O. V. Labachuk

MATRIX ALGEBRAIC SETS OF INFINITE DIMENSION

O. V. Labachuk. Matrix algebraic sets of infinite dimension, Mat. Stud. 37 (2012), 179-183. Using multiplicative polynomials on algebras it is proved an analogue of Hilbert Nullstellensatz for the case of an infinite-dimensional real Banach space.
О. В. Лабачук. Алгебраические множества матрии, бесконечной размерности // Мат.
Студії. - 2012. - Т.37, №2. - С.179-183.

С использованием мультипликативных полиномов на алгебрах, в статье доказан аналог теоремы Гильберта о нулях для бесконечномерного вещественного банахового пространства.

1. Notations and preliminaries. Let X be a Banach space over the field \mathbb{K} of real \mathbb{R} or complex \mathbb{C} numbers. A map $P: X \rightarrow \mathbb{K}$ is an n-homogeneous polynomial if there is an n-linear form $B_{P}: X^{n} \rightarrow \mathbb{K}$ such that $P(x)=B_{P}(x, \ldots x)$ for every $x \in X$. A finite sum of homogeneous polynomials is just a polynomial. We denote by $\mathcal{P}(X)$ the algebra of all continuous polynomials on X and let $\mathcal{P}_{0}(X)$ be a subalgebra of $\mathcal{P}(X)$. We use the notation $\left(P_{1}, \ldots, P_{n}\right)$ for the ideal in $\mathcal{P}_{0}(X)$ generated by polynomials P_{1}, \ldots, P_{n} in $\mathcal{P}_{0}(X)$.

Let A be a Banach algebra over \mathbb{K}. A polynomial $D: A \rightarrow \mathbb{K}$ is said to be multiplicative if $D(a b)=D(a) D(b)$ for all $a, b \in A$. It is known ([1]) that every multiplicative polynomials must be homogeneous.

For an ideal $J \in \mathcal{P}_{0}(X), V(J)$ denotes the zero of J, that is, the common set of zeros of all polynomials in J. Let G be a subset of X. Then $I(G)$ denotes the hull of G, that is, a set of all polynomials in $\mathcal{P}_{0}(X)$ vanishing on G. The set $\operatorname{Rad} J$ is called the radical of J if $P^{k} \in J$ for some positive integer k implies $P \in \operatorname{Rad} J . P$ is called a radical polynomial if it can be represented as a product of mutually different irreducible polynomials.

A subalgebra A_{0} of an algebra A is called factorial if for every $f \in A_{0}$ the equality $f=f_{1} f_{2}$ implies that $f_{1} \in A_{0}$ and $f_{2} \in A_{0}$.

This paper is devoted to applications of multiplicative polynomials to polynomial algebras of infinite many variables. In particular, we prove a version of Hilbert Nullstellensatz for real polynomials on a real Banach space.
2. Admissible matrix algebras. Let us denote by $\mathfrak{F}\left(\mathbb{K}^{n}\right)$ the free algebra with n generators $\left\{\mathfrak{a}_{1}, \mathfrak{a}_{2}, \ldots, \mathfrak{a}_{n}\right\}$. The map

$$
S_{n}: \sum c_{k_{1} k_{2} \cdots k_{m}} \mathfrak{a}_{k_{1}} \mathfrak{a}_{k_{2}} \cdots \mathfrak{a}_{k_{m}} \mapsto \sum c_{k_{1} k_{2} \cdots k_{m}} t_{k_{1}} t_{k_{2}} \cdots t_{k_{m}}
$$

2010 Mathematics Subject Classification: 46G20, 46J20.
The work is supported by Grant F35/531-2011 DFFD of Ukraine.
Keywords: multiplicative polynomials, infinite-dimensional real Banach space.
where $\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in \mathbb{K}^{n}, c_{k_{1} k_{2} \cdots k_{m}} \in \mathbb{K}$, is a homomorphism from $\mathfrak{F}\left(\mathbb{K}^{n}\right)=K\left[t_{1}, t_{2}, \ldots, t_{n}\right]$ onto the algebra of polynomial $\mathcal{P}\left(\mathbb{K}^{n}\right)$ of n variables over \mathbb{K}.

For a given polynomial $P \in \mathcal{P}\left(\mathbb{K}^{n}\right)$ we consider the following set of elements in $\mathfrak{F}\left(\mathbb{K}^{n}\right)$,

$$
S_{n}^{-1}(P):=\left\{F \in \mathfrak{F}\left(\mathbb{K}^{n}\right): S_{n}(F)=P\right\}
$$

Let us denote by $M_{k}(\mathbb{K})$ the algebra of $k \times k$ square matrices over \mathbb{K}. We say that a finite sequence of matrices $\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ is admissible for $\mathcal{P}\left(\mathbb{K}^{n}\right)$ if for every $P \in \mathcal{P}\left(\mathbb{K}^{n}\right)$

$$
\operatorname{det}\left(F_{1}\left(A_{1}, A_{2}, \ldots, A_{n}\right)\right)=\operatorname{det}\left(F_{2}\left(A_{1}, A_{2}, \ldots, A_{n}\right)\right)
$$

for any two elements $F_{1}, F_{2} \in S_{n}^{-1}(P)$. We say that a subalgebra $\mathcal{A} \subset M_{k}(\mathbb{K})$ is admissible for $\mathcal{P}\left(\mathbb{K}^{n}\right)$ if every sequence $\left(A_{1}, A_{2}, \ldots, A_{n}\right) \subset M_{k}(\mathbb{K})$ is admissible for $\mathcal{P}\left(\mathbb{K}^{n}\right)$. It is clear that if $\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ is admissible for $\mathcal{P}\left(\mathbb{K}^{n}\right)$, then the algebra generated by $\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ is admissible for $\mathcal{P}\left(\mathbb{K}^{n}\right)$.

Let X be a linear space over \mathbb{K} with a Hamel basis $\left(e_{\alpha}\right), \alpha \in \mathfrak{A}$ for some index set \mathfrak{A}. Then $\mathcal{A} \subset M_{k}(\mathbb{K})$ is admissible for $\mathcal{P}(X)$ if for every finite sequence $\left\{e_{\alpha_{1}}, e_{\alpha_{2}}, \ldots, e_{\alpha_{n}}\right\}, \mathcal{A}$ is admissible for $\mathcal{P}\left(V_{n}\right)$, where V_{n} is the linear span of $\left\{e_{\alpha_{1}}, e_{\alpha_{2}}, \ldots, e_{\alpha_{n}}\right\}$.

Let w be an element in the algebraic tensor product $\mathcal{A} \otimes X$. Then w can be represented as a finite sum $\sum A_{j} \otimes x_{j}$, where $A_{j} \in \mathcal{A}$ and $x_{j} \in X$. Since every vector in X have a finite sum representation by bases vectors $\left(e_{\alpha}\right), w$ can be uniquely represented as a finite sum

$$
w=\sum A_{\alpha_{j}} \otimes e_{\alpha_{j}}
$$

Thus, if \mathcal{A} is admissible for $\mathcal{P}(X)$, then for every $w \in \mathcal{A} \otimes X$ there is a well defined map $\widehat{w}: \mathcal{P}(X) \rightarrow \mathbb{K}$ acting by

$$
\widehat{w}(P)=\operatorname{det}\left(P\left(\sum A_{\alpha_{j}} \otimes e_{\alpha_{j}}\right)\right) .
$$

Let X be a Banach space over \mathbb{K} and $\mathcal{P}_{c}(X) \subset \mathcal{P}(X)$ be the space of all continuous polynomials. The next proposition follows from properties of determinants.
Theorem 1. If $\mathcal{A} \subset M_{k}(\mathbb{K})$ is admissible for $\mathcal{P}(X)$, then for every $w \in \mathcal{A} \otimes X, \widehat{w}$ is a multiplicative k-homogeneous polynomial on $\mathcal{P}(X)$.

