I. E. Chyzhykov, O. A. Zolota

ON SHARPNESS OF GROWTH ESTIMATES OF CAUCHY-STIELTJES INTEGRALS IN THE UNIT DISC AND THE POLYDISC

The aim of the note is to show sharpness of results from [1] and [2] on the growth of Cauchy-Stieltjes integral in the unit disc and the polydisc. We start with notation. For \(z = (z_1, \ldots, z_n) \in \mathbb{C}^n, \ n \in \mathbb{N}, \) let \(|z| = \max\{|z_j| : 1 \leq j \leq n\} \) be the polydisc norm. Denote by \(U^n = \{z \in \mathbb{C}^n : |z| < 1\} \) the unit polydisc and \(T^n = \{z \in \mathbb{C}^n : |z_j| = 1, 1 \leq j \leq n\} \) the skeleton. For \(z \in U^n, \) \(z_j = r_je^{i\psi_j}, w = (w_1, \ldots, w_n) \in T^n, \) \(w_j = e^{i\theta_j}, 1 \leq j \leq n \) we write \(C_{\alpha}(z,w) = \prod_{j=1}^n C_{\alpha_j}(z_j,w_j), \) where \(\alpha = (\alpha_1, \ldots, \alpha_n), \ \alpha_j > 0, \ 1 \leq j \leq n, \) \(C_{\alpha_j}(z_j,w_j) = \frac{1}{(1-z_j\bar{w}_j)^{\alpha_j}} \) is the generalized Cauchy kernel for the unit disc, \(C_{\alpha_j}(0,w_j) = 1. \)

For \(\psi = (\psi_1, \ldots, \psi_n) \in [-\pi; \pi]^n, \gamma = (\gamma_1, \ldots, \gamma_n) \in [0; \pi]^n \) we define the Stolz angle \(S(\psi,\gamma) = S(\psi_1,\gamma_1) \times \cdots \times S(\psi_n,\gamma_n) \) in the polydisc, where \(S(\psi_j,\gamma_j) \) is the Stolz angle for the unit disc with the vertex \(e^{i\psi_j}, \)

\[S(\psi_j,\gamma_j) = \{z_j \in \mathbb{C} : |z_j - e^{i\psi_j}| \leq A(\gamma_j)(1-r_j), 1 \leq j \leq n, \ \ A(\gamma_j) = \sqrt{1 + 4\tan^2\gamma_j/2}. \]

Let \(\omega : \mathbb{R}_+^n \to \mathbb{R}_+ \) be a semi-additive continuous increasing function in each variable vanishing if at least one of the arguments equals zero. We call \(\omega \) a modulus of continuity. We denote \(\tau = [-\pi; \pi). \) A Borel set \(E \subset T^n \) is called a set of positive \(\omega \)-capacity if there exists a nonnegative measure \(\nu \) on \(T^n \) such that

\[\int_E d\nu = \int_{T^n} d\nu = 1 \]

and

\[\sup_{x \in \mathbb{R}^n} \int_{\tau^n} d\nu(e^{it_1}, \ldots, e^{it_n})/\omega(|t_1-x_1|, \ldots, |t_n-x_n|) < +\infty. \]

2010 Mathematics Subject Classification: 31B05, 31B10, 32A22, 32A25, 32A26, 32A35.
Keywords: modulus of continuity, Cantor type function, Cauchy-Stieltjes integral, unit disc, polydisc, \(\omega \)-capacity.
Otherwise, E is called a set of zero ω-capacity.

Basic properties of the sets of zero ω-capacity can be found in [2].

The following theorem, which generalizes a result of M. M. Sheremeta ([1]) for several variables, is proved in [2].

