9}\\
\left(\exists x_{0}<0\right)\left(\forall x \in\left(x_{0}, 0\right)\right): \quad \ln \mu(x, F) \leq \Phi(1 /|x|) . \tag{10}
\end{gather*}
$$

The following theorem is a certain analogue of Proposition 1 for the class $S^{0}(\Lambda)$.
Theorem 2. If $\psi \in L_{1}, h \in L_{0}$ and conditions (7), (5) hold, then

$$
\begin{equation*}
\left(\forall d \in L_{0}\right)\left(\forall F \in S_{\psi}^{0}(\Lambda)\right)\left(\exists x_{0}<0\right)\left(\forall x \in\left(x_{0}, 0\right)\right): \quad M(x, F)<\mu(x, F) h\left(\frac{1}{|x|} d\left(\frac{1}{|x|}\right)\right) \tag{11}
\end{equation*}
$$

Theorem 2 implies the following corollary.
Corollary 1. If $\psi \in L_{1}, h \in L_{0}$ and conditions (7), (5) hold, then $\left(\forall F \in S_{\psi}^{0}(\Lambda)\right)(\exists c>0)\left(\exists x_{0}<0\right)\left(\forall x \in\left[x_{0}, 0\right)\right): \quad M(x, F)<\mu(x, F) h(c /|x|)$.

Question 2. What is the exact value of constant c in the previous inequality?
Conjecture 2. Sharp values are $c=\tau+\varepsilon$, where $\varepsilon>0$ is arbitrary and τ is defined by (6).
In the case of $\psi(x)=x^{\alpha}, \alpha \in(0,1), h(x)=x^{\beta}, \beta>0$, Corollary 1 implies the following statement.
Corollary 2. If $\left.F \in S^{0}(\Lambda)\right),\left|a_{n}\right| \leq \exp \left\{\lambda_{n}^{1-\alpha}\right\}\left(n \geq n_{0}\right)$ and $\varlimsup_{n \rightarrow+\infty} \frac{n^{1 /(\alpha \beta)}}{\lambda_{n}}<+\infty$, then

$$
(\exists c>0)\left(\exists x_{0}<0\right)\left(\forall x \in\left[x_{0}, 0\right)\right): \quad M(x, F)<c \mu(x, F)(1 /|x|)^{\beta} .
$$

The degree of β in the last inequality, in general, cannot be improved. This follows from the example of functions below

Example 1. Let $\lambda_{n}=n^{q}(n \geq 0), \beta>0, \alpha \in(0,1), \alpha \cdot \beta \geq 1, p=1-\alpha$ and

$$
\begin{equation*}
F_{0}(z)=\sum_{n=1}^{+\infty} e^{n^{p q}+z n^{q}} \tag{12}
\end{equation*}
$$

It is obvious that $F_{0} \in S^{0}(\Lambda)$. For the series (12) we have

$$
\begin{equation*}
F_{0}(x)=(1+o(1)) \frac{\sqrt{2 \pi}}{q \sqrt{1-p}} p^{\frac{2-q}{2 q(1-p)}} \mu\left(x, F_{0}\right)|x|^{\frac{p q-2}{2 q(1-p)}}(x \rightarrow-0) \tag{13}
\end{equation*}
$$

and

$$
\mu\left(x, F_{0}\right)=(1+(o(1))) e^{|x|^{-\frac{p}{1-p}} p^{\frac{p}{1-p}}(1-p)}(x \rightarrow-0) .
$$

i) Now for fixed $\beta>0$ and $\varepsilon \in(0,1)$ we choose $\alpha \in(0,1), q>0$ such that $\alpha=\frac{1}{1+\varepsilon}, \alpha \beta q=1$. Then $\frac{2-p q}{2(1-p) q}=\beta-\frac{\varepsilon}{2}$, therefore from relation (13) we have

$$
|x|^{\beta-\varepsilon} F_{0}(x) / \mu\left(x, F_{0}\right) \rightarrow+\infty \quad(x \rightarrow-0)
$$

ii) We can rewrite relation (13) in the form

$$
\begin{equation*}
F_{0}(x)=\frac{\sqrt{2 \pi}(1+o(1))}{q}(1-p)^{\frac{p q-2-q}{2 q}} p^{\frac{2-q-p q}{2 q}} \mu\left(x, F_{0}\right)\left(\frac{\ln \mu\left(x, F_{0}\right)}{|x|}\right)^{\frac{2-p q}{2 q}},(x \rightarrow-0) . \tag{14}
\end{equation*}
$$

Now for fixed $\beta>0$ and $\varepsilon \in(0, \beta)$ we choose $q=\frac{2 \beta+1}{(2 \beta+1-\varepsilon) \beta}$ and $\alpha \in(0,1)$ such that $\alpha \beta q=1$. Then $\frac{2-p q}{2 q}=\frac{1}{q} \cdot \frac{2 \beta+1}{2 \beta}-\frac{1}{2}=\beta-\frac{\varepsilon}{2}$ and from relation (14) we obtain

$$
F_{0}(x) / \mu\left(x, F_{0}\right)\left(\frac{\ln \mu\left(x, F_{0}\right)}{|x|}\right)^{-(\beta-\varepsilon)} \rightarrow+\infty \quad(x \rightarrow-0)
$$

2. Proof of the theorems.

Proof of Theorem 1. The idea of the proof is the same as the idea of the proof of Theorem 1 from [2] (see, also [3, 4]). Without loss of generality we assume that $h(1)=1, t+\ln h(t)<0$ $(0 \leq t \leq 1 / 2)$. Let $\left(E_{n}\right)$ be some sequence such that $1=E_{1} \leq E_{n}<E_{n+1}$ and $1 \leq n / E_{n}<$ $(n+1) / E_{n+1}(n \geq 1)$. For every $n \geq 1$ there exists L_{n} such that $L_{n}+\ln h\left(L_{n}\right)=\ln \left(n / E_{n}\right)$. Then $L_{1}=1, L_{n}<L_{n+1}(n \geq 1), L_{n} \rightarrow+\infty(n \rightarrow+\infty)$.

Let $c_{n}=L_{n-1}-L_{n-2}(n \geq 3)$ and $\left(\lambda_{j}^{*}\right)$ be a subsequence of the sequence $\left(\lambda_{n}\right)$ such that

$$
\begin{equation*}
\ln n=o\left(\lambda_{n}^{*}\right) \quad(n \rightarrow+\infty), \quad \sum_{j=3}^{+\infty} \frac{c_{j}}{\lambda_{j}^{*}} \Phi^{-1}\left(L_{j-1}\right) \leq 1 \tag{15}
\end{equation*}
$$

where Φ^{-1} is the inverse function to the function Φ. We define

$$
\ln a_{n}^{*} \stackrel{\text { def }}{=} L_{n-1}+\lambda_{n}^{*} \sum_{j=n+1}^{+\infty} \frac{c_{j}}{\lambda_{j}^{*}} \text { and } a_{n}=\left\{\begin{array}{l}
a_{j}^{*}, \text { if } \lambda_{n}=\lambda_{j}^{*} \\
0, \text { if } \lambda_{n} \notin\left\{\lambda_{j}^{*}: j \geq 1\right\}
\end{array}\right.
$$

Then

$$
F(z)=\sum_{n=0}^{+\infty} a_{n} e^{z \lambda_{n}}=\sum_{n=1}^{+\infty} a_{n}^{*} e^{z \lambda_{n}^{*}}
$$

Conditions (15) immediately yield that $F \in S^{0}(\Lambda)$. Indeed, from (15) by the definition of L_{n} we obtain

$$
\ln a_{n}^{*} \leq \ln n+\lambda_{n}^{*} \sum_{j=n+1}^{+\infty} \frac{c_{j}}{\lambda_{j}^{*}}=o\left(\lambda_{n}^{*}\right) \quad(n \rightarrow+\infty)
$$

Hence, for $x<0$

$$
a_{n}^{*} \exp \left\{x \lambda_{n}^{*}\right\}=\exp \left\{-\frac{|x|}{2} \lambda_{n}^{*}\right\} \leq \exp \{-2 \ln n\} \quad\left(n \geq n_{0}\right)
$$

where $n_{0}=n_{0}(x)$. Therefore $F \in S^{0}(\Lambda)$.
We need following lemma (see [5, p.19]).
Lemma 1. Let $g \in S^{0}(\Lambda)$ be a Dirichlet series of the form $g(z)=\sum_{n=0}^{+\infty} g_{n} e^{z \lambda_{n}}$. If

$$
\varkappa_{n} \stackrel{\text { def }}{=} \frac{\ln \left|g_{n-1}\right|-\ln \left|g_{n}\right|}{\lambda_{n}-\lambda_{n-1}} \nearrow 0 \quad(1 \leq n \uparrow+\infty)
$$

then

$$
(\forall n \geq 1)\left(\forall x \in\left[\varkappa_{n} \varkappa_{n+1}\right]\right): \quad \mu(x, g)=\left|g_{n}\right| e^{x \lambda_{n}}
$$

We note that for the function F

$$
\varkappa_{n}=\frac{\ln a_{n-1}^{*}-\ln a_{n}^{*}}{\lambda_{n}^{*}-\lambda_{n-1}^{*}}=-\sum_{j=n}^{+\infty} \frac{c_{j}}{\lambda_{j}^{*}} \uparrow 0 \quad(n \rightarrow+\infty) .
$$

