УДК 517.53

O. B. SKASKIV, O. YU. ZADOROZHNA

TWO OPEN PROBLEMS FOR ABSOLUTELY CONVERGENT DIRICHLET SERIES

O. B. Skaskiv, O. Yu. Zadorozhna. Two open problems for absolutely convergent Dirichlet series, Mat. Stud. **38** (2012), 106–112.

For the absolutely convergent in a half-plane Dirichlet series we establish upper estimates without exceptional sets.

О. Б. Скаскив, О. Ю. Задорожна. Две открытых проблемы для абсолютно сходящихся рядов Дирихле // Мат. Студії. – 2012. – Т.38, №1. – С.106–112.

Для абсолютно сходящихся в полуплоскости рядов Дирихле устанавливаются оценки сверху без исключительного множества.

1. Introduction. Let $\Lambda = (\lambda_n)_{n=0}^{\infty}$ be a sequence of nonnegative numbers such that $0 = \lambda_0 < \lambda_n < \lambda_{n+1}$ $(1 \le n \uparrow +\infty)$ and $S^a(\Lambda)$ be the class of absolutely convergent in the complex half-plane $\Pi_a = \{z = \sigma + it \in \mathbb{C} : \sigma < a, t \in \mathbb{R}\}, -\infty < a \le +\infty$, Dirichlet series of the form

$$F(z) = \sum_{n=0}^{+\infty} a_n e^{z\lambda_n}, \quad z = \sigma + it.$$
(1)

For $F \in S^a(\Lambda)$ and $\sigma < a$ we define by $M(\sigma, F) = \sup\{|F(\sigma + it)| : t \in \mathbb{R}\}$ the maximum modulus of the function F and by $\mu(\sigma, F) = \max\{|a_n| \exp\{\sigma\lambda_n\} : n \ge 0\}$ the maximal term.

The class of nonnegative continuous on $[0; +\infty)$ functions l(x) such that $l(x) \to +\infty$ $(x \to +\infty)$ is denoted by L_0 , the subclass of functions $l \in L_0$ such that $l(x) \nearrow +\infty$ as $0 \le x \uparrow +\infty$ is denoted by L. The subclass of functions $l \in L_0$ such that $\frac{x}{l(x)} \nearrow +\infty$ $(x \to +\infty)$ is denoted by L_1 .

We introduce the following classes of Dirichlet series. For $\psi \in L$ let $S_{\psi}(\Lambda)$ denote the class of entire Dirichlet series (1) (i.e. $F \in S(\Lambda) \stackrel{def}{=} S^{+\infty}(\Lambda)$) such that $\sharp\{n: a_n \neq 0\} = +\infty$ and

$$|a_n| \le \exp\{-\lambda_n \psi(\lambda_n)\} \quad (n \ge n_0).$$
⁽²⁾

For $\psi \in L_1$ let $S^0_{\psi}(\Lambda)$ denote the class of Dirichlet series $F \in S^0(\Lambda)$ such that

$$|a_n| \le \exp\left\{\frac{\lambda_n}{\psi(\lambda_n)}\right\}, \quad n \ge n_0.$$
 (3)

We remark that condition (2) is equivalent to the inequality $\ln \mu(x, F) \leq x \Phi(x)$ ($x \in (x_0, +\infty)$) and condition (3) is equivalent to $\ln \mu(x, F) \leq \Phi_0(1/|x|)$ ($x \in (x_0, 0)$), $x_0 < 0$, where Φ , Φ_0 are some functions from the class L.

2010 Mathematics Subject Classification: 30B50.

Keywords: analytic function, Dirichlet series, maximal term.

In 2000 P. V. Filevych ([1]) proved the following theorem.