Theorem A. Let $\alpha_j > 0, \beta_j > 0, \gamma_j \in [0, \pi), 1 \leq j \leq n, n \in \mathbb{N}, \omega$ be a modulus of continuity satisfying

$$
\int_0^1 \ldots \int_0^1 \frac{\omega(t_1, \ldots, t_n)}{t_1^{\alpha_1+1} \ldots t_n^{\alpha_n+1}} dt_1 \ldots dt_n = +\infty.
$$

Let μ be a complex-valued Borel measure on T^n with $|\mu|(T^n) < +\infty$. Then

$$
\left| \int_{T^n} C_\alpha(z, w) d\mu(w) \right| = o \left(\log^{n-1} \delta \cdot \frac{1}{|z_1-e^{i\psi_1}|} \ldots \frac{1}{|z_n-e^{i\psi_n}|} \right), \quad \delta \to 0^+,
$$

where $|z_j| = 1 - \delta^{\frac{1}{p_j}}, z \in S(\psi, \gamma)$, for $(e^{i\psi_1}, \ldots, e^{i\psi_n}) \in T^n$ except, possibly, a set of zero ω-capacity.

In particular, for $\omega(t_1, \ldots, t_n) = t_1^{p_1} \ldots t_n^{p_n}, 0 < p_j < \alpha_j$ we have that

$$
\left| \int_{T^n} C_\alpha(z, w) d\mu(w) \right| = o \left(\log^{n-1} \delta \prod_{j=1}^n |z_j - e^{i\psi_j}|^{p_j-\alpha_j} \right) = o \left(\log^{n-1} \delta \cdot \delta^{\sum_{j=1}^n \frac{p_j-\alpha_j}{p_j}} \right), \quad \delta \to 0^+,
$$

$|z_j| = 1 - \delta^{\frac{1}{p_j}}, z \in S(\psi, \gamma)$, holds outside a set of zero ω-capacity.

In the case $n = 1$, as it is shown in [1], Theorem A holds without the multiplier $\log^{\frac{1}{\delta}}$, and we have the following corollary.

Corollary. Let $\alpha > 0, p \in (0, [\alpha)], h \in \mathbb{R}, \mu$ be a complex-valued Borel measure on T with $|\mu|(T) < +\infty$. Then

$$
\lim_{|z| \to 1, z \in S(\psi, \gamma)} \log^+ \left| \int_T C_\alpha(z, w) d\mu(w) \right| - \log(1 - |z|) \leq \alpha - p
$$

(1)

holds outside, possibly, a set of $e^{i\psi}$ of zero ω-capacity, where $\omega(t) = t^p |\log t|^h$.

We construct examples which show that Theorem 2 from [1] and Theorem A are sharp in some sense.

First, we consider the case $n = 1$ in detail.

We construct a Cantor type set E on the segment $[0; \frac{\pi}{2}]$ ([3]). Given a positive number $\xi < \frac{1}{2}$, on the segment $[0; \frac{\pi}{2}]$ we mark two non-overlapping “white” intervals of length $\frac{\pi}{2} \xi$, such that the first interval has its left endpoint at 0, and the second interval has its right endpoint at $\frac{\pi}{2}$. Two “white” intervals are separated by one “black” interval of length $\frac{\pi}{2} (1 - 2\xi)$. Such a dissection is called a ξ-dissection of the given segment. Let us remove the “black” interval. We have got the set E_1. On the second step we make ξ^2-dissection of each “white” interval left and remove “black” intervals to obtain the set $E_2 \subset E_1$. If we proceed infinitely in the same way we get a perfect set $E = \cap_{m=1}^\infty E_m$ (see [3] for details).
Let \(\omega(t) = t^s \cdot |\log t|^h \), where \(s = \log_2 2 \). We use Theorem 3 (Ch. IV [4]): let \(E \) be an \(n \)-dimensional Cantor set such that \(E_m \) is obtained at the \(m \)-th step and consists of \(2^{mn} \) cubes with sides of lengths \(l_m \). The set \(E \) has positive \(\omega \)-capacity if and only if \(\sum_{m=1}^{\infty} \frac{2^{-mn}}{\omega(l_m)} < +\infty \).

