
Математичнi Студiї. Т.37, №2 Matematychni Studii. V.37, No.2

УДК 515.12

L. I. Karchevska, T. M. Radul

TRIVIAL Iτ -FIBRATIONS OF THE MULTIPLICATION MAPS FOR

MONADS O, OH AND OS

L. I. Karchevska, T. M. Radul. Trivial Iτ -fibrations of the multiplication maps for monads O,
OH and OS, Mat. Stud. 37 (2012), 193–202.

In this paper we investigate when the multiplication maps of monads O, OH and OS are
trivial fibrations with fibers homeomorphic to a Tychonov cube or a Hilbert cube.

Л. И. Карчевская, Т. Н. Радул. Тривиальные Iτ -расслоения отображений умножения для
монад O, OH и OS // Мат. Студiї. – 2012. – Т.37, №2. – C.193–202.

В данной статье мы рассматриваем условия, при которых отображения умножения
для монад O, OH и OS являются тривиальными расслоениями со слоями гомеоморфными
тихоновскому или гильбертовому кубу.

1. Introduction. Geometric properties of various functors have been studied extensively
over the past few decades ([8]). Researches concern studying the question of how functors
affect properties of spaces and maps between them as well as the investigation of properties
of maps involved in the structures generated by functors (i.e. monad multiplication maps,
structural mappings of algebras).

This research concerns the monads O, OH, OS generated by functors of order-preserving,
positively homogeneous and semiadditive functionals respectively and is to answer the
question when multiplication maps for these monads are trivial fibrations with fibers
homeomorphic to the Tychonov cube.

Results of M. Zarichnyi on the inclusion hyperspaces monad (see [18]), for instance, show
that for a continuum X the multiplication map µGX for this monad is homeomorphic to the
projection map prG(X) : Iτ × G(X) → G(X) iff X is openly generated and χ-homogeneous.
In this research we obtain a similar condition for multiplication maps of monads O and OH
(X is not necessarily connected in our case).

2. Definitions and facts. In this section we shall recall some necessary definitions and
results from infinite-dimensional topology as well as define the objects of our investigation —
monads of order-preserving and positively homogeneous functionals and name some of their
properties.

Since in what follows we will deal with endofunctors in the category Comp, we assume
all spaces to be compact Hausdorff (briefly compacta) and maps to be continuous, unless
explicitly stated otherwise or the property should be established.

By w(X) we denote the weight of a space X, and by χ(x,X) the character at a point
x ∈ X. We call X χ-homogeneous if for every x, y ∈ X we have χ(x,X) = χ(y,X).
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We say that a subspace X of a space Y is a retract of Y if there exists a mapping
r : Y → X with r|X = idX . A space X is called an absolute retract (briefly an AR), if for
every embedding i : X ↪→ Y the subspace i(X) is a retract of Y .

Recall that a τ -system, where τ is any cardinal number, is a continuous inverse system
consisting of compacta of weight ≤ τ and epimorphisms over a τ -complete indexing set.
As usual, ω stands for the countable cardinal number. A compactum X is called openly
generated, if it can be represented as the limit of some ω-system with open bonding map-
pings ([15]).

For a compact Hausdorff space X by C(X) we denote the Banach space of all continuous
real-valued functions on X with the sup-norm ‖ϕ‖ = sup{|ϕ(x)| | x ∈ X}. By cX , where
c ∈ R, we denote the constant function: cX(x) = c for all x ∈ X.

Let ν : C(X)→ R be a functional. We say that ν is:

• normed, if ν(1X) = 1;
• weakly additive, if for any φ ∈ C(X) and c ∈ R we have ν(φ+ cX) = ν(φ) + c;
• order-preserving, whenever for any ϕ, ψ ∈ C(X) such that ϕ(x) ≤ ψ(x) for all x ∈ X

(i.e. ϕ ≤ ψ) the inequality ν(ϕ) ≤ ν(ψ) holds;
• positively homogeneous, if for any ϕ ∈ C(X) and any real t ≥ 0 we have ν(tϕ) = tν(ϕ);
• semiadditive, if ν(ϕ+ ψ) ≤ ν(ϕ) + ν(ψ).