Theorem A ([1]). Let $\psi \in L$, condition

$$\overline{\lim_{n \to \infty} \frac{\ln n}{\lambda_n \psi(\lambda_n)}} = q < 1 \tag{4}$$

holds and $h \in L_0$. Then

$$(\forall F \in S_{\psi}(\Lambda))(\exists x_0)(\forall x \ge x_0): M(x,F) < \mu(x,F)h(\ln \mu(x,F))$$

holds if and only if

$$(\forall l_1, l_2 \in L)(\exists n_0)(\forall n \ge n_0): n < l_1(n) + h(l_2(n)\psi(\lambda_n)).$$
(5)

Using the ideas of the proof of Theorem A (Theorem 2 in [1]) one can prove the following assertion.

Proposition 1. If $\psi \in L$, $h \in L_0$ and conditions (4), (5) hold, then $(\forall d \in L_0)(\forall F \in S_{\psi}(\Lambda))(\exists x_0)(\forall x \ge x_0): M(x,F) < \mu(x,F)h(xd(x)).$

Note that since the function $\ln \mu(x, F)$ is convex (i.e. $\ln \mu(x, F)/x \to +\infty \ (x \to +\infty)$), sufficiency in Theorem A follows from Proposition 1. Proposition 1 implies also that by conditions (4), (5)

$$(\forall F \in S_{\psi}(\Lambda))(\exists c > 0(\exists x_0)(\forall x \ge x_0): M(x, F) < \mu(x, F)h(cx).$$

Question 1. What is the exact value of the constant c in the previous inequality?

Conjecture 1. Sharp values are $c = \tau + \varepsilon$, where $\varepsilon > 0$ is arbitrary,

$$\tau = \lim_{t \to +\infty} \frac{h^{-1}(n(t))}{\psi(t)}, \quad n(t) = \sum_{\lambda_n \le t} 1, \tag{6}$$

and h^{-1} is the inverse function to function $h \in L$.

Consider first the following problem.

Problem 1. Set an analogue of Theorem A or Proposition 1 for the class $S^0(\Lambda)$.

So, we consider Dirichlet series $F \in S^0(\Lambda)$ of the form (1). Next, we assume that conditions

$$q := \lim_{n \to +\infty} \frac{\ln n}{\lambda_n} \psi(\lambda_n) < \theta < +\infty$$
(7)

and

$$\sup\{|a_n|: n \ge 0\} = +\infty \tag{8}$$

hold.

Remark 1. It is easy to see from (7) that $\ln n = o(\lambda_n)$ $(n \to +\infty)$ and thus every Dirichlet series of form (1) has the abscissa of absolutely convergence $\sigma_a \ge 0$ as (3) and (7) hold. In the case of $\sup\{|a_n|: n \ge 0\} = +\infty$ from conditions (3) and (7) we obtain that $\sigma_a = 0$.

The following theorem shows that direct analogues of Theorem A for the class $S^0(\Lambda)$ can not be obtained.

Theorem 1. Let $h \in L$, $\Phi \in L$ be arbitrary functions. For all sequences $\Lambda = (\lambda_n)_{n=0}^{\infty}$ such that $0 = \lambda_0 < \lambda_n < \lambda_{n+1}$ $(1 \le n \uparrow +\infty)$ there exist some function $F \in S^0(\Lambda)$ such that condition (8) is satisfied and

$$\frac{M(x,F)}{\mu(x,F)h(\ln\mu(x,F))} \to +\infty \quad (x \to -0), \tag{9}$$

$$(\exists x_0 < 0) (\forall x \in (x_0, 0)): \ln \mu(x, F) \le \Phi(1/|x|).$$
 (10)

The following theorem is a certain analogue of Proposition 1 for the class $S^0(\Lambda)$.

Theorem 2. If $\psi \in L_1$, $h \in L_0$ and conditions (7), (5) hold, then

$$(\forall d \in L_0)(\forall F \in S^0_{\psi}(\Lambda))(\exists x_0 < 0)(\forall x \in (x_0, 0)): \ M(x, F) < \mu(x, F)h\left(\frac{1}{|x|}d\left(\frac{1}{|x|}\right)\right). \ (11)$$

Theorem 2 implies the following corollary.

