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It has been established sufficient conditions for the convergence of a multi-dimensional
stochastic process in the case of dependence of the regression function on the environment,
which is described by Markov switchings. It has been obtained the generator of a limiting
process, which is a stochastic diffusion process in the sense of the classical definition.

О. И. Кийковская, Я. М. Чабанюк. Сходимость стохастического процесcа с марковскими
переключениями // Мат. Студiї. – 2012. – Т.37, №2. – C.203–208.

Установлены достаточные условия сходимости многомерного стохастического процесса
в случае зависимости функции регрессии от внешней среды, которая описывается мар-
ковскими переключениями. Получен генератор предельного процесса, который является
стохастическим диффузионным процессом в классическом определении.

1. Introduction. There is a number of papers devoted to the stochastic differential equati-
ons, in which stability and convergence to a limiting diffusion processes is considered (see e.g.
[1, 2]). Most of proofs of stochastic processes conditions are based on central limit theorems
in function spaces.

The papers by V. S. Korolyuk, A. F. Turbin ([3]) and A. S. Swishchuk ([4]) are dedicated
to the ascertainment of stability conditions of stochastic diffusion processes with Markov
switching by the small parameter method.

By developing the small parameter method we establish sufficient conditions for the
convergence of stochastic differential equations solutions with Markov switching to the di-
ffusional processes by the construction of two-dimensional Markov process generators.

2. Problem statement and designation. Let C(u, x), u ∈ Rd, be a regression function.
The second variable x of the regression function describes the influence of external factors
that are described by a uniform ergodic Markov processes x(t), t ≥ 0 in a measurable phase
states space (X,X). The Markov process generator is defined by the equality:

Qϕ(x) = q(x)

∫
X

P (x, dy) [ϕ(y)− ϕ(x)] , (1)

in the Banach space B(X) of real bounded continuous functions ϕ(x), x ∈ X, with the norm

‖ϕ(x)‖ = sup
x∈X
|ϕ(x)|,
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where P (x,B), x ∈ X,B ∈ X is the stochastic kernel ([5]), q(x) = g−1(x), g(x) = Eθx, θx is
the sojourn time of the Markov process in the state x, and q(x) is the intensity of sojourn
time in the state x, x ∈ X.

The stationary distribution π(B), B ∈ X , of a Markov process x(t), t ≥ 0 is defined by
the equalities

π(dx)q(x) = qρ(dx), q =

∫
X

π(dx)q(x),

where ρ(B), B ∈ X, is the stationary distribution of the embedded Markov chain xn =
x(τn), n ≥ 0, where τn+1 = τn + θn+1, n ≥ 0, and

P(θn+1 ≤ t|xn = x) = Fx(t) = P(θx ≤ t).

For the generator Q of a Markov process x(t), t ≥ 0, the potential is determined by the
relation R0 = Π − (Π + Q)−1, where Πϕ(x) =

∫
X
π(dx)ϕ(x) is the projection on the zeros

subspace of the operator Q : NQ = {ϕ : Qϕ = 0} ([6]).
The continuous stochastic process by the regression functions C(u, x) in an ergodic

Markov environment is defined by the stochastic differential equation:

duε(t) = C(uε(t), x(t/ε))dt+ σ(uε(t))dw(t), uε(0) = u0, (2)

where u is a random evolution, x is a Markov process, w is a Wiener process that depends
on a time t, and ε is a small series parameter.

The average regression function is defined by the equality:

C(u) =

∫
X

π(dx)C(u, x).

2. The convergence of a stochastic process.

Theorem 1. Let the regression function C(u, ·) and the variation σ(u) satisfy the following
conditions

C1: C(u, ·) ∈ C2(Rd),
C2: σ(u) ∈ C2(Rd).
Then the solution uε(t), t ≥ 0, of equation (2) converges weakly to the limit diffusion

process ζ(t), t ≥ 0 as ε→ 0, which is defined by the generator

Lϕ(u) = C(u)ϕ′(u) + (1/2)σ2(u)ϕ′′(u), ϕ(u) ∈ C4(Rd),

where σ2(u):=σ∗(u)σ(u).

Corollary 1. The diffusion process ζ(t), t ≥ 0, is the solution of the stochastic differential
equation

dζ(t) = C(ζ(t))dt+ σ(ζ(t))dw(t).

Theorem 2. Let the regression function C(u, ·) and the variation σ(u) satisfy the following
conditions

C1: C(u, ·) ∈ C2(Rd),
C2∗ : σ(u, ·) ∈ C2(Rd).
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Then the solution uε(t), t ≥ 0, of the equation

duε(t) = C(uε(t), x(t/ε))dt+ σ(uε(t), x(t))dw(t), uε(0) = u0, (3)

converges weakly to the limit diffusion process ζ(t), t ≥ 0 as ε→ 0, which is defined by the
generator

Lϕ(u) = C(u)ϕ′(u) + (1/2)σ2(u)ϕ′′(u), ϕ(u) ∈ C4(Rd),

where

σ2(u):=

∫
X

π(dx)σ2(u, x), σ2(u, x) = σ∗(u, x)σ(u, x). (4)

First, to prove Theorem 1 we construct the stochastic process generator and exactly its
asymptotic representation.

3. Properties of the procedure generator.

Lemma 1 ([7]). The coupled Markov process generator

uε(t), xεt = x(t/ε), t ≥ 0, (5)

on the Banach space B(Rd, X) of real-valued functions ϕ(u, x) ∈ C2,0(Rd, X) is represented
as follows

Lεϕε(u, x) = ε−1Qϕ(u, x) + L(x)ϕ(u, x),

where

L(x)ϕ(u, x) = [C(x) + S]ϕ(u, x), (6)

C(x)ϕ(u, x) = C(u, x)ϕ′(u, x),
Sϕ(u, x) = (1/2)σ2(u)ϕ′′(u, x).

Proof. The Markov process generator on a test-functions ϕ(u, x) is defined by the equality

Lε
tϕ(u, x) = lim

∆→0

1

∆
[E[ϕ(uε(t+ ∆), xεt+∆)|uε(t) = u, xεt = x]− ϕ(u, x)]. (7)

Let’s find the conditional expectation

E[ϕ(uε(t+ ∆), xεt+∆)|uε(t) = u, xεt = x] = Eϕ(uε(t+ ∆), xεt+∆) = Eϕ(u+ ∆u, xεt+∆).

First step is to integrate stochastic differential equation (2)

uε(t) = uε(0) +

∫ t

0

C(uε(s), xεs)ds+

∫ t

0

σ2(uε(s))dw(s).

Now calculate ∆u as difference uε(t+ ∆) and uε(t)

∆u =

∫ t+∆

t

C(uε(s), xεs)ds+

∫ t+∆

t

σε(uε(s))dw(s).

Let us denote µ∆:=
∫ t+∆

t
σ(uε(s))dw(s).
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We obtain the following form of the conditional expectation

E[ϕ(uε(t+ ∆), xεt+∆)|uε(t) = u, xεt = x] =

= Eϕ(uε(t+ ∆), xεt+∆) =

= E[ϕ(u+ ∆u, x)]I(θx > ε−1∆) + E[ϕ(u+ ∆u, xεt+∆)]I(θx ≤ ε−1∆) + o(∆).

The distribution function on the sojorn time θx has the exponential distribution, i.e. there
are representations

I(θx > ε−1∆) = e−ε
−1q(x)∆ = 1− ε−1q(x)∆ + o(∆),

and
I(θx ≤ ε−1∆) = 1− e−ε−1q(x)∆ = ε−1q(x)∆ + o(∆).

Hence, we have
Eϕ(uε(t+ ∆), xεt+∆) =

= E[ϕ(u+ ∆u, x)] + ε−1q(x)
{
E[ϕ(u+ ∆u, xεt+∆)]− E[ϕ(u+ ∆u, x)]

}
∆ + o(∆).

Now rewrite ε−1q(x)E[ϕ(u+ ∆u, xεt+∆)]∆ using the Taylor formula

ε−1q(x)E[ϕ(u+ ∆u, xεt+∆)]∆ = ε−1q(x)E[ϕ(u, xεt+∆) + ϕ′(u, xεt+∆)∆u+ o(∆)]∆ =

= ε−1q(x)E[ϕ(u, xεt+∆)]∆ + ε−1q(x)E[ϕ′(u, xεt+∆)∆u]∆ + o(∆).

According to the Wiener process conditional expectation properties, which can be written
as follows [8, Chapter 1, §3 p.42] Eµ∆ = 0, Eµ∆µ∆ =

∫ t+∆

t
σ2(u(s))ds = σ2(u(t))∆, we

obtain
ε−1q(x)E[ϕ′(u, xεt+∆)∆u]∆ =

= ε−1q(x)E[ϕ′(u, xεt+∆)C(uε(t), xεt)∆]∆ + ε−1q(x)E[ϕ′(u, xεt+∆)µ∆]∆ =

= ε−1q(x)E[ϕ′(u, xεt+∆)C(uε(t), xεt)]∆
2 + ε−1q(x)Eµ∆E[ϕ′(u, xεt+∆)]∆ = o(∆).

Thus

Eϕ(uε(t+∆), xεt+∆) = E[ϕ(u+∆u, x)]+ε−1q(x)
{
E[ϕ(u, xεt+∆)]−E[ϕ(u+∆u, x)]

}
∆+o(∆).