Now for any space X denote VX =
∏

ϕ∈C(X)[minϕ,maxϕ]. For any mapping f : X → Y

let V(f) be a mapping such that V(f)(ν)(ϕ) = ν(ϕ ◦ f) for any ν ∈ VX, ϕ ∈ C(Y ). Defined
in that way, V forms a covariant functor in the category Comp.

Let X ∈ Comp be an arbitrary space. We define the following sets of functionals:

1. OX is the set of functionals satisfying 1)–3) (order-preserving functionals),
2. OHX is the set of all functionals on C(X) which satisfy properties 1)–4) (positively

homogenous functionals),
3. OSX is the set of functionals on C(X) which satisfy properties 1)–5) (semiadditive

functionals),
4. PX stands for the set of all functionals on C(X) which are normed (‖µ‖ = 1), positive

(µ(ϕ) ≥ 0 for all ϕ ≥ 0) and linear.

Let F stand for one of O,OH,OS,P. The space F(X) is considered as a subspace of V(X).
For any function f : X → Y , the map F(f) : FX → FY is the restriction of V(f) on the
corresponding space FX. Then F forms a covariant functor in Comp, which is a subfunctor
of V.

Let us note that the defined functors form a chain

P ⊂ OS ⊂ OH ⊂ O ⊂ V.

A monad in the category Comp is a triple F = (F, η, µ), where η : IdComp → F and
µ : F2 → F are natural transformations such that the following equalities hold: 1) µX◦ηFX =
µX ◦ F(ηX) = idFX ; 2) µX ◦ µF(X) = µX ◦ F(µX) ([5]).

The abovementioned functors generate monads. If F is one of V, O, OH, OS, P, the identity
and multiplication maps are defined as follows. The natural transformation η : IdComp → F
is given by ηX(x)(ϕ) = ϕ(x) for any x ∈ X and ϕ ∈ C(X), and the natural transformation
µ : F2 → F given by µX(ν)(ϕ) = ν(πϕ), where πϕ : FX → R, πϕ(λ) = λ(ϕ).
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Results on categorical and topological properties of functors O, OH and OS can be found
in [4], [9], [11]–[13].

Recall that a map f : X → Y is called soft if for any space Z and its closed subset A,
any functions ψ : A → X, Ψ: Z → Y with Ψ|A = f ◦ ψ there’s mapping G : Z → X such
that G|A = ψ and Ψ = f ◦G.

In particular, we shall use the following statements about functors O and OH:

Theorem 1 ([9], [11]). Functors O and OH preserve open maps.

Theorem 2 ([9], [11], [13]). For a functor F ∈ {O,OH} and a compact space X the following
conditions are equivalent:

• X is openly generated;

• the space FX is an AR;

• the multiplication map µFX : F2X → FX is soft.

Theorem 3 ([12]). Let f : X → Y be open. O(f) has a degenerate fiber if and only if f has.

Theorem 4 ([12]). An openly generated compactum X is χ-homogeneous if and only if OX
is.

We also note that the analogous to theorems 3 and 4 statements hold in the case of
functor OH and their proofs are just the same as in case of O.

Finally, let us recall the definition of an Iτ -fibration and the criteria of an Iτ -fibration.
A map f : X → Y is called an Iτ -fibration if it is homeomorphic to the projection map

pY : Iτ × Y → Y . Note that a map with all fibers homeomorphic to Iτ is not necessarily an
Iτ -fibration (see [2], [17] for counterexamples).

The following theorem is the well-known Torunczyk-West criterion of a Q-fibration (by Q
we denote the Hilbert cube [0, 1]ω):

Theorem 5 ([17]). A soft mapping f : X → Y of metric AR-compacta is homeomorphic to
Q-fibration if and only if it satisfies the condition of disjoint approximation: for any ε > 0
there are mappings g1, g2 : X → X such that g1(X) ∩ g2(X) = ∅, d(gi, idX) < ε, f ◦ gi = f .

