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Построены примеры на точность результатов М. М. Шереметы и второго автора.

The aim of the note is to show sharpness of results from [1] and [2] on the growth of
Cauchy-Stieltjes integral in the unit disc and the polydisc. We start with notation. For
z = (z1, . . . , zn) ∈ Cn, n ∈ N, let |z| = max{|zj| : 1 ≤ j ≤ n} be the polydisc norm. Denote
by Un = {z ∈ Cn : |z| < 1} the unit polydisc and T n = {z ∈ Cn : |zj| = 1, 1 ≤ j ≤ n}
the skeleton. For z ∈ Un, zj = rje

iϕj , w = (w1, . . . , wn) ∈ T n, wj = eiθj , 1 ≤ j ≤ n we write
Cα (z, w) =

∏n
j=1Cαj (zj, wj), where α = (α1, . . . , αn) , αj > 0, 1 ≤ j ≤ n, Cαj (zj, wj) =

1
(1−zjw̄j)αj is the generalized Cauchy kernel for the unit disc, Cαj (0, wj) = 1.

For ψ = (ψ1, . . . , ψn) ∈ [−π; π]n, γ = (γ1, . . . , γn) ∈ [0; π)n we define the Stolz angle
S (ψ, γ) = S (ψ1, γ1)× . . .× S (ψn, γn) in the polydisc, where S (ψj, γj) is the Stolz angle for
the unit disc with the vertex eiψj ,

S(ψj, γj) = {zj ∈ C : |zj − eiψj | ≤ A (γj) (1− rj)}, 1 ≤ j ≤ n, A (γj) =

√
1 + 4tg2γj

2
.

Let ω : Rn
+ → R+ be a semi-additive continuous increasing function in each variable

vanishing if at least one of the arguments equals zero. We call ω a modulus of continuity.
We denote τ = [−π; π). A Borel set E ⊂ T n is called a set of positive ω-capacity if there
exists a nonnegative measure ν on T n such that∫

E

dν =

∫
Tn

dν = 1

and
sup
x∈Rn

∫
τn

dν (eit1 , . . . , eitn)

ω (|t1 − x1| , . . . , |tn − xn|)
< +∞.
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Otherwise, E is called a set of zero ω-capacity.
Basic properties of the sets of zero ω-capacity can be found in [2].
The following theorem, which generalizes a result of M. M. Sheremeta ([1]) for several

variables, is proved in [2].

Theorem A. Let αj > 0, βj > 0, γj ∈ [0, π), 1 ≤ j ≤ n, n ∈ N, ω be a modulus of continuity
satisfying

1∫
0

. . .

1∫
0

ω (t1, . . . , tn)

tα1+1
1 · . . . · tαn+1

n

dt1 . . . dtn = +∞.

Let µ be a complex-valued Borel measure on T n with |µ| (T n) < +∞. Then

∣∣∣∣∣∣
∫
Tn

Cα (z, w) dµ (w)

∣∣∣∣∣∣ = o

(
logn

1

δ
·

1∫
|z1−eiψ1|

. . .

1∫
|zn−eiψn|

ω (t1, . . . , tn) dt1 . . . dtn

tα1+1
1 · . . . · tαn+1

n

)
, δ → 0+,

where |zj| = 1 − δ
1
βj , z ∈ S (ψ, γ), for

(
eiψ1 , . . . , eiψn

)
∈ T n except, possibly, a set of zero

ω-capacity.

In particular, for ω (t1, . . . , tn) = tp11 · . . . · tpnn , 0 < pj < αj we have that∣∣∣∣∣∣
∫
Tn

Cα (z, w) dµ (w)

∣∣∣∣∣∣ = o

(
logn

1

δ

n∏
j=1

∣∣zj − eiψj ∣∣pj−αj) = o

(
logn

1

δ
· δ

n∑
j=1

pj−αj
βj

)
, δ → 0+,

|zj| = 1− δ
1
βj , z ∈ S (ψ, γ), holds outside a set of zero ω-capacity.

In the case n = 1, as it is shown in [1], Theorem A holds without the multiplier log 1
δ
,

and we have the following corollary.

Corollary. Let α > 0, p ∈ (0, α], h ∈ R, µ be a complex-valued Borel measure on T with
|µ|(T ) < +∞. Then

lim
|z|→1,

z∈S(ψ,γ)

log+
∣∣∣∫T Cα(z, w)dµ(w)∣∣∣
− log(1− |z|)

≤ α− p (1)

holds outside, possibly, a set of eiψ of zero ω-capacity, where ω(t) = tp| log t|h.

We construct examples which show that Theorem 2 from [1] and Theorem A are sharp
in some sense.