Applying this criterion with \(n = 1 \), \(l_m = \frac{\pi}{2^m} \), we deduce that a set \(E \) has positive \(\omega \)-capacity if and only if

\[
\sum_{m=1}^{\infty} \frac{1}{|\log \frac{\pi}{2} + m\log \xi|^h} < +\infty,
\]

i.e., if \(h > 1 \) then the set \(E \) is of positive \(t^s \cdot |\log t|^h \)-capacity. The condition \(\int_0^1 t^{-\alpha-1} \omega(t) \, dt = \infty \) holds for \(\alpha \geq s \). Let \(F(t) \) be the function associated with a Cantor type set \(E \) (see [3]). We define it such that \(F(0) = 0 \), \(F(\frac{\pi}{2}) = 1 \) and extend it to \((-\infty; +\infty)\) by the formulas \(F(t) = 1 \) as \(\frac{\pi}{2} < t < +\infty \) and \(F(t) = 0 \) as \(-\infty < t < 0 \). The function \(F \) is continuous, nondecreasing, and constant on every interval contiguous to the set \(E \).

We show that on the set \(E \) of values \(\psi \), \(z = re^{i\psi} \)

\[
\left| \int_{-\pi}^{\pi} C_\alpha(z, e^{-it}) \, dF(t) \right| \geq \begin{cases}
K_1(1-r)^{s-\alpha}, & s < \alpha, \\
K_1, & s = \alpha \end{cases} \quad r \uparrow 1
\]

holds, where \(K_1 \) is a positive constant.

For the function \(F(t) \) we define the modulus of continuity at the point \(t_0 \) by

\[
\varkappa(\lambda; t_0, F) = \sup_{|t_2 - t_0| < \lambda} |F(t_2) - F(t_0)|.
\]

In [3, p. 24] it is shown that

\[
\varkappa\left(\frac{\pi}{2}, t_0, F\right) = \left(\frac{1}{2}\right)^{m-2}.
\]

Hence, using the monotony of \(\varkappa \) for we obtain that \(\varkappa(\lambda; t_0, F) \asymp \lambda^s, \lambda \to 0^+ \).

We consider the function

\[
f(z) = \int_0^{\frac{\pi}{2}} \frac{dF(t)}{(1 - ze^{-it})^{\alpha}}, \quad |z| < 1,
\]

where \(s < \alpha \leq 1 \). It is clear that \(\omega \)-capacity of the set \(E \cap \left[0; \frac{\pi}{4}\right] \) is positive.

We estimate \(|f(z)| \) from below. For \(z = re^{i\theta}, t_0 \in E \cap \left[0; \frac{\pi}{4}\right] \) we deduce

\[
\text{Re} \left(re^{i\theta} \right) = \frac{\pi}{2} \cos \left(\alpha \arg \frac{1 - re^{-i(t-t_0)}}{1 - re^{-i(t-t_0)}^h} \right) dF(t) = \int_0^{\frac{\pi}{2}} \frac{\cos \left(\alpha \arctg \frac{r |t-t_0|}{1 - r \cos (t-t_0)} \right)}{|1 - re^{-i(t-t_0)}^h|^\alpha} dF(t).
\]

Denote \(\arctg \frac{r |t-t_0|}{1 - r \cos (t-t_0)} = \gamma \). It is clear that \(\gamma \in (-\frac{\pi}{2}, \frac{\pi}{2}) \). Therefore, the integrated function is nonnegative. Then for \(0 \leq |t - t_0| \leq 1 - r \) we get consequently

\[
tg \gamma = \frac{r \sin |t - t_0|}{1 - r \cos (t-t_0)} \leq \frac{r \sin (1 - r)}{1 - r} \leq 1, \quad \cos \alpha \gamma \geq \cos \left(\frac{\alpha \pi}{4} \right) > 0.
\]
Then we estimate \(|1 - re^{-i(t-t_0)}|^\alpha \) for \(|t - t_0| \leq 1 - r \):

\[
|1 - re^{-i(t-t_0)}|^\alpha = \left(1 + r^2 - 2r \cos (t - t_0)\right)^{\alpha/2} = \left((1 - r)^2 + 4r \cdot \sin^2 \left(\frac{t - t_0}{2}\right)\right)^{\alpha/2} \leq \left((1 - r)^2 + (1 - r)^2\right)^{\alpha/2} \leq K_2 \cdot (1 - r)^\alpha.
\]