In the case of noncompact spaces X and Y we shall use the following fact.

Theorem 6 ([6]). Let f : X → Y be a soft and perfect map between locally compact ANR-
spaces. If for any cover U ∈ cov(X) there exist U -close to idX mappings f1, f2 : X → X such
that f1(X) ∩ f2(X) = ∅ and f ◦ fi = f , i = 1, 2, then f is a trivial Q-fibration.

In the case of an arbitrary τ , the criterion of an Iτ -fibration contains a generalization of
the condition of the Torunczyk-West theorem.

Let us give necessary definitions first.
A map p : X → Y is said to have the property of disjoint τ -approximation if for any

family F of functionally open covers of X with |F| < τ there are two maps f1, f2 : X → X
such that

• f1(X) ∩ f2(X) = ∅,

• p ◦ fi = fi for every i ∈ {1, 2},
• each map fi, i ∈ {1, 2}, is U -near to the identity map idX for each open cover U ∈ F .



196 L. I. KARCHEVSKA, T. M. RADUL

Theorem 7 ([2]). A soft mapping f : X → Y between AR-compacta with fibers of weight
≤ τ is a trivial Iτ -fibration if and only if f satisfies the condition of disjoint λ-approximation
for any λ < τ .

The following statement provides a sufficient condition under which a map satisfies the
condition of disjoint λ-approximation.

Lemma 1 ([14]). Let f : X → Y be the limit projection p1 of a λ-spectrum {Xα, pα,A}
such that the index set A has the least element 1, all limit projections allow two disjoint
sections. Then f satisfies the condition of disjoint λ-approximation.

3. Trivial fibrations of mappings µO and µOH. For the sake of convenience, we consider
the cases τ = ω and τ > ω separately. Let us first consider the case of the countable τ .

Define a metric on the space OX and its subfunctors for any metrizable compactum X
in the following way. In the case when X is metrizable, the space C(X) of all continuous
functions on X is separable. Choose any dense in C(X) countable set {ϕi}i∈N. We can
assume that the function 0X is not in {ϕi}i∈N. Put dO(λ, ν) =

∑∞
i=1

|λ(ϕi)−ν(ϕi)|
‖ϕi‖·2i . Then dO

is an admissible metric on OX. Indeed, take any Bε(ν) = {λ ∈ OX|dO(λ, ν) < ε}. Choose
a number n0 ∈ N such that the inequality

∑∞
i=n0

1
2i−1 <

ε
2
holds. Then O

(
ν;ϕ1, ..., ϕn0 ;

ε
2
·(

1∑∞
i=n0

1

‖ϕi‖·2i

))
⊂ Bε. Hence, dO generates a topology on OX.

Before coming to the proof of the theorem let us recall how to extend a positively
homogeneous functional on a single function (see [4]).

Suppose that a set A ⊂ C(X) is such that 0X ∈ A, tϕ + cX ∈ A for any ϕ ∈ A,
t > 0 and c ∈ R. Consider any positively homogeneous functional ν on A and some function
ψ ∈ C(X)\A. If we want to extend ν to the space A ∪ {tψ + cX |c ∈ R, t > 0}, the only
possible values ν(ψ) are in the segment [sup{ν(ϕ)|ϕ ∈ A,ϕ ≤ ψ}, inf{ν(ϕ)|ϕ ∈ A,ϕ ≥ ψ}].

Theorem 8. The mapping µOHX is a Q-fibration for any metrizable space X which contains
more than one point.

Proof. Assume X is metrizable and not one-point. To prove our theorem, we shall use the
Torunczyk-West criterion (Theorem 5). It means that for any ε > 0 we have to find two
mappings g1, g2 : OH2X → OH2X which are both ε-close to idOH2(X) and preserve the fibers
of µOHX.

