I. E. Chyzhykov, O. A. Zolota

ON SHARPNESS OF GROWTH ESTIMATES OF CAUCHY-STIELTIES INTEGRALS IN THE UNIT DISC AND THE POLYDISC

Abstract

I. E. Chyzhykov, O. A. Zolota. On sharpness of growth estimates of Cauchy-Stieltjes integrals in the unit disc and the polydisc, Mat. Stud. 37 (2012), 155-160.

The examples showing sharpness of results of M. M. Sheremeta and the second author are constructed.

И. Э. Чижиков, О. А. Золота. О точности оценок роста интегралов Коши-Стильтьеса в единичном круге и поликруге // Мат. Студії. - 2012. - Т.37, №2. - С.155-160.

Построены примеры на точность результатов М. М. Шереметы и второго автора.

The aim of the note is to show sharpness of results from [1] and [2] on the growth of Cauchy-Stieltjes integral in the unit disc and the polydisc. We start with notation. For $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}, n \in \mathbb{N}$, let $|z|=\max \left\{\left|z_{j}\right|: 1 \leq j \leq n\right\}$ be the polydisc norm. Denote by $U^{n}=\left\{z \in \mathbb{C}^{n}:|z|<1\right\}$ the unit polydisc and $T^{n}=\left\{z \in \mathbb{C}^{n}:\left|z_{j}\right|=1,1 \leq j \leq n\right\}$ the skeleton. For $z \in U^{n}, z_{j}=r_{j} e^{i \varphi_{j}}, w=\left(w_{1}, \ldots, w_{n}\right) \in T^{n}, w_{j}=e^{i \theta_{j}}, 1 \leq j \leq n$ we write $C_{\alpha}(z, w)=\prod_{j=1}^{n} C_{\alpha_{j}}\left(z_{j}, w_{j}\right)$, where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \alpha_{j}>0,1 \leq j \leq n, C_{\alpha_{j}}\left(z_{j}, w_{j}\right)=$ $\frac{1}{\left(1-z_{j} \bar{w}_{j}\right)_{j}}$ is the generalized Cauchy kernel for the unit disc, $C_{\alpha_{j}}\left(0, w_{j}\right)=1$.

For $\psi=\left(\psi_{1}, \ldots, \psi_{n}\right) \in[-\pi ; \pi]^{n}, \gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in[0 ; \pi)^{n}$ we define the Stolz angle $S(\psi, \gamma)=S\left(\psi_{1}, \gamma_{1}\right) \times \ldots \times S\left(\psi_{n}, \gamma_{n}\right)$ in the polydisc, where $S\left(\psi_{j}, \gamma_{j}\right)$ is the Stolz angle for the unit disc with the vertex $e^{i \psi_{j}}$,

$$
S\left(\psi_{j}, \gamma_{j}\right)=\left\{z_{j} \in \mathbb{C}:\left|z_{j}-e^{i \psi_{j}}\right| \leq A\left(\gamma_{j}\right)\left(1-r_{j}\right)\right\}, 1 \leq j \leq n, \quad A\left(\gamma_{j}\right)=\sqrt{1+4 \operatorname{tg}^{2} \frac{\gamma_{j}}{2}} .
$$

Let $\omega: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$be a semi-additive continuous increasing function in each variable vanishing if at least one of the arguments equals zero. We call ω a modulus of continuity. We denote $\tau=[-\pi ; \pi)$. A Borel set $E \subset T^{n}$ is called a set of positive ω-capacity if there exists a nonnegative measure ν on T^{n} such that

$$
\int_{E} d \nu=\int_{T^{n}} d \nu=1
$$

and

$$
\sup _{x \in \mathbb{R}^{n}} \int_{\tau^{n}} \frac{d \nu\left(e^{i t_{1}}, \ldots, e^{i t_{n}}\right)}{\omega\left(\left|t_{1}-x_{1}\right|, \ldots,\left|t_{n}-x_{n}\right|\right)}<+\infty
$$

2010 Mathematics Subject Classification: 31B05, 31B10, 32A22, 32A25, 32A26, 32A35.
Keywords: modulus of continuity, Cantor type function, Cauchy-Stieltjes integral, unit disc, polydisc, ω-capacity.