Note that in general case the map $\widehat{w}(P)$ may be discontinuous.
For a given matrix $A \in M_{n}(\mathbb{K})$ we denote by \mathcal{A}_{A} the commutative subalgebra in $M_{n}(\mathbb{K})$ generated by A.

Theorem 2. Let $A \in M_{n}(\mathbb{K})$. Then for every $w \in \mathcal{A}_{A} \otimes X$ the map $\widehat{w}: \mathcal{P}_{c}(X) \rightarrow \mathbb{C}$ is continuous.

Proof. According to [3] for a given $w \in \mathcal{A}_{A} \otimes X$ there exists a functional calculus of w in the algebra $\mathcal{P}_{c}(X)$ such that for every $P \in \mathcal{P}_{c}(X)$ we can define $P(w) \in M_{n}(\mathbb{K})$ and the $\operatorname{map} P \mapsto P(w)$ is a continuous homomorphism from $\mathcal{P}_{c}(X)$ to $M_{n}(\mathbb{K})$. It is easy to see that $\widehat{w}(P)=\operatorname{det}(P(w))$ and \widehat{w} is continuous.

Let \mathcal{A}_{0} be a subalgebra of $M_{k}(\mathbb{K})$ such that for any $A \in \mathcal{A}_{0}, C A C^{-1}$ is an uptriangular matrix for some fixed C. Then \mathcal{A}_{0} is $\mathcal{P}(X)$ admissible for every linear space X and

$$
\begin{gather*}
\widehat{w}(P)=\operatorname{det}\left(P\left(\sum_{j=1}^{n} A_{\alpha_{j}} \otimes e_{\alpha_{j}}\right)\right)= \\
=P\left(\sum_{j=1}^{n} \lambda_{\alpha_{j}}^{1} e_{\alpha_{j}}\right) P\left(\sum_{j=1}^{n} \lambda_{\alpha_{j}}^{2} e_{\alpha_{j}}\right) \cdots P\left(\sum_{j=1}^{n} \lambda_{\alpha_{j}}^{k} e_{\alpha_{j}}\right), \tag{1}
\end{gather*}
$$

where $\lambda_{\alpha_{j}}^{1}, \lambda_{\alpha_{j}}^{2}, \ldots, \lambda_{\alpha_{j}}^{k}$ are the diagonal elements of $C A_{\alpha_{j}} C^{-1}$.
3. Matrix zeros of real polynomials. Due to the Hilbert Nullstellensatz Theorem the radical of each ideal in $\mathcal{P}\left(\mathbb{C}^{n}\right)$ is completely defined by its zero. Moreover this result is still true for finitely generated ideals in an infinite-dimensional complex Banach space. For example, in $[2,4]$ the following theorem is proved.

Theorem 3. Let $\mathcal{P}_{0}(X)$ be a factorial subalgebra in $\mathcal{P}(X)$ which contains all liner functionals and $J=\left(P_{1}, \ldots, P_{n}\right)$. Then $\operatorname{Rad} J \subset \mathcal{P}_{0}(X)$ and

$$
I[V(J)]=\operatorname{Rad} J \text { in } \mathcal{P}_{0}(X)
$$

We can prove an analogue to the previous theorem for the case of an infinite-dimensional real Banach space.

Here we need a correspondence between a complex number $a+b i$ and the matrix $A=$ $\left(\begin{array}{cc}b & a \\ -a & b\end{array}\right) \in M_{2}(\mathbb{R})$, namely, $|a+b i|=\operatorname{det} A$ and $a+b i, a-b i$ are the eigenvalues of matrix A. Let us denote the set of matrices of such a form by \mathcal{A}_{0}. Obviously, the algebra \mathcal{A}_{0} is $\mathcal{P}(X)$ admissible because all elements of \mathcal{A}_{0} can be simultaneously reduced to the triangle form. We will write this form by $C A_{\alpha_{j}} C^{-1}$.