Choose some dense in C(OH(X)) countable set D = {Φi}i∈N. Since OHX is connected
and not one-point, we may assume that for any function Φi ∈ D the sets Φ−1

i (max Φi) and
Φ−1
i (min Φi) are infinite and disjoint. For the rest of the proof we let the metric dOH2X to be

as in the beginning of the section and use the dense subset D of C(OHX).
Fix any ε > 0. There exists some n0 ∈ N such that

∞∑
i=n0

|Λ(Φi)−M(Φi)|
‖Φi‖ · 2i

<
ε

2

for any Λ,M ∈ OH2X.
Now for any function Φi, i = 1, n0 pick two points si, vi ∈ OH(X) such that Φi(si) =

max{Φi(x)|x ∈ OH(X)} and Φi(vi) = min{Φi(x)|x ∈ OH(X)}. Denote S = {si|i =
1, n0}, I = {vi|i = 1, n0}. Due to the choice of the set D we may assume that the sets S
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and I are disjoint, and also that inf OH(X) /∈ S, supOH(X) /∈ I. Here for any set A ⊂ OHX
by inf A we denote the functional given by the condition inf A(ϕ) = {inf ν(ϕ)|ν ∈ A} for
ϕ ∈ C(X). The functional inf A is defined similarly.

Choose a function Φ0 : OH(X) → R such that Φ0(I ∪ inf OH(X)) ⊂ {1} and Φ0(S ∪
supOH(X)) ⊂ {0}. Denote Y = {πϕ | ϕ ∈ C(X)} ∪ {tΦ̃i + cOH(X)| c ∈ R, t > 0, i = 1, n0}.
Take any functional M ∈ OH2(X). Let M0 = {Λ ∈ OH2(X) | Λ|Y = M |Y , Λ(Φ0) = 0}, and
M1 = {Λ ∈ OH2(X) | Λ|Y = M |Y , Λ(Φ0) = 1}.

Due to the choice of function Φ0, we have that M0 6= ∅, M1 6= ∅. Indeed, for the
first thing note that Φ0 /∈ Y . Secondly, if we take any function Φ ∈ Y such that Φ ≥ tΦ0

(Φ ≤ tΦ0), where t > 0, then the inequality M(Φ) ≥ t (M(Φ) ≤ 0 respectively) holds.
Hence, if we define a functional Λ: Y ∪ {tΦ0 + cOHX |t > 0, c ∈ R} → R by the conditions
Λ|Y = M |Y , Λ(tΦ0+cOHX) = ta+c, where a ∈ [0, 1], then we obtain a positively homogeneous
functional which can be extended to the whole space C(OHX).

Let us show that the mappings G0, G1 : OH2X → expOH2X defined by G0(M) = M0,
G1(M) = M1 are continuous. Indeed, take any sequence {Mn}n∈N ⊂ OH2X that converges to
someM ∈ OH2(X). We may assume that there exists A = limn→∞(Mn)0. We must show that
the equality M0 = A holds. The inclusion A ⊂M0 is obvious. Let us show that the inclusion
M0 ⊂ A takes place. Assuming the opposite, we get that there are Λ ∈M0 and some function
Φ ∈ C(OH(X)) such that Λ(Φ) = a > supA(Φ) or Λ(Φ) = a < inf A(Φ) (this follows
from the fact that all (Mn)0 are OH-convex, i.e. for any V ∈ OH2X with inf(Mn)0 ≤ V ≤
sup(Mn)0 we have V ∈ (Mn)0, hence so is their limit. Suppose the first case holds. Note that,
since µOHX is open, the sequence {µOHX

−1(µOHX(Mn))} converges to µOHX
−1(µOHX(M)).

Hence, sup{Mn(πϕ) | πϕ ≤ Φ, ϕ ∈ C(X)} and inf{Mn(πϕ) | πϕ ≥ Φ, ϕ ∈ C(X)} must
converge to sup{M(πϕ) | πϕ ≤ Φ, ϕ ∈ C(X)} and inf{M(πϕ) | πϕ ≥ Φ, ϕ ∈ C(X)}
respectively. Indeed, consider any convergent subsequence {sup{Mnk(πϕ) | πϕ ≤ Φ, ϕ ∈
C(X)}}k∈N of {sup{Mn(πϕ) | πϕ ≤ Φ, ϕ ∈ C(X)}}n∈N (at least one such a subsequence
must exist!). Suppose that its limit s1 is not equal to s = sup{M(πϕ) | πϕ ≤ Φ, ϕ ∈
C(X)}, say s1 > s. Now note that the set µOHX

−1(ν) for any ν ∈ OH(X) consists of
all possible extensions of the functional Θ: D → R, where D = {πϕ | ϕ ∈ C(X)} and
Θ(πϕ) = ν(ϕ). Since any such an extension must be order-preserving, its possible values
on Φ are in the closed interval [sup{Θ(πϕ) | πϕ ≤ Φ, ϕ ∈ C(X)}, inf{Θ(πϕ) | πϕ ≥
Φ, ϕ ∈ C(X)}]. So, in our case we get that the possible value of any functional from
limk→∞ µOHX

−1(µOHX(Mnk)) (again we may assume the sequence converges) cannot be less
than s1 on Φ, whereas functionals from µOHX

−1(µOHX(M)) are allowed to take any value
up to s on Φ, hence {µOHX

−1(µOHX(Mnk))}k∈N doesn’t converge to µOHX
−1(µOHX(M)),

a contradiction with the openness of µOHX. The same reasonings could be applied in the
case of the sequence {inf{Mn(πϕ) | πϕ ≥ Φ, ϕ ∈ C(X)}}n∈N.

Take now any δ > 0. There exists k0 ∈ N such that | sup{Mn(πϕ)| πϕ ≤ Φ, ϕ ∈ C(X)} −
sup{M(πϕ)| πϕ ≤ Φ, ϕ ∈ C(X)}| < δ, | inf{Mn(πϕ)|πϕ ≥ Φ, ϕ ∈ C(X)} − inf{M(πϕ)|πϕ ≥
Φ, ϕ ∈ C(X)}| < δ and |M(Φi) −Mn(Φi)| < δ, i = 1, n0 for all n ≥ k0. Hence, we get the
inequalities | sup{Mn(Ψ) | Ψ ∈ Y ∪{Φ0}, Ψ ≤ Φ}−sup{M(Ψ) | Ψ ∈ Y ∪{Φ0}, Ψ ≤ Φ}| < δ
and | inf{Mn(Ψ) | Ψ ∈ Y ∪ {Φ0}, Ψ ≥ Φ} − inf{M(Ψ) | Ψ ∈ Y ∪ {Φ0}, Ψ ≥ Φ}| < δ for
sufficiently large numbers n. This means that whatever is a = M(Φ) ∈ [sup{M(Ψ) | Ψ ∈
Y ∪ {Φ0}, Ψ ≤ Φ}, inf{M(Ψ) | Ψ ∈ Y ∪ {Φ0}, Ψ ≥ Φ}], we can choose k0 ∈ N such that
[sup{M(Ψ) | Ψ ∈ Y ∪{Φ0}, Ψ ≤ Φ}, inf{M(Ψ) | Ψ ∈ Y ∪{Φ0}, Ψ ≥ Φ}]∩(a− a−supA(Φ)

2
, a+

a−supA(Φ)
2

) 6= ∅ for all n ≥ k0, which means that we can obtain functionals from (Mn)− with
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values at Φ strictly larger than supA(Φ), a contradiction. Hence, the mappings G0, G1 are
continuous.

Take now any M ∈ OH2(X) and Λ ∈M0. We have that

dOH(M,Λ) =
∞∑
i=1

|M(Φi)− Λ(Φi)|
‖Φi‖ · 2i

<

n0∑
i=1

|M(Φi)− Λ(Φi)|
‖Φi‖ · 2i

+
ε

2
≤

≤
n0∑
i=1

|M(Φ̃i)− Λ(Φ̃i)|+ 4ε1

‖Φi‖ · 2i
+
ε

2
=

n0∑
i=1

4ε1

‖Φi‖ · 2i
+
ε

2
= ε.