First, we consider the case n = 1 in detail.
We construct a Cantor type set E on the segment

[
0; π

2

]
([3]). Given a positive number

ξ < 1
2
, on the segment

[
0; π

2

]
we mark two non-overlapping “white” intervals of length

π
2
ξ, such that the first interval has its left endpoint at 0, and the second interval has its

right endpoint at π
2
. Two “white” intervals are separated by one “black” interval of length

π
2
(1− 2ξ). Such a dissection is called a ξ-dissection of the given segment. Let us remove the

“black” interval. We have got the set E1. On the second step we make ξ2-dissection of each
“white” interval left and remove “black” intervals to obtain the set E2 ⊂ E1. If we proceed
infinitely in the same way we get a perfect set E =

⋂∞
m=1Em (see [3] for details).
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Let ω (t) = ts · |log t|h, where s = log 1
ξ
2. We use Theorem 3 (Ch. IV [4]): let E be

an n-dimensional Cantor set such that Em is obtained at the m-th step and consists of 2mn
cubes with sides of lengths lm. The set E has positive ω-capacity if and only if

∑
m

2−mn

ω(lm)
< +∞.

Applying this criterion with n = 1, lm = π
2
ξm, we deduce that a set E has positive

ω-capacity if and only if
∞∑
m=1

1∣∣log π
2
+mlog ξ

∣∣h < +∞,

i.e., if h > 1 then the set E is of positive ts · |log t|h-capacity. The condition
∫ 1

0
t−α−1ω (t) dt

=∞ holds for α ≥ s. Let F (t) be the function associated with a Cantor type set E (see [3]).
We define it such that F (0) = 0, F (π

2
) = 1 and extend it to (−∞; +∞) by the formulas

F (t) = 1 as π
2
< t < +∞ and F (t) = 0 as −∞ < t < 0. The function F is continuous,

nondecreasing and constant on every interval contiguous to the set E.
We show that on the set E of values ψ, z = reiψ∣∣∣∣∣∣

π∫
−π

Cα
(
z, e−it

)
dF (t)

∣∣∣∣∣∣ ≥
{
K1(1− r)s−α, s < α,

K1, s = α
, r ↑ 1

holds, where K1 is a positive constant.
For the function F (t) we define the modulus of continuity at the point t0 by

κ (λ; t0, F ) = sup
|tj−t0|<λ

|F (t1)− F (t2)|.

In [3, p. 24] it is shown that

κ
(π
2
ξm; t0, F

)
=

(
1

2

)m−2

.

Hence, using the monotony of κ for we obtain that κ (λ; t0, F ) � λs, λ→ 0+.
We consider the function

f (z) =

π
2∫

0

dF (t)

(1− ze−it)α
, |z| < 1,

where s < α ≤ 1. It is clear that ω-capacity of the set E ∩
[
0; π

4

]
is positive.

We estimate |f (z)| from below. For z = reit0 , t0 ∈ E ∩
[
0; π

4

]
we deduce

Ref
(
reit0

)
=

π
2∫

0

cos
(
α arg 1

1−re−i(t−t0)

)
|1− re−i(t−t0)|α

dF (t) =

π
2∫

0

cos
(
α arctg r sin|t−t0|

1−r cos(t−t0)

)
|1− re−i(t−t0)|α

dF (t) .

Denote arctg r sin|t−t0|
1−r cos(t−t0)

= γ. It is clear that γ ∈ (−π
2
, π

2
). Therefore, the integrated

function is nonnegative. Then for 0 ≤ |t− t0| ≤ 1− r we get consequently

tg γ =
r sin |t− t0|

1− r cos (t− t0)
≤ r sin (1− r)

1− r
≤ 1, cosαγ ≥ cos

(
α
π

4

)
> 0.
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Then we estimate
∣∣1− re−i(t−t0)

∣∣α for |t− t0| ≤ 1− r:

∣∣1− re−i(t−t0)
∣∣α =

(
1 + r2 − 2r cos (t− t0)

)α
2 =

(
(1− r)2 + 4r · sin2 (t− t0)

2

)α
2

≤

≤
(
(1− r)2 + (1− r)2)α2 ≤ K2 · (1− r)α.

Hence, we obtain that

∣∣f (reit0)∣∣ ≥ t0+1−r∫
t0

cos(απ
4
)

|1− re−i(t−t0)|α
dF (t) ≥ K3

t0+1−r∫
t0

dF (t)

(1− r)α
=
K3κ (1− r; t0, F )

(1− r)α
.

Using the asymptotic for κ we deduce

∣∣f (reit0)∣∣ ≥ {K1(1− r)s−α, s < α,

K1, s = α
, t0 ∈ E. (2)

On the other hand, Theorem 2 from [1] yields that the inequality∣∣∣∣∣∣
π∫

−π

Cα
(
z, e−it

)
dg (t)

∣∣∣∣∣∣ = o

(
logh

1

|1− zeiψ|
·
∣∣1− zeiψ∣∣s−α) , |z| → 1

holds for all ψ in [−π; π] except, possibly, a set of zero ts| log t|h-capacity, where α > s > 0,
g is a function of bounded variation on [−π; π].