Using the Taylor formula, we have

Eϕ(uε(t+ ∆), xεt+∆) =

= E[ϕ(u+ ∆u, x)] + ε−1q(x)
{
E[ϕ(u, xεt+∆)]− E[ϕ(u, x) + ϕ′(u, x)∆]

}
∆ + o(∆).

Substituting xεt+∆ for y we obtain the Markov process generator (1). So

Eϕ(uε(t+ ∆), xεt+∆) = E[ϕ(u+ C(uε(t), xεt)∆ + µ∆, x)] + ε−1Qϕ(u, x)∆ + o(∆).

Let us add and subtract the expression ϕ(u + C(uε(t), xεt)∆, x) in the expectation and
for convenience substitute u+ C(uε(t), xεt)∆, for z. So we get

Eϕ(uε(t+ ∆), xεt+∆) = E[ϕ(z + µ∆, x)− ϕ(z, x) + ϕ(z, x)] + ε−1Qϕ(u, x)∆ + o(∆) =

E[ϕ′(z, x)µ∆ + (1/2)ϕ′′(z, x)µ2
∆ + o(µ2

∆) + ϕ(z, x)] + ε−1Qϕ(u, x)∆ + o(∆).
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By using conditional expectation Wiener process properties, the expectation takes the
form

Eϕ(uε(t+ ∆), xεt+∆) = E[ϕ(z, x) + o(µ2
∆)] + (1/2)σ2(u)ϕ′′(z, x)∆ + ε−1Qϕ(u, x)∆ + o(∆).

From (7) we obtain the coupled Markov process generator

Lε
tϕ(u, x) = lim

∆→0

1

∆

{
E[ϕ(u+ C(uε(t), xεt)∆, x)− ϕ(u, x) + o(µ2

∆)] + (1/2)σ2(u)ϕ′′(z, x)∆+

+ε−1Qϕ(u, x)∆ + o(∆)
}

=

= ε−1Qϕ(u, x) + C(u, x)ϕ′(u, x) + (1/2)σ2(u)ϕ′′(u, x).

So we obtain the statement of Lemma 1.

Lemma 2. The limit generator Lε on the test-functions ϕε(u, x) = ϕ(u) + εϕ1(u, x), ϕ(u) ∈
C4(Rd) is represented as

Lεϕε(u, x) = Lϕ(u) + εθ(x)ϕ(u), (8)

where ‖θ(x)ϕ(u)‖ < M,M <∞.

Proof. The generator Lε
t on the test-functions ϕε(u, x) = ϕ(u) + εϕ1(u, x) is presentet as

Lεϕε(u, x) = ε−1Qϕε(u, x) + L(x)ϕε(u, x) =

= ε−1Qϕ(u) +Qϕ1(u, x) + L(x)ϕ(u) + εL(x)ϕ1(u, x).

From ϕ(u) ∈ NQ it follows that Qϕ(u) = 0.
Considering the singular perturbation problem solution we obtain the equality

Qϕ1(u, x) + L(x)ϕ(u) = Lϕ(u), (9)

where limit generator Lϕ(u) takes the form ([5, p.143])

Lϕ(u) =

∫
X

π(dx)L(x)ϕ(u). (10)

Using (9) we have Qϕ1(u, x) = [L − L(x)]ϕ(u). Let’s denote L̃(x) = L(x) − L. Thus
ϕ1(u, x) = R0L̃(x)ϕ(u).

Let us consider the expression L(x)ϕ1(u, x). Using the structure of ϕ1(u, x) we have

L(x)ϕ1(u, x) = L(x)R0L̃(x)ϕ(u) = θ(x)ϕ(u),

where θ(x) = L(x)R0L̃(x).
From the properties of function ϕ(u) and conditions C1 and C2 we obtain, that

‖θ(x)ϕ(u)‖ < M, M <∞.
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4. Proof of the theorems. Using formula (8) and the pattern theorem [5, Chapter 6, p.197]
we get the statement of Theorem 1.

The proof of Theorem 2 is realized according to the proof scheme of Theorem 1 taking
into account the expression for the generator L(x) in formula (6)

L(x)ϕ(u, x) = [C(x) + S(x]ϕ(u, x),

where S(x) = (1/2)σ2(u, x)ϕ′′(u, x), and the representation of the limit generator L in (10)

Lϕ(u) = C(x)ϕ′(u) + (1/2)σ2(u)ϕ′′(u),

where σ2(u) is defined by equality (4).

Conclusion. These results can be applied to solve problems of large deviation and asympto-
tically small diffusion ([8]), using a small series parameter.
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