Corollary 1. If
$$\psi \in L_1$$
, $h \in L_0$ and conditions (7), (5) hold, then
 $(\forall F \in S^0_{\psi}(\Lambda))(\exists c > 0)(\exists x_0 < 0)(\forall x \in [x_0, 0)): M(x, F) < \mu(x, F)h(c/|x|).$

Question 2. What is the exact value of constant c in the previous inequality?

Conjecture 2. Sharp values are $c = \tau + \varepsilon$, where $\varepsilon > 0$ is arbitrary and τ is defined by (6).

In the case of $\psi(x) = x^{\alpha}$, $\alpha \in (0, 1)$, $h(x) = x^{\beta}$, $\beta > 0$, Corollary 1 implies the following statement.

Corollary 2. If
$$F \in S^0(\Lambda)$$
, $|a_n| \le \exp\{\lambda_n^{1-\alpha}\}$ $(n \ge n_0)$ and $\lim_{n \to +\infty} \frac{n^{1/(\alpha\beta)}}{\lambda_n} < +\infty$, then $(\exists c > 0)(\exists x_0 < 0)(\forall x \in [x_0, 0))$: $M(x, F) < c\mu(x, F)(1/|x|)^{\beta}$.

The degree of β in the last inequality, in general, cannot be improved. This follows from the example of functions below

Example 1. Let $\lambda_n = n^q \ (n \ge 0), \ \beta > 0, \ \alpha \in (0,1), \ \alpha \cdot \beta \ge 1, \ p = 1 - \alpha$ and

$$F_0(z) = \sum_{n=1}^{+\infty} e^{n^{pq} + zn^q}.$$
 (12)

It is obvious that $F_0 \in S^0(\Lambda)$. For the series (12) we have

$$F_0(x) = (1+o(1))\frac{\sqrt{2\pi}}{q\sqrt{1-p}}p^{\frac{2-q}{2q(1-p)}}\mu(x,F_0)|x|^{\frac{pq-2}{2q(1-p)}} (x \to -0)$$
(13)

and

$$\mu(x, F_0) = (1 + (o(1)))e^{|x|^{-\frac{p}{1-p}}p^{\frac{p}{1-p}}(1-p)} \ (x \to -0).$$

i) Now for fixed $\beta > 0$ and $\varepsilon \in (0, 1)$ we choose $\alpha \in (0, 1), q > 0$ such that $\alpha = \frac{1}{1+\varepsilon}, \ \alpha \beta q = 1$. Then $\frac{2-pq}{2(1-p)q} = \beta - \frac{\varepsilon}{2}$, therefore from relation (13) we have

$$|x|^{\beta-\varepsilon}F_0(x)/\mu(x,F_0) \to +\infty \quad (x \to -0).$$

ii) We can rewrite relation (13) in the form

$$F_0(x) = \frac{\sqrt{2\pi} \left(1 + o(1)\right)}{q} (1 - p)^{\frac{pq - 2 - q}{2q}} p^{\frac{2 - q - pq}{2q}} \mu(x, F_0) \left(\frac{\ln \mu(x, F_0)}{|x|}\right)^{\frac{2 - pq}{2q}}, \ (x \to -0).$$
(14)

Now for fixed $\beta > 0$ and $\varepsilon \in (0, \beta)$ we choose $q = \frac{2\beta+1}{(2\beta+1-\varepsilon)\beta}$ and $\alpha \in (0, 1)$ such that $\alpha\beta q = 1$. Then $\frac{2-pq}{2q} = \frac{1}{q} \cdot \frac{2\beta+1}{2\beta} - \frac{1}{2} = \beta - \frac{\varepsilon}{2}$ and from relation (14) we obtain

$$F_0(x)/\mu(x,F_0)\left(\frac{\ln\mu(x,F_0)}{|x|}\right)^{-(\beta-\varepsilon)} \to +\infty \quad (x\to-0).$$

2. Proof of the theorems.

Proof of Theorem 1. The idea of the proof is the same as the idea of the proof of Theorem 1 from [2] (see, also [3, 4]). Without loss of generality we assume that h(1) = 1, $t + \ln h(t) < 0$ $(0 \le t \le 1/2)$. Let (E_n) be some sequence such that $1 = E_1 \le E_n < E_{n+1}$ and $1 \le n/E_n < (n+1)/E_{n+1}$ $(n \ge 1)$. For every $n \ge 1$ there exists L_n such that $L_n + \ln h(L_n) = \ln(n/E_n)$. Then $L_1 = 1$, $L_n < L_{n+1}$ $(n \ge 1)$, $L_n \to +\infty$ $(n \to +\infty)$.