It follows from (2) that

lim
|z|→1,
z∈S(t,γ)

log+
∣∣∣∫T Cα(z, eit)dF (t)∣∣∣
− log(1− |z|)

≥ α− s

holds for t ∈ E, which shows sharpness of the corollary.
To show sharpness of Theorem A in the multidimensional case we consider the case

n = 2. Let E = E1 × E2, where Ej is the Cantor type set on the segment [0; π
2
] constructed

by using ξj-dissections, ξj < 1
2
, j ∈ 1, 2. Let Fj(tj) be the corresponding Cantor type function

associated with the set Ej. We define this function so that Fj (0) = 0, Fj
(
π
2

)
= 1, Fj (tj) = 1

as π
2
< tj < +∞ and Fj (tj) = 0 as −∞ < tj < 0. Similarly to the one-dimensional case the

modulus of continuity of Fj(tj) satisfies κ (λ; t0, Fj) � λsj · |log λ|hj . Let µFj be the Stieltjes
measure associated with Fj(tj) and µF = µF1 ⊗ µF2 be the product of the measures µ1 and
µ2 (Ch. V, §6.2, [5]), in particular, the measure of the rectangle [a1, b1]× [a2, b2] is calculated
by the formula µF ([a1, b1]× [a2, b2]) = (F1 (b1)− F1 (a1)) · (F2 (b2)− F2 (a2)).

Let ω (t1, t2) = t1
s1|log t1|h1 · t2s2|log t2|h2 . Similarly to the case n = 1 the set Ej has

positive ωj (tj) = tj
sj |log tj|hj -capacity if and only if hj > 1. It follows from the definition of

ω-capacity that the set E has positive ω-capacity with ω (t1, t2) = t1
s1|log t1|h1 · t2s2|log t2|h2

if hj > 1.
We define the modulus of continuity of the positive measure µF at the point (t01, t02)

κ (λ1, λ2; (t01, t02) , µF ) = µF
(
{[t01 − λ1, t01 + λ1]× [t02 − λ2, t02 + λ2]}

)
.

Hence, κ (λ1, λ2; (t01, t02) , µF ) � λ1
s1 · λ2

s2 , where (t01, t02) ∈ E.
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Theorem 1. Let α1, α2 > 0, α1 + α2 < 1, sj < αj, j = 1, 2. Then there exists a set
E =

{(
eiψ1 , eiψ2

)}
⊂ T 2 of positive ω-capacity with ω (t1, t2) = t1

s1|log t1|h1 · t2s2 |log t2|h2 ,
a positive measure µ on T 2 and a constant K4 > 0 such that

∣∣∣∣∣∣
∫
T 2

Cα (z, w) dµ (w)

∣∣∣∣∣∣ ≥

K4(1− r1)

s1−α1 · (1− r2)
s2−α2 , sj < αj,

K4(1− r1)
s1−α1 , s1 < α1, s2 = α2,

K4(1− r2)
s2−α2 , s2 < α2, s1 = α1,

K4, sj = αj,

where zj = rje
iψj , rj ↑ 1, sj = log 1

ξj

2.

Proof. Let

f (z1, z2) =

∫
[0,π

2
]2

dµF (t1, t2)
2∏
j=1

(1− zje−itj)αj
.

For zj = rje
it0j , (t01, t02) ∈ E ∩

[
0; π

4

]2 we estimate |f (z1, z2)| from below similarly to the
one-dimensional case:

|f (z1, z2)| ≥ Ref (z1, z2) = Re

∫
[0,π

2
]2

dµF (t1, t2)
2∏
j=1

(1− zje−itj)αj
=

= Re

∫
[0,π

2
]2

2∏
j=1

exp
(
iαj arg

1

1−zje−itj

)
dµF (t1, t2)

2∏
j=1

|1− zje−itj |αj
=

=

∫
[0,π

2
]2

cos
(
α1 arg

1
1−z1e−it1

+ α2 arg
1

1−z2e−it2

)
dµF (t1, t2)

2∏
j=1

∣∣1− rje−i(tj−t0j)∣∣αj =

≥
∫

[0,π
2

]2

cos((α1 + α2)
π
2
)dµF (t1, t2)

2∏
j=1

∣∣1− rje−i(tj−t0j)∣∣αj ≥K5

∫
[t01,t01+1−r1]×[t02,t02+1−r2]

dµF (t1, t2)
2∏
j=1

(1− r1)α1(1− r2)α2

=

=
K5

2∏
j=1

(1− rj)αj
· κ(1− r1, 1− r2; (t01, t02), µF ) �

2∏
j=1

(1− rj)sj−αj .
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