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For the absolutely convergent in a half-plane Dirichlet series we establish upper estimates
without exceptional sets.

О. Б. Скаскив, О. Ю. Задорожна. Две открытых проблемы для абсолютно сходящихся
рядов Дирихле // Мат. Студiї. – 2012. – Т.38, №1. – C.106–112.

Для абсолютно сходящихся в полуплоскости рядов Дирихле устанавливаются оценки
сверху без исключительного множества.

1. Introduction. Let Λ = (λn)∞n=0 be a sequence of nonnegative numbers such that 0 =
λ0 < λn < λn+1 (1 ≤ n ↑ +∞) and Sa(Λ) be the class of absolutely convergent in the
complex half-plane Πa = {z = σ+ it ∈ C : σ < a, t ∈ R}, −∞ < a ≤ +∞, Dirichlet series of
the form

F (z) =
+∞∑
n=0

ane
zλn , z = σ + it. (1)

For F ∈ Sa(Λ) and σ < a we define by M(σ, F ) = sup{|F (σ + it)| : t ∈ R} the maximum
modulus of the function F and by µ(σ, F ) = max{|an| exp{σλn} : n ≥ 0} the maximal term.

The class of nonnegative continuous on [0; +∞) functions l(x) such that l(x) → +∞
(x → +∞) is denoted by L0, the subclass of functions l ∈ L0 such that l(x) ↗ +∞ as 0 ≤
x ↑ +∞ is denoted by L. The subclass of functions l ∈ L0 such that x

l(x)
↗ +∞ (x→ +∞)

is denoted by L1.
We introduce the following classes of Dirichlet series. For ψ ∈ L let Sψ(Λ) denote the

class of entire Dirichlet series (1) (i.e. F ∈ S(Λ)
def
= S+∞(Λ)) such that ]{n : an 6= 0} = +∞

and
|an| ≤ exp{−λnψ(λn)} (n ≥ n0). (2)

For ψ ∈ L1 let S0
ψ(Λ) denote the class of Dirichlet series F ∈ S0(Λ) such that

|an| ≤ exp
{ λn
ψ(λn)

}
, n ≥ n0. (3)

We remark that condition (2) is equivalent to the inequality lnµ(x, F ) ≤ xΦ(x) (x ∈
(x0,+∞)) and condition (3) is equivalent to lnµ(x, F ) ≤ Φ0(1/|x|) (x ∈ (x0, 0)), x0 < 0,
where Φ, Φ0 are some functions from the class L.
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In 2000 P. V. Filevych ([1]) proved the following theorem.

Theorem A ([1]). Let ψ ∈ L, condition

lim
n→∞

ln n

λnψ(λn)
= q < 1 (4)

holds and h ∈ L0. Then
(∀F ∈ Sψ(Λ))(∃x0)(∀x ≥ x0) : M(x, F ) < µ(x, F )h(lnµ(x, F ))

holds if and only if

(∀l1, l2 ∈ L)(∃n0)(∀n ≥ n0) : n < l1(n) + h
(
l2(n)ψ(λn)

)
. (5)

Using the ideas of the proof of Theorem A (Theorem 2 in [1]) one can prove the following
assertion.

Proposition 1. If ψ ∈ L, h ∈ L0 and conditions (4), (5) hold, then
(∀d ∈ L0)(∀F ∈ Sψ(Λ))(∃x0)(∀x ≥ x0) : M(x, F ) < µ(x, F )h(xd(x)).

Note that since the function lnµ(x, F ) is convex (i.e. lnµ(x, F )/x → +∞ (x → +∞)),
sufficiency in Theorem A follows from Proposition 1. Proposition 1 implies also that by
conditions (4), (5)

(∀F ∈ Sψ(Λ))(∃c > 0(∃x0)(∀x ≥ x0) : M(x, F ) < µ(x, F )h(cx).

Question 1. What is the exact value of the constant c in the previous inequality?

Conjecture 1. Sharp values are c = τ + ε, where ε > 0 is arbitrary,

τ = lim
t→+∞

h−1(n(t))

ψ(t)
, n(t) =

∑
λn≤t

1, (6)

and h−1 is the inverse function to function h ∈ L.
Consider first the following problem.