Let $c_n = L_{n-1} - L_{n-2}$ $(n \ge 3)$ and (λ_i^*) be a subsequence of the sequence (λ_n) such that

$$\ln n = o(\lambda_n^*) \quad (n \to +\infty), \qquad \sum_{j=3}^{+\infty} \frac{c_j}{\lambda_j^*} \Phi^{-1}(L_{j-1}) \le 1,$$
(15)

where Φ^{-1} is the inverse function to the function Φ . We define

$$\ln a_n^* \stackrel{def}{=} L_{n-1} + \lambda_n^* \sum_{j=n+1}^{+\infty} \frac{c_j}{\lambda_j^*} \quad \text{and} \ a_n = \begin{cases} a_j^*, \text{ if } \lambda_n = \lambda_j^*, \\ 0, \text{ if } \lambda_n \notin \{\lambda_j^* \colon j \ge 1\}. \end{cases}$$

Then

$$F(z) = \sum_{n=0}^{+\infty} a_n e^{z\lambda_n} = \sum_{n=1}^{+\infty} a_n^* e^{z\lambda_n^*}.$$

Conditions (15) immediately yield that $F \in S^0(\Lambda)$. Indeed, from (15) by the definition of L_n we obtain

$$\ln a_n^* \le \ln n + \lambda_n^* \sum_{j=n+1}^{+\infty} \frac{c_j}{\lambda_j^*} = o(\lambda_n^*) \quad (n \to +\infty).$$

Hence, for x < 0

$$a_n^* \exp\{x\lambda_n^*\} = \exp\{-\frac{|x|}{2}\lambda_n^*\} \le \exp\{-2\ln n\} \quad (n \ge n_0),$$

where $n_0 = n_0(x)$. Therefore $F \in S^0(\Lambda)$.

We need following lemma (see [5, p.19]).

Lemma 1. Let $g \in S^0(\Lambda)$ be a Dirichlet series of the form $g(z) = \sum_{n=0}^{+\infty} g_n e^{z\lambda_n}$. If

$$\varkappa_n \stackrel{def}{=} \frac{\ln|g_{n-1}| - \ln|g_n|}{\lambda_n - \lambda_{n-1}} \nearrow 0 \quad (1 \le n \uparrow +\infty),$$

then

$$(\forall n \ge 1)(\forall x \in [\varkappa_n \varkappa_{n+1}]): \quad \mu(x,g) = |g_n|e^{x\lambda_n}$$

We note that for the function F

$$\varkappa_n = \frac{\ln a_{n-1}^* - \ln a_n^*}{\lambda_n^* - \lambda_{n-1}^*} = -\sum_{j=n}^{+\infty} \frac{c_j}{\lambda_j^*} \uparrow 0 \quad (n \to +\infty).$$

By Lemma 1 for all $x \in [\varkappa_n, \varkappa_{n+1}]$

$$\mu(x,F) = a_n^* \exp\{x\lambda_n^*\}.$$

Hence, for all $x \in [\varkappa_n, \varkappa_{n+1}]$ and $n \ge 2$

$$\ln \mu(x,F) = \ln a_n^* + x\lambda_n^* \le L_{n-1} + \lambda_n^* \sum_{j=n+1}^{+\infty} \frac{c_j}{\lambda_j^*} + \varkappa_{n+1}\lambda_n^* = L_{n-1}$$
(16)

and for $m, 2 \le m \le n-1$,

$$\ln a_m^* + x\lambda_m^* \ge L_{m-1} + \lambda_m^* \sum_{j=m+1}^{+\infty} \frac{c_j}{\lambda_j^*} + \varkappa_n \lambda_m^* \ge L_{m-1} \ge 1$$