Define now gi : OH
2(X) → OH2(X), i = 0, 1 by the formula gi(M) = supGi(M). Func-

tions g0, g1 defined that way are continuous, ε-close to the map idOH2(X), with disjoint images
and preserve the fibers of µOHX.

Now we shall consider the case of τ > ω.

Theorem 9. Let w(X) = τ > ω. The map µOHX : OH2X → OHX is an Iτ -fibration if and
only if X is openly generated and χ-homogeneous.

Proof. Sufficiency. Suppose that the space X is openly generated and χ-homogeneous,
w(X) = τ > ω. We shall use theorem 6 in combination with lemma 1 to prove this part of the
statement. Suppose that ω ≤ λ < τ . Represent X as the limit of a λ-system S = {Xα, pα,A},
where A has the minimal element 1 and X1 is a singleton. Also we can suppose that all pα
are open. Consider Yα = OH2(Xα) ×OH(Xα) OH(X), and by qα denote the diagonal product
qα = (OH2(pα), µOHX). We obtained a λ-system {Yα, qα,A} with the first limit projection q1

homeomorphic to µOHX. Note also that every qα can be assumed to be soft since so is µOHX.
We shall prove that each qα allows two disjoint sections.

First let us show that the fibers of each qα are infinite. Indeed, consider any (Λ, ν)
∈ Yα. Then µOHXα(Λ) = OH(pα)(ν). Denote D = {πψ | ψ ∈ C(X)} ∪ {Φ ◦ OH(pα) |Φ ∈
C(OH(Xα))}. All mappings qα, being soft ([9]), are surjective. Hence, there is at least one
functional Θ: C(OH(X)) → R such that qα(Θ) = (Λ, ν). Then Θ(πψ) = ν(ψ), Θ(Φ ◦
OH(pα)) = Λ(Φ).

Our present aim is to find a function Φ0 ∈ C(OH(X)) such that there would exist at
least two distinct extensions of Θ|D to the space D ∪ {tΦ0 + cOH(X) |t > 0, c ∈ R}.

Since X is χ-homogeneous, openly generated (this yields χ(X) = w(X) by Lemma 4 of
[12]) and w(Xα) < w(X), the mapping pα does not have one-point fibers, and so does not
OH(pα) (Theorem 3). Let us make the following denotations: S = {supOH(pα)−1(λ) | λ ∈
OH(Xα)}, I = {inf OH(pα)−1(λ) | λ ∈ OH(Xα)}. Both these sets are closed due to openness
of OH(pα) and operations sup, inf : expOHX → OHX being continuous. Now define Φ0 ∈
C(OHX) to be a function with Φ0(S) = 0 and Φ0(I) = 1. Suppose that Φ ◦ OH(pα) ≤ Φ0.
Since Φ◦OH(pα) is constant on the fibers of OH(pα), this implies Φ◦OH(pα) ≤ 0, hence Φ ≤ 0
and Θ(Φ◦OH(pα)) = Λ(Φ) ≤ 0. Similarly, Θ(Φ◦OH(pα)) ≥ 1 for any Φ◦OH(pα) ≥ Φ0. Now
pick any ψ ∈ C(X) with πψ ≤ Φ0. We have that ν ∈ OH(pα)−1(λ) for some λ ∈ OH(Xα).
Then Θ(πψ) = πψ(ν) ≤ πψ(sup(OH(pα)−1(λ)) ≤ Φ0(sup(OH(pα)−1(λ))) = 0. Similarly,
Θ(πψ) ≥ 1 for all πψ ≥ Φ0. Also, it is obvious that Φ0 does not belong toD, hence, if we define
Θ(tΦ0+cOH(X)) = ta+c, where a ∈ [0, 1], we shall obtain a positively homogeneous functional
on D ∪ {tΦ0 + cOH(X) |t > 0, c ∈ R}, which we can extend to the whole space C(OHX)
according to [4]. Therefore, we have shown that Θ has at least two extensions from D,
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hence the fibers of qα are not singletons. So, for any (Λ, ν) ∈ Yα define g1 = inf q−1
α (Λ, ν),

g2 = sup q−1
α (Λ, ν). The mappings g1, g2 are continuous disjoint sections for qα.