By Lemma 1 for all $x \in\left[\varkappa_{n}, \varkappa_{n+1}\right]$

$$
\mu(x, F)=a_{n}^{*} \exp \left\{x \lambda_{n}^{*}\right\}
$$

Hence, for all $x \in\left[\varkappa_{n}, \varkappa_{n+1}\right]$ and $n \geq 2$

$$
\begin{equation*}
\ln \mu(x, F)=\ln a_{n}^{*}+x \lambda_{n}^{*} \leq L_{n-1}+\lambda_{n}^{*} \sum_{j=n+1}^{+\infty} \frac{c_{j}}{\lambda_{j}^{*}}+\varkappa_{n+1} \lambda_{n}^{*}=L_{n-1} \tag{16}
\end{equation*}
$$

and for $m, 2 \leq m \leq n-1$,

$$
\ln a_{m}^{*}+x \lambda_{m}^{*} \geq L_{m-1}+\lambda_{m}^{*} \sum_{j=m+1}^{+\infty} \frac{c_{j}}{\lambda_{j}^{*}}+\varkappa_{n} \lambda_{m}^{*} \geq L_{m-1} \geq 1
$$

From the previous inequality for all $x \in\left[\varkappa_{n}, \varkappa_{n+1}\right]$ and $n \geq 2$ we obtain

$$
\begin{gathered}
M(x, F)=F(x)=\sum_{k=0}^{+\infty} a_{k} e^{z \lambda_{k}} \geq \sum_{m=1}^{n} a_{m}^{*} e^{z \lambda_{m}^{*}} \geq n= \\
=E_{n} h\left(L_{n}\right) \exp \left\{L_{n}\right\}>E_{n} \mu(x, F) h(\ln \mu(x, F))
\end{gathered}
$$

and (9) follows. From (15) we have $L_{n-1} \leq \Phi\left(1 /\left|\varkappa_{n}\right|\right)(n \geq 2)$. Therefore, from (16) for all $x \in\left[\varkappa_{n}, \varkappa_{n+1}\right]$ and $n \geq 2$

$$
\ln \mu(x, F) \leq L_{n-1} \leq \Phi\left(1 /\left|\varkappa_{n}\right|\right) \leq \Phi(1 /|x|) .
$$

This complete the proof of Theorem 1 .
Proof of Theorem 2. Assume that condition (5) is fulfilled but there exist a function $d \in L_{0}$ and a sequence $x_{j} \uparrow 0(j \rightarrow+\infty)$ such that

$$
\begin{equation*}
(\forall j \geq 1): \quad M\left(x_{j}, F\right) \geq \mu\left(x_{j}, F\right) h\left(\frac{1}{\left|x_{j}\right|} d\left(\frac{1}{\left|x_{j}\right|}\right)\right) . \tag{17}
\end{equation*}
$$

For $x<0$ we set $n_{1}(x)=\min \left\{n: \psi\left(\lambda_{n}\right) \geq(1+\theta+\delta) \frac{1}{|x|}\right\}, \delta>0$. Then

$$
\begin{equation*}
n_{1}(x) \nearrow+\infty(x \uparrow 0) \quad \text { and } \quad \psi\left(\lambda_{n_{1}(x)-1}\right)<(1+\theta+\delta) \frac{1}{|x|} \tag{18}
\end{equation*}
$$

Moreover, using (3) and definition of $n_{1}(x)$ we have

$$
\sum_{n=n_{1}(x)}^{+\infty}\left|a_{n}\right| \exp \left\{x \lambda_{n}\right\} \leq \sum_{n=n_{1}(x)}^{+\infty} \exp \left\{-(\theta+\delta) \frac{\lambda_{n}}{\psi\left(\lambda_{n}\right)}\right\}=\int_{\lambda_{n_{1}(x)-1}}^{+\infty} \exp \left\{-(\theta+\delta) \frac{t}{\psi(t)}\right\} d n(t)
$$

Condition (7) implies

$$
\int_{t_{0}}^{+\infty} \exp \left\{-(\theta+\delta) \frac{t}{\psi(t)}\right\} d n(t)<+\infty
$$

hence by (18) we have

$$
\begin{equation*}
\sum_{n=n_{1}(x)}^{+\infty}\left|a_{n}\right| \exp \left\{x \lambda_{n}\right\}=o(1) \quad(x \uparrow 0) \tag{19}
\end{equation*}
$$

The condition $\sup \left\{\left|a_{n}\right|: n \geq 0\right\}=+\infty$ implies $\mu(x, F) \uparrow+\infty \quad(x \uparrow 0)$. Thus from (19) we obtain

$$
\begin{equation*}
\sum_{n=n_{1}(x)}^{+\infty}\left|a_{n}\right| \exp \left\{x \lambda_{n}\right\}<\frac{1}{2} \mu(x, F) \quad\left(x \in\left[\sigma_{1}, 0\right)\right) \tag{20}
\end{equation*}
$$