So let X be a real Banach space and subalgebra $\mathcal{A}_{0} \subset M_{2}(\mathbb{R})$ be admissible for $\mathcal{P}_{c}(X)$. Thus, there exists w in $\mathcal{A}_{0} \otimes X$ such that

$$
\begin{equation*}
\widehat{w}(P)=P\left(\sum_{j=1}^{\infty} \lambda_{\alpha_{j}}^{1} e_{\alpha_{j}}\right) P\left(\sum_{j=1}^{\infty} \lambda_{\alpha_{j}}^{2} e_{\alpha_{j}}\right) \tag{2}
\end{equation*}
$$

where $\lambda_{\alpha_{j}}^{1}, \lambda_{\alpha_{j}}^{2}$ are the diagonal elements of $C A_{\alpha_{j}} C^{-1}, A_{\alpha_{j}} \in \mathcal{A}_{0}, j=1,2 \ldots$
Theorem 4. Let $P_{1}, P_{2}, \ldots, P_{m}$ be polynomials in $\mathcal{P}_{c}(X)$ for a real Banach space X and $J=\left(P_{1}, P_{2}, \ldots, P_{m}\right)$ be the ideal generated by these polynomials. Let

$$
\bigcap_{k=1}^{m}\left\{w \in \mathcal{A}_{0} \otimes X: \widehat{w}\left(P_{k}\right)=0\right\}=\varnothing
$$

Then J contains 1 , that is, there are polynomials $Q_{1}, Q_{2}, \ldots, Q_{m} \in \mathcal{P}_{c}(X)$ such that

$$
\sum_{k=1}^{m} P_{k} Q_{k}=1
$$

Proof. By (2) we have

$$
\widehat{w}(P)=P\left(\sum_{j=1}^{\infty} \lambda_{\alpha_{j}} e_{\alpha_{j}}\right) P\left(\sum_{j=1}^{\infty} \overline{\lambda_{\alpha_{j}}} e_{\alpha_{j}}\right),
$$

where $\lambda_{\alpha_{j}}, \overline{\lambda_{\alpha_{j}}}$ are the diagonal elements of $C A_{\alpha_{j}} C^{-1}, A_{\alpha_{j}} \in \mathcal{A}_{0}$. Then we can write

$$
\bigcap_{k=1}^{m}\left\{\left(\lambda_{\alpha_{j}}\right)_{j=1}^{\infty}: P_{k}\left(\sum_{j=1}^{\infty} \lambda_{\alpha_{j}} e_{\alpha_{j}}\right) P_{k}\left(\sum_{j=1}^{\infty} \overline{\lambda_{\alpha_{j}}} e_{\alpha_{j}}\right)=0\right\}=\varnothing
$$

that is,

$$
\bigcap_{k=1}^{m}\left\{\left(\lambda_{\alpha_{j}}\right)_{j=1}^{\infty}: P_{k}\left(\sum_{j=1}^{\infty} \lambda_{\alpha_{j}} e_{\alpha_{j}}\right) \overline{P_{k}\left(\sum_{j=1}^{\infty} \lambda_{\alpha_{j}} e_{\alpha_{j}}\right)}=0\right\}=\varnothing .
$$

The last condition is equivalent to the following one

$$
\bigcap_{k=1}^{m}\left\{\left(\lambda_{\alpha_{j}}\right)_{j=1}^{\infty}: P_{k}\left(\sum_{j=1}^{\infty} \lambda_{\alpha_{j}} e_{\alpha_{j}}\right)=0\right\}=\varnothing .
$$

So it means that the polynomials $P_{1}, P_{2} \ldots, P_{m}$ have no common complex zeros. Then due to Theorem $3 J$ contains 1 , that is, there exist polynomials $Q_{1}^{\prime}, Q_{2}^{\prime} \ldots, Q_{m}^{\prime} \in \mathcal{P}_{c}\left(X_{\mathbb{C}}\right)$ such that

$$
\sum_{k=1}^{m} P_{k} Q_{k}^{\prime}=1, \text { where } X_{\mathbb{C}} \text { is the complexification of } X .
$$