Otherwise, E is called a set of zero ω-capacity.
Basic properties of the sets of zero ω-capacity can be found in [2].
The following theorem, which generalizes a result of M. M. Sheremeta ([1]) for several variables, is proved in [2].

Theorem A. Let $\alpha_{j}>0, \beta_{j}>0, \gamma_{j} \in[0, \pi), 1 \leq j \leq n, n \in \mathbb{N}, \omega$ be a modulus of continuity satisfying

$$
\int_{0}^{1} \ldots \int_{0}^{1} \frac{\omega\left(t_{1}, \ldots, t_{n}\right)}{t_{1}^{\alpha_{1}+1} \cdot \ldots \cdot t_{n}^{\alpha_{n}+1}} d t_{1} \ldots d t_{n}=+\infty
$$

Let μ be a complex-valued Borel measure on T^{n} with $|\mu|\left(T^{n}\right)<+\infty$. Then

$$
\left|\int_{T^{n}} C_{\alpha}(z, w) d \mu(w)\right|=o\left(\log ^{n} \frac{1}{\delta} \cdot \int_{\left|z_{1}-e^{i \psi_{1}}\right|}^{1} \ldots \int_{\left|z_{n}-e^{i \psi_{n}}\right|}^{1} \frac{\omega\left(t_{1}, \ldots, t_{n}\right) d t_{1} \ldots d t_{n}}{t_{1}^{\alpha_{1}+1} \cdot \ldots \cdot t_{n}^{\alpha_{n}+1}}\right), \quad \delta \rightarrow 0^{+},
$$

where $\left|z_{j}\right|=1-\delta^{\frac{1}{\beta_{j}}}, z \in S(\psi, \gamma)$, for $\left(e^{i \psi_{1}}, \ldots, e^{i \psi_{n}}\right) \in T^{n}$ except, possibly, a set of zero ω-capacity.

In particular, for $\omega\left(t_{1}, \ldots, t_{n}\right)=t_{1}^{p_{1}} \cdot \ldots \cdot t_{n}^{p_{n}}, 0<p_{j}<\alpha_{j}$ we have that

$$
\left|\int_{T^{n}} C_{\alpha}(z, w) d \mu(w)\right|=o\left(\log ^{n} \frac{1}{\delta} \prod_{j=1}^{n}\left|z_{j}-e^{i \psi_{j}}\right|^{p_{j}-\alpha_{j}}\right)=o\left(\log ^{n} \frac{1}{\delta} \cdot \delta^{\sum_{j=1}^{n} \frac{p_{j}-\alpha_{j}}{\beta_{j}}}\right), \quad \delta \rightarrow 0^{+},
$$

$\left|z_{j}\right|=1-\delta^{\frac{1}{\beta_{j}}}, z \in S(\psi, \gamma)$, holds outside a set of zero ω-capacity.
In the case $n=1$, as it is shown in [1], Theorem A holds without the multiplier $\log \frac{1}{\delta}$, and we have the following corollary.

Corollary. Let $\alpha>0, p \in(0, \alpha], h \in \mathbb{R}, \mu$ be a complex-valued Borel measure on T with $|\mu|(T)<+\infty$. Then

$$
\begin{equation*}
\varlimsup_{\substack{|z| \rightarrow 1, z \in S(\psi, \gamma)}} \frac{\log ^{+}\left|\int_{T} C_{\alpha}(z, w) d \mu(w)\right|}{-\log (1-|z|)} \leq \alpha-p \tag{1}
\end{equation*}
$$

holds outside, possibly, a set of $e^{i \psi}$ of zero ω-capacity, where $\omega(t)=t^{p}|\log t|^{h}$.
We construct examples which show that Theorem 2 from [1] and Theorem A are sharp in some sense.

First, we consider the case $n=1$ in detail.
We construct a Cantor type set E on the segment $\left[0 ; \frac{\pi}{2}\right]$ ([3]). Given a positive number $\xi<\frac{1}{2}$, on the segment $\left[0 ; \frac{\pi}{2}\right]$ we mark two non-overlapping "white" intervals of length $\frac{\pi}{2} \xi$, such that the first interval has its left endpoint at 0 , and the second interval has its right endpoint at $\frac{\pi}{2}$. Two "white" intervals are separated by one "black" interval of length $\frac{\pi}{2}(1-2 \xi)$. Such a dissection is called a ξ-dissection of the given segment. Let us remove the "black" interval. We have got the set E_{1}. On the second step we make ξ^{2}-dissection of each "white" interval left and remove "black" intervals to obtain the set $E_{2} \subset E_{1}$. If we proceed infinitely in the same way we get a perfect set $E=\bigcap_{m=1}^{\infty} E_{m}$ (see [3] for details).