Since for all fixed m and $x<0$

$$
\sum_{n=0}^{m}\left|a_{n}\right| \exp \left\{x \lambda_{n}\right\} \leq \sum_{n=0}^{m}\left|a_{n}\right|
$$

there exists a continuous function $n_{2}=n_{2}(x)$ such that $n_{2}(x) \nearrow+\infty(x \uparrow 0)$ and

$$
\sum_{n=0}^{\left[n_{2}(x)\right]}\left|a_{n}\right| \exp \left\{x \lambda_{n}\right\} \leq \frac{1}{2} \mu(x, F) \quad\left(x \in\left[\sigma_{2}, 0\right)\right)
$$

where $[a]$ means the most integer such that $[a] \leq a$. Let $\sigma_{3}=\max \left\{\sigma_{1}, \sigma_{2}\right\}$. Then from the previous inequality and (20) for $x \in\left[\sigma_{3}, 0\right)$ we have

$$
\begin{aligned}
M(x, F)<\mu(x, F)+ & \sum_{n=\left[n_{2}(x)\right]+1}^{n_{1}(x)-1}\left|a_{n}\right| \exp \left\{x \lambda_{n}\right\} \leq\left(n_{1}(x)-\left[n_{2}(x)\right]\right) \mu(x, F) \leq \\
& \leq\left(n_{1}(x)-n_{2}(x)+1\right) \mu(x, F) .
\end{aligned}
$$

Now choose a function $l_{1} \in L$ such that

$$
l_{1}\left(n_{1}(x)-1\right) \leq n_{2}(x)-2 \quad\left(x \in\left[\sigma_{3}, 0\right)\right) .
$$

Then $n_{1}(x)-n_{2}(x)+1=n_{1}(x)-1-\left(n_{2}(x)-2\right) \leq n_{1}(x)-1-l_{1}\left(n_{1}(x)-1\right)$, and for all function $l_{2} \in L$ by condition (5)

$$
\begin{gather*}
M(x, F)<\left(n_{1}(x)-1-l_{1}\left(n_{1}(x)-1\right)\right) \mu(x, F) \leq h\left(l_{2}\left(n_{1}(x)-1\right) \psi\left(\lambda_{n_{1}(x)-1}\right)\right) \mu(x, F) \leq \\
\leq h\left(l_{2}\left(n_{1}(x)-1\right)(1+\theta+\delta) /|x|\right) \mu(x, F), \quad\left(x \in\left[\sigma_{4}, 0\right)\right) . \tag{21}
\end{gather*}
$$

Without loss of generality, we may assume that $d\left(1 /\left|x_{j}\right|\right) \uparrow+\infty(j \rightarrow+\infty)$. Let $n_{1}^{*}(x)$ be a continuous function such that $n_{1}(x)-1 \leq n_{1}^{*}(x) \leq n_{1}(x)(x<0)$. At last, we choose a function $l_{2} \in L$ such that for $x=x_{j}(j \geq 1)$

$$
l_{2}\left(n_{1}^{*}(x)\right)(1+\theta+\delta)=d(1 /|x|) .
$$

Then from inequality (21) for $x=x_{j}(j \geq 1)$ we obtain

$$
M(x, F)<\mu(x, F) h(d(1 /|x|) /|x|),
$$

and this contradicts (17).

REFERENCES

1. Filevych P.V. To the Sheremeta theorem concerning relations between the maximal term and the maximum modulus of entire Dirichlet series// Mat. Stud. - 2000. - V.13, №2. - P. 139-144.
2. Salo T., Skasiv O. On the maximum modulus and maximal term absolute convergent Dirichlet series// Mat. Visn. Nauk. Tov. Im. Shevchenka. - 2007. - V.4. - P. 264-274. (in Ukrainian)
3. Skaskiv O.B. On Wiman's theorem concerning the minimum modulus of a function analytic in the unit disk// Izv. Akad. Nauk SSSR. - 1989. - V.53, №4. - P. 833-850. (in Russian) English translated in Math USSR, Izv. - 1990. - V.35, №1. - P. 165-182.
4. Skaskiv O.B., Bodnar R.D. The speed of convergence of the Dirichlet series// Visn. L'viv. Univ., ser. mekh.-math. - 1998. - V.49. - P. 71-74. (in Ukrainian)
5. Sheremeta M.M. Entire Dirichlet series. - Kyiv: ISDO, 1993. - 168p. (in Ukrainian)

Ivan Franko National University of L'viv matstud@franko.lviv.ua
olzadorozhna@gmail.com