Problem 1. Set an analogue of Theorem A or Proposition 1 for the class S0(Λ).

So, we consider Dirichlet series F ∈ S0(Λ) of the form (1). Next, we assume that condi-
tions

q:= lim
n→+∞

lnn

λn
ψ(λn) < θ < +∞ (7)

and
sup{|an| : n ≥ 0} = +∞ (8)

hold.

Remark 1. It is easy to see from (7) that lnn = o(λn) (n→ +∞) and thus every Dirichlet
series of form (1) has the abscissa of absolutely convergence σa ≥ 0 as (3) and (7) hold. In
the case of sup{|an| : n ≥ 0} = +∞ from conditions (3) and (7) we obtain that σa = 0.

The following theorem shows that direct analogues of Theorem A for the class S0(Λ) can
not be obtained.
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Theorem 1. Let h ∈ L, Φ ∈ L be arbitrary functions. For all sequences Λ = (λn)∞n=0 such
that 0 = λ0 < λn < λn+1 (1 ≤ n ↑ +∞) there exist some function F ∈ S0(Λ) such that
condition (8) is satisfied and

M(x, F )

µ(x, F )h(lnµ(x, F ))
→ +∞ (x→ −0), (9)

(∃x0 < 0)(∀x ∈ (x0, 0)) : lnµ(x, F ) ≤ Φ(1/|x|). (10)

The following theorem is a certain analogue of Proposition 1 for the class S0(Λ).

Theorem 2. If ψ ∈ L1, h ∈ L0 and conditions (7), (5) hold, then

(∀d ∈ L0)(∀F ∈ S0
ψ(Λ))(∃x0 < 0)(∀x ∈ (x0, 0)) : M(x, F ) < µ(x, F )h

(
1

|x|
d

(
1

|x|

))
. (11)

Theorem 2 implies the following corollary.

Corollary 1. If ψ ∈ L1, h ∈ L0 and conditions (7), (5) hold, then
(∀F ∈ S0

ψ(Λ))(∃c > 0)(∃x0 < 0)(∀x ∈ [x0, 0)) : M(x, F ) < µ(x, F )h(c/|x|).

Question 2. What is the exact value of constant c in the previous inequality?

Conjecture 2. Sharp values are c = τ + ε, where ε > 0 is arbitrary and τ is defined by (6).

In the case of ψ(x) = xα, α ∈ (0, 1), h(x) = xβ, β > 0, Corollary 1 implies the following
statement.

Corollary 2. If F ∈ S0(Λ)), |an| ≤ exp{λ1−αn } (n ≥ n0) and lim
n→+∞

n1/(αβ)

λn
< +∞, then

(∃c > 0)(∃x0 < 0)(∀x ∈ [x0, 0)) : M(x, F ) < cµ(x, F )(1/|x|)β.

The degree of β in the last inequality, in general, cannot be improved. This follows from
the example of functions below

Example 1. Let λn = nq (n ≥ 0), β > 0, α ∈ (0, 1), α · β ≥ 1, p = 1− α and

F0(z) =
+∞∑
n=1

en
pq+znq

. (12)

It is obvious that F0 ∈ S0(Λ). For the series (12) we have

F0(x) = (1 + o(1))

√
2π

q
√

1− p
p

2−q
2q(1−p)µ(x, F0)|x|

pq−2
2q(1−p) (x→ −0) (13)

and
µ(x, F0) = (1 + (o(1)))e|x|

− p
1−p p

p
1−p (1−p) (x→ −0).

i) Now for fixed β > 0 and ε ∈ (0, 1) we choose α ∈ (0, 1), q > 0 such that α = 1
1+ε

, αβq = 1.