Let $\omega(t)=t^{s} \cdot|\log t|^{h}$, where $s=\log _{\frac{1}{\xi}} 2$. We use Theorem 3 (Ch. IV [4]): let E be an n-dimensional Cantor set such that E_{m} is obtained at the m-th step and consists of $2^{m n}$ cubes with sides of lengths l_{m}. The set E has positive ω-capacity if and only if $\sum_{m} \frac{2^{-m n}}{\omega\left(l_{m}\right)}<+\infty$.

Applying this criterion with $n=1, l_{m}=\frac{\pi}{2} \xi^{m}$, we deduce that a set E has positive ω-capacity if and only if

$$
\sum_{m=1}^{\infty} \frac{1}{\left|\log \frac{\pi}{2}+m \log \xi\right|^{h}}<+\infty
$$

i.e., if $h>1$ then the set E is of positive $t^{s} \cdot|\log t|^{h}$-capacity. The condition $\int_{0}^{1} t^{-\alpha-1} \omega(t) d t$ $=\infty$ holds for $\alpha \geq s$. Let $F(t)$ be the function associated with a Cantor type set E (see [3]). We define it such that $F(0)=0, F\left(\frac{\pi}{2}\right)=1$ and extend it to $(-\infty ;+\infty)$ by the formulas $F(t)=1$ as $\frac{\pi}{2}<t<+\infty$ and $F(t)=0$ as $-\infty<t<0$. The function F is continuous, nondecreasing and constant on every interval contiguous to the set E.

We show that on the set E of values $\psi, z=r e^{i \psi}$

$$
\left|\int_{-\pi}^{\pi} C_{\alpha}\left(z, e^{-i t}\right) d F(t)\right| \geq\left\{\begin{array}{ll}
K_{1}(1-r)^{s-\alpha}, & s<\alpha, \\
K_{1}, & s=\alpha
\end{array}, \quad r \uparrow 1\right.
$$

holds, where K_{1} is a positive constant.
For the function $F(t)$ we define the modulus of continuity at the point t_{0} by

$$
\varkappa\left(\lambda ; t_{0}, F\right)=\sup _{\left|t_{j}-t_{0}\right|<\lambda}\left|F\left(t_{1}\right)-F\left(t_{2}\right)\right| .
$$

In [3, p. 24] it is shown that

$$
\varkappa\left(\frac{\pi}{2} \xi^{m} ; t_{0}, F\right)=\left(\frac{1}{2}\right)^{m-2}
$$

Hence, using the monotony of \varkappa for we obtain that $\varkappa\left(\lambda ; t_{0}, F\right) \asymp \lambda^{s}, \lambda \rightarrow 0^{+}$.
We consider the function

$$
f(z)=\int_{0}^{\frac{\pi}{2}} \frac{d F(t)}{\left(1-z e^{-i t}\right)^{\alpha}}, \quad|z|<1
$$

where $s<\alpha \leq 1$. It is clear that ω-capacity of the set $E \cap\left[0 ; \frac{\pi}{4}\right]$ is positive.
We estimate $|f(z)|$ from below. For $z=r e^{i t_{0}}, t_{0} \in E \cap\left[0 ; \frac{\pi}{4}\right]$ we deduce

$$
\operatorname{Re} f\left(r e^{i t_{0}}\right)=\int_{0}^{\frac{\pi}{2}} \frac{\cos \left(\alpha \arg \frac{1}{1-r e^{-i\left(t-t_{0}\right)}}\right)}{\left|1-r e^{-i\left(t-t_{0}\right)}\right|^{\alpha}} d F(t)=\int_{0}^{\frac{\pi}{2}} \frac{\cos \left(\alpha \operatorname{arctg} \frac{r \sin \left|t-t_{0}\right|}{1-r \cos \left(t-t_{0}\right)}\right)}{\left|1-r e^{-i\left(t-t_{0}\right)}\right|^{\alpha}} d F(t) .
$$

