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For the absolutely convergent in a half-plane Dirichlet series we establish upper estimates
without exceptional sets.
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151 abCOTIOTHO CXOAAIIAXCS B MOJIYILIOCKOCTH DPsAIoB IMprxiie yCTaHaBINBAIOTCS OIMEHKU
cBepxy 0e3 MCK/IIOYUTETLHOIO MHOXKECTBA.

1. Introduction. Let A = ()\,)22, be a sequence of nonnegative numbers such that 0 =
A < A < Apgr (1 < n 1 +00) and S*(A) be the class of absolutely convergent in the
complex half-plane I, = {z = o +it € C: 0 < a,t € R}, —00 < a < +00, Dirichlet series of
the form

“+o0o
F(z) = Zane”‘”, z =0 +it. (1)
n=0

For F' € S*(A) and 0 < a we define by M (o, F) = sup{|F (o +it)|: t € R} the maximum
modulus of the function F' and by u(o, F') = max{|a,|exp{oA,}: n > 0} the maximal term.
The class of nonnegative continuous on [0; +00) functions [(z) such that {(x) — 400
(x = 400) is denoted by Lo, the subclass of functions [ € Lg such that I(z) /7 400 as 0 <
x T +o0o is denoted by L. The subclass of functions | € Ly such that ﬁ S 4oo (x — +00)
is denoted by L;.
We introduce the following classes of Dirichlet series. For ¢» € L let Sy(A) denote the

class of entire Dirichlet series (1) (i.e. F' € S(A) et S*T(A)) such that §{n: a, # 0} = +o0
and

|an| < exp{=Au(Xn)} (1 = no). (2)
For ¢ € Ly let S}, (A) denote the class of Dirichlet series F' € S°(A) such that
la,| < exp{ A }, n > ny. (3)
¥ (An)

We remark that condition (2) is equivalent to the inequality Inpu(z, F) < z®(x) (x €
(29, +00)) and condition (3) is equivalent to Inpu(x, F') < ®y(1/|z|) (z € (20,0)), zo < 0,
where ®, &, are some functions from the class L.
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In 2000 P. V. Filevych ([1]) proved the following theorem.
Theorem A ([1]). Let ¢ € L, condition

holds and h € Ly. Then
(VF € Syp(A)(3xo) (Vo > o) M(z, F) < p(z, F)h(In p(z, F))
holds if and only if

(Vi1,l5 € L)(3ng)(Vn > ng): n < li(n) + h(la(n)v(X\,)). (5)

Using the ideas of the proof of Theorem A (Theorem 2 in [1]|) one can prove the following
assertion.

Proposition 1. Ifi¢ € L, h € Ly and conditions (4), (5) hold, then
(Vd € Lo)(VF € Sy(A))(3xo) (Ve > xg): M(z, F) < p(z, F)h(xzd(z)).

Note that since the function In p(z, F') is convex (i.e. Inu(x, F)/x — 400 (x — 400)),

sufficiency in Theorem A follows from Proposition 1. Proposition 1 implies also that by
conditions (4), (5)

(VF € Sy(A))(Fe > 0(Fzo) (Ve > z9): M(x, F) < p(x, F)h(cz).
Question 1. What is the exact value of the constant c in the previous inequality?

Conjecture 1. Sharp values are ¢ = 7 + ¢, where € > 0 is arbitrary,

_ = () _
r=dm n(t)-—»EE:Angtl, (6)

and h™' is the inverse function to function h € L.

Consider first the following problem.
Problem 1. Set an analogue of Theorem A or Proposition 1 for the class S°(A).

So, we consider Dirichlet series F' € S°(A) of the form (1). Next, we assume that condi-
tions

— 1
g= Tm —h(\) < 0 < +oo (7)
n—-+4oo )\n
and
sup{|a,|: n > 0} = +o00 (8)
hold.

Remark 1. It is easy to see from (7) that Inn = o(\,) (n — +00) and thus every Dirichlet
series of form (1) has the abscissa of absolutely convergence o, > 0 as (3) and (7) hold. In
the case of sup{|a,|: n > 0} = +o0 from conditions (3) and (7) we obtain that o, = 0.