Then 2−pq
2(1−p)q = β − ε

2
, therefore from relation (13) we have

|x|β−εF0(x)/µ(x, F0)→ +∞ (x→ −0).
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ii) We can rewrite relation (13) in the form

F0(x) =

√
2π
(
1 + o(1)

)
q

(1− p)
pq−2−q

2q p
2−q−pq

2q µ(x, F0)
( lnµ(x, F0)

|x|

) 2−pq
2q
, (x→ −0). (14)

Now for fixed β > 0 and ε ∈ (0, β) we choose q = 2β+1
(2β+1−ε)β and α ∈ (0, 1) such that αβq = 1.

Then 2−pq
2q

= 1
q
· 2β+1

2β
− 1

2
= β − ε

2
and from relation (14) we obtain

F0(x)/µ(x, F0)
( lnµ(x, F0)

|x|

)−(β−ε)
→ +∞ (x→ −0).

2. Proof of the theorems.

Proof of Theorem 1. The idea of the proof is the same as the idea of the proof of Theorem 1
from [2] (see, also [3, 4]). Without loss of generality we assume that h(1) = 1, t+ lnh(t) < 0
(0 ≤ t ≤ 1/2). Let (En) be some sequence such that 1 = E1 ≤ En < En+1 and 1 ≤ n/En <
(n+ 1)/En+1 (n ≥ 1). For every n ≥ 1 there exists Ln such that Ln + lnh(Ln) = ln(n/En).
Then L1 = 1, Ln < Ln+1 (n ≥ 1), Ln → +∞ (n→ +∞).

Let cn = Ln−1 − Ln−2 (n ≥ 3) and (λ∗j) be a subsequence of the sequence (λn) such that

lnn = o(λ∗n) (n→ +∞),
+∞∑
j=3

cj
λ∗j

Φ−1(Lj−1) ≤ 1, (15)

where Φ−1 is the inverse function to the function Φ. We define

ln a∗n
def
= Ln−1 + λ∗n

+∞∑
j=n+1

cj
λ∗j

and an =

{
a∗j , if λn = λ∗j ,

0, if λn 6∈ {λ∗j : j ≥ 1}.
Then

F (z) =
+∞∑
n=0

ane
zλn =

+∞∑
n=1

a∗ne
zλ∗n .

Conditions (15) immediately yield that F ∈ S0(Λ). Indeed, from (15) by the definition of Ln
we obtain

ln a∗n ≤ lnn+ λ∗n

+∞∑
j=n+1

cj
λ∗j

= o(λ∗n) (n→ +∞).

Hence, for x < 0

a∗n exp{xλ∗n} = exp
{
−|x|

2
λ∗n

}
≤ exp{−2 lnn} (n ≥ n0),

where n0 = n0(x). Therefore F ∈ S0(Λ).
We need following lemma (see [5, p.19]).

Lemma 1. Let g ∈ S0(Λ) be a Dirichlet series of the form g(z) =
∑+∞

n=0 gne
zλn . If

κn
def
=

ln |gn−1| − ln |gn|
λn − λn−1

↗ 0 (1 ≤ n ↑ +∞),

then
(∀n ≥ 1)(∀x ∈ [κnκn+1]) : µ(x, g) = |gn|exλn .
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We note that for the function F

κn =
ln a∗n−1 − ln a∗n
λ∗n − λ∗n−1

= −
+∞∑
j=n

cj
λ∗j
↑ 0 (n→ +∞).

By Lemma 1 for all x ∈ [κn,κn+1]

µ(x, F ) = a∗n exp{xλ∗n}.
Hence, for all x ∈ [κn,κn+1] and n ≥ 2

lnµ(x, F ) = ln a∗n + xλ∗n ≤ Ln−1 + λ∗n

+∞∑
j=n+1

cj
λ∗j

+ κn+1λ
∗
n = Ln−1 (16)

and for m, 2 ≤ m ≤ n− 1,

ln a∗m + xλ∗m ≥ Lm−1 + λ∗m

+∞∑
j=m+1

cj
λ∗j

+ κnλ∗m ≥ Lm−1 ≥ 1.