Denote $\operatorname{arctg} \frac{r \sin \left|t-t_{0}\right|}{1-r \cos \left(t-t_{0}\right)}=\gamma$. It is clear that $\gamma \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Therefore, the integrated function is nonnegative. Then for $0 \leq\left|t-t_{0}\right| \leq 1-r$ we get consequently

$$
\operatorname{tg} \gamma=\frac{r \sin \left|t-t_{0}\right|}{1-r \cos \left(t-t_{0}\right)} \leq \frac{r \sin (1-r)}{1-r} \leq 1, \quad \cos \alpha \gamma \geq \cos \left(\alpha \frac{\pi}{4}\right)>0
$$

Then we estimate $\left|1-r e^{-i\left(t-t_{0}\right)}\right|^{\alpha}$ for $\left|t-t_{0}\right| \leq 1-r$:

$$
\begin{gathered}
\left|1-r e^{-i\left(t-t_{0}\right)}\right|^{\alpha}=\left(1+r^{2}-2 r \cos \left(t-t_{0}\right)\right)^{\frac{\alpha}{2}}=\left((1-r)^{2}+4 r \cdot \sin ^{2} \frac{\left(t-t_{0}\right)}{2}\right)^{\frac{\alpha}{2}} \leq \\
\leq\left((1-r)^{2}+(1-r)^{2}\right)^{\frac{\alpha}{2}} \leq K_{2} \cdot(1-r)^{\alpha} .
\end{gathered}
$$

Hence, we obtain that

$$
\left|f\left(r e^{i t_{0}}\right)\right| \geq \int_{t_{0}}^{t_{0}+1-r} \frac{\cos \left(\alpha \frac{\pi}{4}\right)}{\left|1-r e^{-i\left(t-t_{0}\right)}\right|^{\alpha}} d F(t) \geq K_{3} \int_{t_{0}}^{t_{0}+1-r} \frac{d F(t)}{(1-r)^{\alpha}}=\frac{K_{3} \varkappa\left(1-r ; t_{0}, F\right)}{(1-r)^{\alpha}} .
$$

Using the asymptotic for \varkappa we deduce

$$
\left|f\left(r e^{i t_{0}}\right)\right| \geq\left\{\begin{array}{ll}
K_{1}(1-r)^{s-\alpha}, & s<\alpha, \tag{2}\\
K_{1}, & s=\alpha
\end{array}, \quad t_{0} \in E\right.
$$

On the other hand, Theorem 2 from [1] yields that the inequality

$$
\left|\int_{-\pi}^{\pi} C_{\alpha}\left(z, e^{-i t}\right) d g(t)\right|=o\left(\log ^{h} \frac{1}{\left|1-z e^{i \psi}\right|} \cdot\left|1-z e^{i \psi}\right|^{s-\alpha}\right), \quad|z| \rightarrow 1
$$

holds for all ψ in $[-\pi ; \pi]$ except, possibly, a set of zero $t^{s}|\log t|^{h}$-capacity, where $\alpha>s>0$, g is a function of bounded variation on $[-\pi ; \pi]$.

It follows from (2) that

$$
\varlimsup_{\substack{|z| \rightarrow 1, z \in S(t, \gamma)}} \frac{\log ^{+}\left|\int_{T} C_{\alpha}\left(z, e^{i t}\right) d F(t)\right|}{-\log (1-|z|)} \geq \alpha-s
$$

holds for $t \in E$, which shows sharpness of the corollary.
To show sharpness of Theorem A in the multidimensional case we consider the case $n=2$. Let $E=E_{1} \times E_{2}$, where E_{j} is the Cantor type set on the segment $\left[0 ; \frac{\pi}{2}\right]$ constructed by using ξ_{j}-dissections, $\xi_{j}<\frac{1}{2}, j \in 1,2$. Let $F_{j}\left(t_{j}\right)$ be the corresponding Cantor type function associated with the set E_{j}. We define this function so that $F_{j}(0)=0, F_{j}\left(\frac{\pi}{2}\right)=1, F_{j}\left(t_{j}\right)=1$ as $\frac{\pi}{2}<t_{j}<+\infty$ and $F_{j}\left(t_{j}\right)=0$ as $-\infty<t_{j}<0$. Similarly to the one-dimensional case the modulus of continuity of $F_{j}\left(t_{j}\right)$ satisfies $\varkappa\left(\lambda ; t_{0}, F_{j}\right) \asymp \lambda^{s_{j}} \cdot|\log \lambda|^{h_{j}}$. Let $\mu_{F_{j}}$ be the Stieltjes measure associated with $F_{j}\left(t_{j}\right)$ and $\mu_{F}=\mu_{F_{1}} \otimes \mu_{F_{2}}$ be the product of the measures μ_{1} and $\mu_{2}(\mathrm{Ch} . \mathrm{V}, \S 6.2,[5])$, in particular, the measure of the rectangle $\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]$ is calculated by the formula $\mu_{F}\left(\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]\right)=\left(F_{1}\left(b_{1}\right)-F_{1}\left(a_{1}\right)\right) \cdot\left(F_{2}\left(b_{2}\right)-F_{2}\left(a_{2}\right)\right)$.