Let $Q_{k}^{\prime}=U_{k}+i V_{k}$, be the decomposition of Q_{k}^{\prime}, onto the real and imaginary parts, $k=1, \ldots, m$. Then

$$
\sum_{k=1}^{m} P_{k} V_{k}=\operatorname{Im}(1)=0
$$

That is $\sum_{k=1}^{m} U_{k} P_{k}=1$. Hence, we just have to set $Q_{k}=U_{k}, k=1, \ldots, m$.
Corollary 1. If P_{1} and P_{2} are irreduceble polynomials of $\mathcal{P}_{c}(X)$ and

$$
\left\{w_{1} \in \mathcal{A}_{0} \otimes X: \widehat{w_{1}}\left(P_{1}\right)=0\right\}=\left\{w_{2} \in \mathcal{A}_{0} \otimes X: \widehat{w_{2}}\left(P_{2}\right)=0\right\}
$$

then $P_{1}=c P_{2}$, where $c=$ const.
Theorem 5. For any ideal $J \in \mathcal{P}\left(\mathbb{R}^{n}\right), J=\left(P_{1}, P_{2}, \ldots, P_{m}\right)$, we define

$$
\begin{aligned}
& \mathcal{V}(J)=\left\{w \in \mathcal{A}_{0} \otimes X: \widehat{w}\left(P_{k}\right)=0, k=1, \ldots, m\right\} \\
& \mathcal{I}(\mathcal{V}(J))=\left\{P_{k} \in \mathcal{P}(X): \widehat{w}\left(P_{k}\right)=0, w \in \mathcal{V}(J)\right\}
\end{aligned}
$$

Then $\operatorname{Rad} J \subset \mathcal{P}(X)$ and $\mathcal{I}(\mathcal{V}(J))=\operatorname{Rad} J$.
Proof. We know already that

$$
\widehat{w}(P)=P\left(\sum_{j=1}^{\infty} \lambda_{\alpha_{j}} e_{\alpha_{j}}\right) \overline{P\left(\sum_{j=1}^{\infty} \lambda_{\alpha_{j}} e_{\alpha_{j}}\right)}
$$

where $\lambda_{\alpha_{j}}, \overline{\lambda_{\alpha_{j}}}$ are the diagonal elements of $C A_{\alpha_{j}} C^{-1}, A_{\alpha_{j}} \in \mathcal{A}_{0}$. Then we can write

$$
I(V(J))=\left\{P_{k} \in \mathcal{P}_{c}(X): P_{k}\left(\sum_{j=1}^{\infty} \lambda_{\alpha_{j}} e_{\alpha_{j}}\right)\right\}=\left\{P_{k} \in \mathcal{P}_{c}(X): \widehat{w}\left(P_{k}\right)=0, w \in \mathcal{V}(J)\right\}
$$

Hence $\mathcal{I}(\mathcal{V}(J))=\operatorname{Rad} J$.

REFERENCES

1. A. Zagorodnyuk, Multiplicative polynomial operators on topological algebras, Contemporary Mathematics 232 (1999), 357-361.
2. A. Zagorodnyuk, Spectra of algebras of analytic functions and polynomials on Banach spaces, Contemporary Mathematics 435 (2007), 381-394.
3. S. Dineen, R.E. Harte, C. Taylor, Spectra of tenzor product elements II: Polynomial extensions, Proceedings of the Royal Irish Academy 101A (2001), №2, 197-220.
4. A.V. Zagorodnyuk, Nullstellensatz on infinite-dimensional complex spaces, Journal of Mathematical Sciences, 96 (1999), №2, 2951-2956.

Vasyl Stefanyk Precarpathian National University
olabachuk@gmail.com