Hence, we obtain that

\[
|f (re^{it_0})| \geq \int_{t_0}^{t_0+1-r} \frac{\cos(\alpha \frac{t}{2})}{|1 - re^{-i(t-t_0)}|^\alpha} dF (t) \geq K_3 \int_{t_0}^{t_0+1-r} \frac{dF (t)}{(1 - r)^\alpha} = \frac{K_3 \kappa (1 - r; t_0, F)}{(1 - r)^\alpha}.
\]

Using the asymptotic for \(\kappa \) we deduce

\[
|f (re^{it_0})| \geq \begin{cases}
K_1 (1 - r)^{s-\alpha}, & s \leq \alpha, \\
K_1, & s = \alpha, \\
0, & t_0 \in E.
\end{cases}
\]

(2)

On the other hand, Theorem 2 from [1] yields that the inequality

\[
\int_{-\pi}^{\pi} C_\alpha (z, e^{-it}) dg (t) = o \left(\log \frac{1}{|1 - ze^{i\psi}|} \cdot |1 - ze^{i\psi}|^{s-\alpha} \right), \quad |z| \to 1
\]

holds for all \(\psi \in [-\pi; \pi] \) except, possibly, a set of zero \(t^s \log t^h \)-capacity, where \(\alpha > s > 0 \), \(g \) is a function of bounded variation on \([-\pi; \pi] \).

It follows from (2) that

\[
\lim_{|z| \to 1, z \in \partial (E)} \log^+ \left| \frac{f_T C_\alpha (z, e^{it}) dF (t)}{-\log (1 - |z|)} \right| \geq \alpha - s
\]

holds for \(t \in E \), which shows sharpness of the corollary.

To show sharpness of Theorem A in the multidimensional case we consider the case \(n = 2 \). Let \(E = E_1 \times E_2 \), where \(E_j \) is the Cantor type set on the segment \([0; \frac{\alpha}{2}]\) constructed by using \(\xi_j \)-dissections, \(\xi_j < \frac{1}{4} \), \(j \in 1, 2 \). Let \(F_j (t_j) \) be the corresponding Cantor type function associated with the set \(E_j \). We define this function so that \(F_j (0) = 0 \), \(F_j (\frac{\alpha}{2}) = 1 \), \(F_j (t_j) = 1 \) as \(\frac{\alpha}{2} < t_j < +\infty \) and \(F_j (t_j) = 0 \) as \(-\infty < t_j < 0 \). Similarly to the one-dimensional case the modulus of continuity of \(F_j (t_j) \) satisfies \(\kappa (\lambda; t_0, F_j) \approx \lambda^{s_j} \cdot \log \lambda \). Let \(\mu_F \) be the Stieltjes measure associated with \(F_j (t_j) \) and \(\mu_F = \mu_{F_1} \otimes \mu_{F_2} \) be the product of the measures \(\mu_1 \) and \(\mu_2 \) (Ch. V, §6.2, [5]), in particular, the measure of the rectangle \([a_1, b_1] \times [a_2, b_2] \) is calculated by the formula \(\mu_F ([a_1, b_1] \times [a_2, b_2]) = (F_1 (b_1) - F_1 (a_1)) \cdot (F_2 (b_2) - F_2 (a_2)). \)

Let \(\omega (t_1, t_2) = t_1^{s_1} \log t_1^{h_1} \cdot t_2^{s_2} \log t_2^{h_2} \). Similarly to the case \(n = 1 \) the set \(E_j \) has positive \(\omega \)-capacity if and only if \(h_j > 1 \). It follows from the definition of \(\omega \)-capacity that the set \(E \) has positive \(\omega \)-capacity with \(\omega (t_1, t_2) = t_1^{s_1} \log t_1^{h_1} \cdot t_2^{s_2} \log t_2^{h_2} \) if \(h_j > 1 \).