Let $\omega\left(t_{1}, t_{2}\right)=t_{1}^{s_{1}}\left|\log t_{1}\right|^{h_{1}} \cdot t_{2}^{s_{2}}\left|\log t_{2}\right|^{h_{2}}$. Similarly to the case $n=1$ the set E_{j} has positive $\omega_{j}\left(t_{j}\right)=t_{j}{ }^{s_{j}}\left|\log t_{j}\right|^{h_{j}}$-capacity if and only if $h_{j}>1$. It follows from the definition of ω-capacity that the set E has positive ω-capacity with $\omega\left(t_{1}, t_{2}\right)=t_{1}{ }^{s_{1}}\left|\log t_{1}\right|^{h_{1}} \cdot t_{2}{ }^{s_{2}}\left|\log t_{2}\right|^{h_{2}}$ if $h_{j}>1$.

We define the modulus of continuity of the positive measure μ_{F} at the point $\left(t_{01}, t_{02}\right)$

$$
\varkappa\left(\lambda_{1}, \lambda_{2} ;\left(t_{01}, t_{02}\right), \mu_{F}\right)=\mu_{F}\left(\left\{\left[t_{01}-\lambda_{1}, t_{01}+\lambda_{1}\right] \times\left[t_{02}-\lambda_{2}, t_{02}+\lambda_{2}\right]\right\}\right) .
$$

Hence, $\varkappa\left(\lambda_{1}, \lambda_{2} ;\left(t_{01}, t_{02}\right), \mu_{F}\right) \asymp \lambda_{1}{ }^{s_{1}} \cdot \lambda_{2}{ }^{s_{2}}$, where $\left(t_{01}, t_{02}\right) \in E$.

Theorem 1. Let $\alpha_{1}, \alpha_{2}>0, \alpha_{1}+\alpha_{2}<1, s_{j}<\alpha_{j}, j=1,2$. Then there exists a set $E=\left\{\left(e^{i \psi_{1}}, e^{i \psi_{2}}\right)\right\} \subset T^{2}$ of positive ω-capacity with $\omega\left(t_{1}, t_{2}\right)=t_{1}{ }^{s_{1}}\left|\log t_{1}\right|^{h_{1}} \cdot t_{2}{ }^{s_{2}}\left|\log t_{2}\right|^{h_{2}}$, a positive measure μ on T^{2} and a constant $K_{4}>0$ such that

$$
\left|\int_{T^{2}} C_{\alpha}(z, w) d \mu(w)\right| \geq \begin{cases}K_{4}\left(1-r_{1}\right)^{s_{1}-\alpha_{1}} \cdot\left(1-r_{2}\right)^{s_{2}-\alpha_{2}}, & s_{j}<\alpha_{j} \\ K_{4}\left(1-r_{1}\right)^{s_{1}-\alpha_{1}}, & s_{1}<\alpha_{1}, \\ K_{4}\left(1-r_{2}\right)^{s_{2}-\alpha_{2}}, & s_{2}<\alpha_{2}, \\ K_{4}, & s_{1}=\alpha_{2} \\ s_{j}=\alpha_{j}\end{cases}
$$

where $z_{j}=r_{j} e^{i \psi_{j}}, r_{j} \uparrow 1, s_{j}=\log _{\frac{1}{\xi_{j}}} 2$.
Proof. Let

$$
f\left(z_{1}, z_{2}\right)=\int_{\left[0, \frac{\pi}{2}\right]^{2}} \frac{d \mu_{F}\left(t_{1}, t_{2}\right)}{\prod_{j=1}^{2}\left(1-z_{j} e^{-i t_{j}}\right)^{\alpha_{j}}} .
$$