The following theorem shows that direct analogues of Theorem A for the class S°(A) can
not be obtained.
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Theorem 1. Let h € L, ® € L be arbitrary functions. For all sequences A = (\,,)$%, such
that 0 = A\g < Ay < Auy1 (1 < n 1 400) there exist some function F € S°(A) such that

condition (8) is satisfied and

M(z, F) B
e, b, Py 70 070 )
(Fzo < 0)(Vx € (20,0)): Inp(z, F) < O(1/|x]). (10)

The following theorem is a certain analogue of Proposition 1 for the class S°(A).

Theorem 2. Ifi € Ly, h € Ly and conditions (7), (5) hold, then

(Vd € Lo)(VF € Sp(A) (3o < 0)(Va € (20,0)): M(x,F) < p(z, F)h <%d (ﬁ)) . (11)

Theorem 2 implies the following corollary.

Corollary 1. Ifi € Ly, h € Ly and conditions (7), (5) hold, then
(VF € Sp(A))(3e > 0)(3zo < 0)(Va € [20,0)): M(x, F) < p(z, F)h(c/|z]).

Question 2. What is the exact value of constant ¢ in the previous inequality?
Conjecture 2. Sharp values are ¢ = 7+ ¢, where € > 0 is arbitrary and 7 is defined by (6).
In the case of ¥(x) = 2%, a € (0,1), h(x) = 2°, 8> 0, Corollary 1 implies the following
statement.
)
Corollary 2. If F € S°(A)), |a,| < exp{\,"*} (n > ng) and lim

n—-+oo

< 400, then

n

(3e > 0)(3zo < 0)(Vz € [20,0)): M(z,F) < cu(z, F)(1/|z])°.

The degree of £ in the last inequality, in general, cannot be improved. This follows from
the example of functions below

Example 1. Let A\, =n? (n>0), >0, «a€(0,1),a-8>1, p=1—« and

—+00

Fy(z) =) em . (12)

n=1

It is obvious that Fy € S°(A). For the series (12) we have

Fo(r) = (1+ 0(1))@1?2‘313”#(% Fo)|[ 5651 (2 — —0) (13)

qv1—p
and e
p(z, Fy) = (1 + (o(1)))el* 77777078 (z — —0).

i) Now for fixed 5 > 0 and ¢ € (0,1) we choose o € (0,1), ¢ > 0 such that a = 1=, afq = 1.

Then 224 = 3 — £, therefore from relation (13) we have
2(1-p)g 2

|lz|P Fy(x) /u(z, Fy) = 400 (z — —0).
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i1) We can rewrite relation (13) in the form

2 (1 + 0(1) pg—2—q 2-g—pg In €, F 2_§q
i) = A g sy (M) g
Now for fixed > 0 and € € (0, 5) we choose ¢ = (262—E+—1€)6 and « € (0,1) such that afq = 1.
Then 2324 = L. 252—“ — 1 = B — £ and from relation (14) we obtain
q q B 2 2

1 EFo)\ —(B-9)
I TN, oo (2 0.

Fu(e) /e, Fu)

|z]

2. Proof of the theorems.

Proof of Theorem 1. The idea of the proof is the same as the idea of the proof of Theorem 1
from [2] (see, also [3, 4]). Without loss of generality we assume that h(1) = 1, t+1Inh(t) <0
(0 <t <1/2). Let (E,) be some sequence such that 1 = E) < E, < E,;y and 1 <n/E, <
(n+1)/En41 (n > 1). For every n > 1 there exists L,, such that L,, + Inh(L,) = In(n/E,).
Then Ly =1, L, < Lyyy (n>1), L, = 400 (n — +00).

Let ¢, = Ly—1 — Ly—2 (n > 3) and (A}) be a subsequence of the sequence (),) such that

Inn =o(X) (n— +oo), Zcﬂcp )<, (15)

where @1 is the inverse function to the function ®. We define

+o00
e ; 5ot A =A%
ladenl%—)\?*1 S and a,, = !
i ,1f Ang{/\j.gzl}.

j=n+1 "
Then
+oo “+o0o
F(z)= Z ape™ = Z al e,
n=0 n=1

Conditions (15) immediately yield that F' € S°(A). Indeed, from (15) by the definition of L,

we obtain
+o0

Ina, <lnn+ A S

=o(A\.) (n— 400).
, A
j=n+1"17J
Hence, for z < 0
ar exp{zA;} = exp{—%)\;}g exp{—2Inn} (n>ny),
where ng = ng(z). Therefore F' € S°(A).
We need following lemma (see |5, p.19]).