Hence, the mapping µOHX satisfies the condition of Lemma 1, and by Theorem 6 it is
an Iτ -fibration.
Necessity. Since µOHX is an Iτ -fibration, we have that it is soft. The softness of µOHX implies
that X is openly generated (Theorem 2). The space X must be χ-homogeneous, since, if we
suppose the opposite, we get that OH2X is not χ-homogeneous (theorem 4), hence, there
exist some Λ ∈ OH2X with χ(Λ,OH2X) = τ

′
< τ , and therefore µOHX

−1(µOHX(Λ)) is not
homeomorphic to Iτ .

Note. Proofs of Theorems 8 and 9 are the same in the case of monad O. Note that the
proof of Theorem 8 (a part of it which concerns the choice of the function Φ0) could be
a bit easier for monad O. Indeed, the function Φ0 : OX → R such that Φ0(inf OX) = 2α
and Φ0(supOX) = −2α, where α = max{sup Φi − inf Φi| i = 1, n0} would do. Also, for
any M ∈ O2X we take M0 = {Λ ∈ O2(X) | Λ|Y = M |Y , Λ(Φ0) = −α}, and M1 = {Λ ∈
O2X | Λ|Y = M |Y , Λ(Φ0) = α}, where Y = {πϕ | ϕ ∈ C(X)}∪ {Φi + cOX | c ∈ R, i = 1, n0}.
But in case of OH argumentation in the proof of Theorem 8 with Φ0, M0 and M1 as just
described fails.

4. Q-fibrations of the mapping µOSX. In this section we shall discuss when the multi-
plication map µOSX restricted to a certain subset of OS2X is a trivial Q-fibration.

Let us first remark that the functor OS is isomorphic to the composition of the functors
cc and P. The isomorphism is generated by the map hX : ccPX → OSX given by

hX(A)(ϕ) = sup{ν(ϕ)|ν ∈ A}, ϕ ∈ C(X), A ∈ ccPX.

It was shown in [3] that hX is a homeomorphism for any X, and, moreover, a natural
transformation between OS and ccP.

Some properties of the functor cc were studied in [1]. For any convex compact X, ccX
is defined to be the set of all nonempty closed convex subsets of X, ccX is considered as
the subspace of expX. For any affine mapping f : X → Y the function cc(f) is given by
cc(f)(A) = f(A) where A ∈ ccX. If X is a metric space with a metric d, an admissible
metric on expX, and hence on ccX, can be given by the Hausdorff metric

dH(A,C) = inf{ε > 0|A ⊂ Bε(C) and C ⊂ Bε(A)}.

Here Bε(A) = {x ∈ X|d(x,A) < ε}. Also, by B(x, δ) we denote the δ-ball around x.
Consider the following technical lemma.

Lemma 2. For any metric convex compactum X the union map ∪ : cc2X → ccX is open.

Proof. We shall prove the continuity of the inverse mapping. Take any A ∈ ccX and any
sequence An in ccX which converges to A. For any δ > 0 there exists n0 ∈ N such that for
any n ≥ n0 we have dH(A,An) < δ.

Take any A ∈ cc2(X) with the property ∪A = A. For any n ≥ n0 define An to be the
convex hull of the set consisting of elements of the form C ′ = An ∩ cl(Bδ(C)), where C ∈ A.
Then the distance between A and An is less than 2δ.

Hence, ∪−1(An) converges to ∪−1(A).