For $z_{j}=r_{j} e^{i t_{0 j}},\left(t_{01}, t_{02}\right) \in E \cap\left[0 ; \frac{\pi}{4}\right]^{2}$ we estimate $\left|f\left(z_{1}, z_{2}\right)\right|$ from below similarly to the one-dimensional case:

$$
\begin{aligned}
& \left|f\left(z_{1}, z_{2}\right)\right| \geq \operatorname{Re} f\left(z_{1}, z_{2}\right)=\operatorname{Re} \int_{\left[0, \frac{\pi}{2}\right]^{2}} \frac{d \mu_{F}\left(t_{1}, t_{2}\right)}{\prod_{j=1}^{2}\left(1-z_{j} e^{-i t_{j}}\right)^{\alpha_{j}}}= \\
& =\operatorname{Re} \int_{\left[0, \frac{\pi}{2}\right]^{2}} \frac{\prod_{j=1}^{2} \exp \left(i \alpha_{j} \arg \frac{1}{1-z_{j} e^{-i t_{j}}}\right) d \mu_{F}\left(t_{1}, t_{2}\right)}{\prod_{j=1}^{2}\left|1-z_{j} e^{-i t_{j}}\right|^{\alpha_{j}}}= \\
& =\int_{\left[0, \frac{\pi}{2}\right]^{2}} \frac{\cos \left(\alpha_{1} \arg \frac{1}{1-z_{1} e^{-i t_{1}}}+\alpha_{2} \arg \frac{1}{1-z_{2} e^{-i t_{2}}}\right) d \mu_{F}\left(t_{1}, t_{2}\right)}{\prod_{j=1}^{2}\left|1-r_{j} e^{-i\left(t_{j}-t_{0 j}\right)}\right|^{\alpha_{j}}}= \\
& \geq \int_{\left[0, \frac{\pi}{2}\right]^{2}} \frac{\cos \left(\left(\alpha_{1}+\alpha_{2}\right) \frac{\pi}{2}\right) d \mu_{F}\left(t_{1}, t_{2}\right)}{\prod_{j=1}^{2}\left|1-r_{j} e^{-i\left(t_{j}-t_{0 j}\right)}\right|^{\alpha_{j}}} \geq K_{5} \int_{\left[t_{01}, t_{01}+1-r_{1}\right] \times\left[t_{02}, t_{02}+1-r_{2}\right]} \frac{d \mu_{F}\left(t_{1}, t_{2}\right)}{\prod_{j=1}^{2}\left(1-r_{1}\right)^{\alpha_{1}}\left(1-r_{2}\right)^{\alpha_{2}}}= \\
& =\frac{K_{5}}{\prod_{j=1}^{2}\left(1-r_{j}\right)^{\alpha_{j}}} \cdot \varkappa\left(1-r_{1}, 1-r_{2} ;\left(t_{01}, t_{02}\right), \mu_{F}\right) \asymp \prod_{j=1}^{2}\left(1-r_{j}\right)^{s_{j}-\alpha_{j}} .
\end{aligned}
$$

REFERENCES

1. Sheremeta M.M. On the asymptotic behaviour of Cauchy-Stieltjes integrals// Mat. Stud. - 1997. - V.7, №2. - P. 175-178.
2. Zolota O.A. On the asymptotic behaviour of Cauchy-Stieltjes integral in the polydisc// Ufimskii Mat. Jounal. - 2012. - V.4, №1. - P. 166-172.
3. Salem R. On a theorem of Zygmund// Duke Mathematical Journal. - 1943. - V.10. - P. 23-31.
4. Carleson L. Selected problems on exceptional sets. - Van Nostrand, New York, 1967. - 126 p.
5. Kolmogorov A.N., Fomin S.V. Elements of function theory and functional analysis. - Moscow: Nauka, 1981. - 544 p. (in Russian)

Faculty of Mechanics and Mathematics, Ivan Franko National University of Lviv chyzhykov@yahoo.com

Institute of Physics, Mathematics and Computer Science, Drohobych Ivan Franko State Pedagogical University
o.zolota@gmail.com