From the previous inequality for all x ∈ [κn,κn+1] and n ≥ 2 we obtain

M(x, F ) = F (x) =
+∞∑
k=0

ake
zλk ≥

n∑
m=1

a∗me
zλ∗m ≥ n =

= Enh(Ln) exp{Ln} > Enµ(x, F )h(lnµ(x, F ))

and (9) follows. From (15) we have Ln−1 ≤ Φ(1/|κn|) (n ≥ 2). Therefore, from (16) for all
x ∈ [κn,κn+1] and n ≥ 2

lnµ(x, F ) ≤ Ln−1 ≤ Φ(1/|κn|) ≤ Φ(1/|x|).
This complete the proof of Theorem 1.

Proof of Theorem 2. Assume that condition (5) is fulfilled but there exist a function d ∈ L0

and a sequence xj ↑ 0 (j → +∞) such that

(∀j ≥ 1) : M(xj, F ) ≥ µ(xj, F )h
( 1

|xj|
d
( 1

|xj|

))
. (17)

For x < 0 we set n1(x) = min{n : ψ(λn) ≥ (1 + θ + δ) 1
|x|}, δ > 0. Then

n1(x)↗ +∞ (x ↑ 0) and ψ(λn1(x)−1) < (1 + θ + δ)
1

|x|
. (18)

Moreover, using (3) and definition of n1(x) we have

+∞∑
n=n1(x)

|an| exp{xλn} ≤
+∞∑

n=n1(x)

exp
{
− (θ + δ)

λn
ψ(λn)

}
=

+∞∫
λn1(x)−1

exp
{
− (θ + δ)

t

ψ(t)

}
dn(t).

Condition (7) implies ∫ +∞

t0

exp
{
− (θ + δ)

t

ψ(t)

}
dn(t) < +∞,
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hence by (18) we have
+∞∑

n=n1(x)

|an| exp{xλn} = o(1) (x ↑ 0) . (19)

The condition sup{|an| : n ≥ 0} = +∞ implies µ(x, F ) ↑ +∞ (x ↑ 0). Thus from (19) we
obtain

+∞∑
n=n1(x)

|an| exp{xλn} <
1

2
µ(x, F ) (x ∈ [σ1, 0)). (20)

Since for all fixed m and x < 0

m∑
n=0

|an| exp{xλn} ≤
m∑
n=0

|an|,

there exists a continuous function n2 = n2(x) such that n2(x)↗ +∞ (x ↑ 0) and

[n2(x)]∑
n=0

|an| exp{xλn} ≤
1

2
µ(x, F ) (x ∈ [σ2, 0)),

where [a] means the most integer such that [a] ≤ a. Let σ3 = max{σ1, σ2}. Then from the
previous inequality and (20) for x ∈ [σ3, 0) we have

M(x, F ) < µ(x, F ) +

n1(x)−1∑
n=[n2(x)]+1

|an| exp{xλn} ≤ (n1(x)− [n2(x)])µ(x, F ) ≤

≤ (n1(x)− n2(x) + 1)µ(x, F ).

Now choose a function l1 ∈ L such that

l1(n1(x)− 1) ≤ n2(x)− 2
(
x ∈ [σ3, 0)

)
.

Then n1(x) − n2(x) + 1 = n1(x) − 1 − (n2(x) − 2) ≤ n1(x) − 1 − l1(n1(x) − 1), and for all
function l2 ∈ L by condition (5)

M(x, F ) < (n1(x)− 1− l1(n1(x)− 1))µ(x, F ) ≤ h(l2(n1(x)− 1)ψ(λn1(x)−1))µ(x, F ) ≤
≤ h(l2(n1(x)− 1)(1 + θ + δ)/|x|)µ(x, F ),

(
x ∈ [σ4, 0)

)
. (21)

Without loss of generality, we may assume that d(1/|xj|) ↑ +∞ (j → +∞). Let n∗1(x) be
a continuous function such that n1(x) − 1 ≤ n∗1(x) ≤ n1(x) (x < 0). At last, we choose a
function l2 ∈ L such that for x = xj (j ≥ 1)

l2(n
∗
1(x))(1 + θ + δ) = d(1/|x|).

Then from inequality (21) for x = xj (j ≥ 1) we obtain

M(x, F ) < µ(x, F )h (d(1/|x|)/|x|) ,

and this contradicts (17).
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