From the previous inequality for all $x \in [\varkappa_n, \varkappa_{n+1}]$ and $n \ge 2$ we obtain

$$M(x,F) = F(x) = \sum_{k=0}^{+\infty} a_k e^{z\lambda_k} \ge \sum_{m=1}^n a_m^* e^{z\lambda_m^*} \ge n =$$

= $E_n h(L_n) \exp\{L_n\} > E_n \mu(x,F) h(\ln \mu(x,F))$

and (9) follows. From (15) we have $L_{n-1} \leq \Phi(1/|\varkappa_n|)$ $(n \geq 2)$. Therefore, from (16) for all $x \in [\varkappa_n, \varkappa_{n+1}]$ and $n \geq 2$

$$\ln \mu(x, F) \le L_{n-1} \le \Phi(1/|\varkappa_n|) \le \Phi(1/|x|).$$

This complete the proof of Theorem 1.

Proof of Theorem 2. Assume that condition (5) is fulfilled but there exist a function $d \in L_0$ and a sequence $x_j \uparrow 0 \ (j \to +\infty)$ such that

$$(\forall j \ge 1): \quad M(x_j, F) \ge \mu(x_j, F) h\left(\frac{1}{|x_j|} d\left(\frac{1}{|x_j|}\right)\right). \tag{17}$$

For x < 0 we set $n_1(x) = \min\{n \colon \psi(\lambda_n) \ge (1 + \theta + \delta)\frac{1}{|x|}\}, \ \delta > 0$. Then

$$n_1(x) \nearrow +\infty \ (x \uparrow 0) \quad \text{and} \quad \psi(\lambda_{n_1(x)-1}) < (1+\theta+\delta)\frac{1}{|x|}.$$
 (18)

Moreover, using (3) and definition of $n_1(x)$ we have

$$\sum_{n=n_1(x)}^{+\infty} |a_n| \exp\{x\lambda_n\} \le \sum_{n=n_1(x)}^{+\infty} \exp\left\{-(\theta+\delta)\frac{\lambda_n}{\psi(\lambda_n)}\right\} = \int_{\lambda_{n_1(x)-1}}^{+\infty} \exp\left\{-(\theta+\delta)\frac{t}{\psi(t)}\right\} dn(t) \le \frac{1}{2} \int_{\lambda_{n_1(x)-1}}^{+\infty} \exp\left\{-(\theta+\delta)\frac{t}{\psi(t)}\right\} dn(t) = \frac{1}{2} \int_{\lambda_{n_1(x)-1}}^{+\infty} \exp\left\{-(\theta+\delta)\frac{t}{\psi(t)}\right\} dn(t) \le \frac{1}{2} \int_{\lambda_{n_1(x)-1}}^{+\infty} \exp\left\{-(\theta+\delta)\frac{t}{\psi(t)}\right\} dn(t) = \frac{1}{2} \int_{\lambda_{n_1(x)-1}}^{+\infty} \exp\left\{-(\theta+\delta)\frac{t}{\psi(t)}\right\} dt$$

Condition (7) implies

$$\int_{t_0}^{+\infty} \exp\Big\{-(\theta+\delta)\frac{t}{\psi(t)}\Big\}dn(t) < +\infty,$$

hence by (18) we have

$$\sum_{n=n_1(x)}^{+\infty} |a_n| \exp\{x\lambda_n\} = o(1) \ (x \uparrow 0).$$
(19)

The condition $\sup\{|a_n|: n \ge 0\} = +\infty$ implies $\mu(x, F) \uparrow +\infty$ $(x \uparrow 0)$. Thus from (19) we obtain

$$\sum_{n=n_1(x)}^{+\infty} |a_n| \exp\{x\lambda_n\} < \frac{1}{2}\mu(x,F) \quad (x \in [\sigma_1,0)).$$
(20)