We define the modulus of continuity of the positive measure \(\mu_F \) at the point \((t_0_1, t_0_2)\)

\[
\kappa (\lambda_1, \lambda_2; (t_0_1, t_0_2), \mu_F) = \mu_F (\{[t_0_1 - \lambda_1, t_0_1 + \lambda_1] \times [t_0_2 - \lambda_2, t_0_2 + \lambda_2]\}).
\]

Hence, \(\kappa (\lambda_1, \lambda_2; (t_0_1, t_0_2), \mu_F) \approx \lambda_1^{s_1} \cdot \lambda_2^{s_2} \), where \((t_0_1, t_0_2) \in E \).
Theorem 1. Let \(\alpha_1, \alpha_2 > 0, \) \(\alpha_1 + \alpha_2 < 1, \) \(s_j < \alpha_j, \) \(j = 1, 2. \) Then there exists a set \(E = \{ (e^{i\psi_1}, e^{i\psi_2}) \} \subset T^2 \) of positive \(\omega \)-capacity with \(\omega (t_1, t_2) = t_1^{-s_1} |\log t_1|^{\alpha_1} \cdot t_2^{-s_2} |\log t_2|^{\alpha_2}, \) a positive measure \(\mu \) on \(T^2 \) and a constant \(K_1 > 0 \) such that

\[
\left| \int_{T^2} C_\alpha (z, w) d\mu (w) \right| \geq \begin{cases}
K_4 (1 - r_1)^{s_1 - \alpha_1} \cdot (1 - r_2)^{s_2 - \alpha_2}, & s_j < \alpha_j, \\
K_4 (1 - r_1)^{s_1 - \alpha_1}, & s_1 < \alpha_1, \\
K_4 (1 - r_2)^{s_2 - \alpha_2}, & s_2 < \alpha_2, \\
K_4, & s_1 = \alpha_1, \\
K_4, & s_j = \alpha_j,
\end{cases}
\]

where \(z_j = r_j e^{i\psi_j}, r_j \uparrow 1, s_j = \log \frac{1}{r_j}. \)

Proof. Let

\[
f (z_1, z_2) = \int_{[0, \frac{\pi}{2}]^2} \frac{d\mu_F (t_1, t_2)}{\prod_{j=1}^2 (1 - z_j e^{-i t_j})^{\alpha_j}}.
\]

For \(z_j = r_j e^{i\theta_j}, (t_01, t_02) \in E \cap \left[0, \frac{\pi}{4} \right]^2 \) we estimate \(|f (z_1, z_2)| \) from below similarly to the one-dimensional case:

\[
|f (z_1, z_2)| \geq \text{Re} f (z_1, z_2) = \text{Re} \int_{[0, \frac{\pi}{2}]^2} \frac{d\mu_F (t_1, t_2)}{\prod_{j=1}^2 |1 - z_j e^{-i t_j}|^{\alpha_j}} = \text{Re} \int_{[0, \frac{\pi}{2}]^2} \frac{\prod_{j=1}^2 \exp \left(i \alpha_j \arg \frac{1}{1 - z_j e^{-i t_j}} \right) d\mu_F (t_1, t_2)}{\prod_{j=1}^2 |1 - z_j e^{-i t_j}|^{\alpha_j}} = \int_{[0, \frac{\pi}{2}]^2} \frac{\cos \left(\alpha_1 \arg \frac{1}{1 - z_1 e^{-i t_1}} + \alpha_2 \arg \frac{1}{1 - z_2 e^{-i t_2}} \right) d\mu_F (t_1, t_2)}{\prod_{j=1}^2 |1 - r_j e^{-i(t_j - t_0)}|^{\alpha_j}} \geq K_5 \int_{[t_01, t_01 + 1 - r_1] \times [t_02, t_02 + 1 - r_2]} \frac{d\mu_F (t_1, t_2)}{\prod_{j=1}^2 (1 - r_1)^{\alpha_1} (1 - r_2)^{\alpha_2}} \geq K_5 \prod_{j=1}^2 (1 - r_j)^{\alpha_j} \cdot \forall (1 - r_1, 1 - r_2; (t_01, t_02), \mu_F) \times \prod_{j=1}^2 (1 - r_j)^{s_j - \alpha_j}.
\]

REFERENCES

Faculty of Mechanics and Mathematics,
Ivan Franko National University of Lviv
chyzykov@yahoo.com

Institute of Physics, Mathematics and Computer Science,
Drohobych Ivan Franko State Pedagogical University
o.zolota@gmail.com

Received 21.11.2011