Proposition 1. The map µOSX is homeomorphic to the composition ∪ccb.
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Hence, openness of the map µOSX depends on the barycentrical openness of the
compactum OSX ∼= ccPX.

Denote
K = b−1(E(OSX)) ⊂ ccP(OSX),

where E(OSX) stands for the set of extremal points of OSX and b : P(OSX)→ OSX is the
barycenter mapping (see [7] for more details). Put M = ccP(OSX) \ K.

Theorem 10. For any metric compactum X such that the barycenter map b is open, the
map µOSX|M is a trivial Q-fibration.

Proof. First note that µOSX
−1(µOSX(M)) = M . Since b and ∪ are open and the functor cc

preserves open maps, the map µOS is soft, hence the restriction µOSX|M is also soft. Openness
of b gives us the fact that b|P(OSX)\K is a trivial Q-fibration. To see that µOSX|M is a trivial
Q-fibration, we have to verify the conditions of Theorem 6.

Evidently, M and µOSX(M) are both locally compact ANRs as open subsets of compact
absolute retracts ccP(OSX) and OSX respectively. The map µOS|M is perfect as a restriction
of a perfect map to a full preimage.

At last, we have to check the disjoint approximation property. Take any cover U ∈
cov(M). Without loss of generality, we may assume U to be locally finite. Then there exists
a continuous mapping ε : X → (0, 1] such that the cover {B(A, ε(A))}A∈M is inscribed into
U . Further, represent M as a countable union

M =
∞⋃
n=1

Fn, where Fn =
{
A ∈ ccP(OSX)|d(A,K) ≥ 1

n

}
.

For any element ν ∈ M there exists nν ∈ N such that whenever A ∈ ccP(OSX) contains ν
then it belongs to Fnν . Put εν = minA∈Fnν ε(A). Since b|P(OSX)\K is a trivial Q-fibration ([7]),
we can choose functions

f1, f2 : P(OSX) \ K → OSX \ E(OSX)

which preserve the fibers of b|P(OSX)\K, have disjoint images and are V-close to the identity
map, where V = {B(ν, εν)}ν∈P(OSX)\K. We can extend f1 and f2 to the whole P(OSX) by
setting f1(ν) = f2(ν) = ν for any ν ∈ K.

We define functions F1, F2 : M → M the following way. For any A ∈ M we put Fi(A) =
convfi(A).

We have that dH(A,Fi(A)) ≤ maxν∈A εν = maxµ∈A minB∈Fnν ε(B) ≤ ε(A). Hence, both
mappings are U -close to the identity mapping. Also, they preserve the fibers of µOSX|M due
to the choice of f1 and f2.

Finally, F1(A) 6= F2(B) for any convex sets A and B. This can be seen as follows. Due to
the choice of f1 and f2, the sets f1(A) and f2(B) can intersect only by elements from K. Since
f1 and f2 preserve the fibers of b, there exists an extremal point a ∈ convf1(A)\ (f2(B)∪K).
On the other hand, the assumption convf1(A) = convf2(B) yields the inclusion a ∈ f2(B),
a contradiction. Hence, F1(M) ∩F2(M) = ∅.

Denote by D the two-point discrete space. Since OSD is affinely homeomorphic to 2-
dimensional simplex, the barycenter map b : P (OSD)→ OSD is open (we say shortly that
the convex compactum OSD is barycentrically open). Hence we obtain:
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Corollary. The map µOSD|M is a trivial Q-fibration.

The general situation depends on the barycentrical openess of the compactum OSX ∼=
ccPX. It is well known that compacta of the form PX are barycentrically open. Does this
yield barycentric openness of ccP (X)? In fact, there is a more general

Question. Let K be a convex compactum such that its barycenter mapping bK : P (K)→ K
is open. Is the barycenter map bccK : P (ccK)→ ccK open?

From results of [10] it follows that this question is equivalent to the following one: given
openness of the map ϕK : K ×K → K defined by

ϕK(x, y) =
1

2
x+

1

2
y,

is the respective map ϕccK open?
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