Since for all fixed m and x < 0

$$\sum_{n=0}^{m} |a_n| \exp\{x\lambda_n\} \le \sum_{n=0}^{m} |a_n|,$$

there exists a continuous function $n_2 = n_2(x)$ such that $n_2(x) \nearrow +\infty (x \uparrow 0)$ and

$$\sum_{n=0}^{[n_2(x)]} |a_n| \exp\{x\lambda_n\} \le \frac{1}{2}\mu(x,F) \quad (x \in [\sigma_2, 0)),$$

where [a] means the most integer such that $[a] \leq a$. Let $\sigma_3 = \max\{\sigma_1, \sigma_2\}$. Then from the previous inequality and (20) for $x \in [\sigma_3, 0)$ we have

$$M(x,F) < \mu(x,F) + \sum_{\substack{n=[n_2(x)]+1 \\ \leq (n_1(x) - n_2(x) + 1)\mu(x,F)}}^{n_1(x)-1} |a_n| \exp\{x\lambda_n\} \le (n_1(x) - [n_2(x)])\mu(x,F) \le (n_1(x) - n_2(x) + 1)\mu(x,F).$$

Now choose a function $l_1 \in L$ such that

$$l_1(n_1(x) - 1) \le n_2(x) - 2 \quad (x \in [\sigma_3, 0)).$$

Then $n_1(x) - n_2(x) + 1 = n_1(x) - 1 - (n_2(x) - 2) \le n_1(x) - 1 - l_1(n_1(x) - 1)$, and for all function $l_2 \in L$ by condition (5)

$$M(x,F) < (n_1(x) - 1 - l_1(n_1(x) - 1))\mu(x,F) \le h(l_2(n_1(x) - 1)\psi(\lambda_{n_1(x)-1}))\mu(x,F) \le \\ \le h(l_2(n_1(x) - 1)(1 + \theta + \delta)/|x|)\mu(x,F), \quad (x \in [\sigma_4, 0)).$$
(21)

Without loss of generality, we may assume that $d(1/|x_j|) \uparrow +\infty$ $(j \to +\infty)$. Let $n_1^*(x)$ be a continuous function such that $n_1(x) - 1 \leq n_1^*(x) \leq n_1(x)$ (x < 0). At last, we choose a function $l_2 \in L$ such that for $x = x_j$ $(j \ge 1)$

$$l_2(n_1^*(x))(1+\theta+\delta) = d(1/|x|).$$

Then from inequality (21) for $x = x_j$ $(j \ge 1)$ we obtain

$$M(x, F) < \mu(x, F)h(d(1/|x|)/|x|),$$

and this contradicts (17).

REFERENCES

- Filevych P.V. To the Sheremeta theorem concerning relations between the maximal term and the maximum modulus of entire Dirichlet series// Mat. Stud. 2000. V.13, №2. P. 139–144.
- Salo T., Skasiv O. On the maximum modulus and maximal term absolute convergent Dirichlet series// Mat. Visn. Nauk. Tov. Im. Shevchenka. - 2007. - V.4. - P. 264-274. (in Ukrainian)
- Skaskiv O.B. On Wiman's theorem concerning the minimum modulus of a function analytic in the unit disk// Izv. Akad. Nauk SSSR. – 1989. – V.53, №4. – P. 833–850. (in Russian) English translated in Math USSR, Izv. – 1990. – V.35, №1. – P. 165–182.
- Skaskiv O.B., Bodnar R.D. The speed of convergence of the Dirichlet series// Visn. L'viv. Univ., ser. mekh.-math. - 1998. - V.49. - P. 71-74. (in Ukrainian)
- 5. Sheremeta M.M. Entire Dirichlet series. Kyiv: ISDO, 1993. 168p. (in Ukrainian)

Ivan Franko National University of L'viv matstud@franko.lviv.ua olzadorozhna@gmail.com

> Received 7.03.2012 Revised 22.06.2012