Lemma 1. Let g € S°(A) be a Dirichlet series of the form g(z) = Y% gne*. If

def I |gn—1| — 10 |gy|
%, =
)\n - >\n71

/0 (1<nt +oo),

then
(Vn > 1)(Vz € [astaa]): plz, g) = |gnle™.
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We note that for the function F

Ina; ; —Ina; &
y = —— == E - 10 — .
” Ay — At P 1o = oo

By Lemma 1 for all z € [5,, »,.1]
p(z, F) = a) exp{z\)}.
Hence, for all x € [5,, 56,11] and n > 2

+oo
p(e, F) =Ina, +aX, < Loy + A, Y i—f Yot N = Ly (16)
Jj=n+1 J
and form, 2<m <n-—1,
+oo
nal, + Ny > Lo+ Ay Y i—] b\ > Ly > 1.
j=m+1 "7

From the previous inequality for all x € [5¢,, 56,11] and n > 2 we obtain

400 n
M(z,F)=F(x) = Zakez’\k > Za;"nez’\:’l >n=
k=0 m=1

= E,h(Ly) exp{L,} > E,u(z, F)h(ln p(z, F))

and (9) follows. From (15) we have L,y < ®(1/|s,]) (n > 2). Therefore, from (16) for all
T € (2, #py1] and n > 2

n (e, F) < Loy < D(1/]3%,]) < ©(1/]a]).
This complete the proof of Theorem 1. ]
Proof of Theorem 2. Assume that condition (5) is fulfilled but there exist a function d € L,

and a sequence z; 10 (j — +00) such that

(452 1) Mz, F) > pley, F)h( ! a ! ). (17)

[ERNE]

For z < 0 we set ny(x) = min{n: ¥(\,) > (1 +6 + 5)%}, 9 > 0. Then

1
ni(x) /400 (x10) and Y( Ay (@)-1) < (1 +6+ 5)m (18)
Moreover, using (3) and definition of n,(z) we have
<= R A o t
an|expi{z,} < expy — (0 +0 - = / expq — (0 +0)——= pdn(t).
n:n%)' [exp{a,} Z() p{-0+975} A p{ =0 +8) 5 fan)
ny(z)—1

Condition (7) implies
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hence by (18) we have
+o00

> lanlexpfzAn} = o(1) (z10). (19)

n=ni(x)

The condition sup{|a,|: n > 0} = +oo implies p(z, F') T +oo (x 1 0). Thus from (19) we

obtain
—+oco

3 \an|exp{aj)\n}<%u(az,F) (z € [01,0). (20)

n=n1(x)

Since for all fixed m and z < 0
Z |an| exp{zA,} < Z [
n=0

there exists a continuous function ny = na(x) such that ny(z) A/ 400 (z 1 0) and

[n2 ()]
> lanlexp{z,} < u(x F) (z € [02,0)),

n=0

where [a] means the most integer such that [a] < a. Let 03 = max{oy,0,}. Then from the
previous inequality and (20) for x € [03,0) we have

ni(z)—1

M(z, F) <p(z, F)+ Y lan]exp{zi,} < (ni(z) — [na(2)))u(e, F) <
n=[n2(z)]+1

< (ni(z) = na(x) + Dp(z, F).
Now choose a function {; € L such that
Li(ni(z) — 1) <no(z) —2 (2 € [03,0)).

Then nq(z) —na(z) +1 = ny(z) — 1 — (na(x) — 2) < ny(z) — 1 —li(n1(z) — 1), and for all
function Iy € L by condition (5)

M(JI,F) < (nl( )_1_l1( ( )_1))M(x7F) ( ( (l’) ) ( ni(z)— 1)),[1,(1‘,17) S
< h(lo(ni(z) = 1)1+ 0 +6)/|z|)p(z, F), (z € [04,0)). (21)
Without loss of generality, we may assume that d(1/|z;|) T 400 (j — +00). Let nj(z) be

a continuous function such that ni(z) — 1 < ni(z) < ni(x) (x < 0). At last, we choose a
function [y € L such that for x = z; (j > 1)

lo(ni(x))(1 +6+40) = d(1/]z]).
Then from inequality (21) for z = z; (j > 1) we obtain
Mz, F) < p(x, F)h (d(1/]z])/]x])

and this contradicts (17). O
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