Compactly convex sets in linear topological spaces

Author T. Banakh, M. Mitrofanov, O. Ravsky
tbanakh@yahoo.com
Ivan Franko National University of Lviv (Ukraine) and Jan Kochanowski University, Kielce (Poland); Institute of Applied Problems of Mathematics and Mechanics of Ukrainian Academy of Science, Lviv, Ukraine

Abstract A convex subset $X$ of a linear topological space is called {\em compactly convex} if there is a~continuous compact-valued map $\Phi\colon X\to\exp(X)$ such that $[x,y]\subset\Phi(x)\cup\Phi(y)$ for all $x,y\in X$. We prove that each convex subset of the plane is compactly convex. On the other hand, the space $\mathbb{R}^3$ contains a convex set that is not compactly convex. Each compactly convex subset $X$ of a linear topological space $L$ has locally compact closure $\bar X$ which is metrizable if and only if each compact subset of $X$ is metrizable.
Keywords compactly convex set; linear topological space
Reference 1. T. Banakh, The direct limit of metrizable ANR’s is an ANR for stratifiable spaces, Mat. Stud., 23 (2005), ¹1, 92–98.

2. T. Banakh, W.E. Lyantse, Ya.V. Mykytyuk, 1-Convex sets and their applications to the proof of certain classical theorems of functional analysis, Mat. Stud., 11 (1999), ¹1, 83–84.

3. C. Carath.eodory, . Uber den Variabilit.atsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen, Rend. Circ. Mat. Palermo, 32 (1911), 193–217.

4. J. Dugundji, An extension of Tietze’s theorem, Pacific J. Math., 1 (1951), 353–367.

5. R. Engelking, General Topology, PWN, Warsaw, 1977.

Pages 161-173
Volume 37
Issue 2
Year 2012
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML