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A functional representation of inclusion hyperspace monad was constructed in [1]. The inclu-
sion hyperspace monad contains as submonads such important monads as the superextension
monad and linked system monad. We give characterizations of a functional representation for
these monads.

И. Перегняк, Т. Радул. Функциональные представления монад суперрасширения и сцеп-
ленных систем // Мат. Студiї. – 2012. – Т.37, №2. – C.142–146.

В работе [1] построено функциональное представление монады гиперпространств
включения. Эта монада содержит в качестве подмонад монады суперрасширения и сцеп-
ленных систем. Получена характеризация функциональных представлений данных монад.

Introduction. The algebraic aspect of the theory of functors in categories of topological
spaces and continuous maps was investigated rather recently. It is based, mainly, on the
existence of monad (or triple) structure in the sense of S. Eilenberg and J. Moore ([2]).

Many classical constructions lead to monads: hyperspaces, spaces of probability measures,
superextensions etc. There were many investigations of monads in topological categories (see,
for example, [3],[4]). But it seems that the main difficulty to obtain general results in the
theory of monads is due to different nature of functors.

Many monads have a functional representation, i.e., their functorial part FX can be
naturally imbedded in RCX ([1]). A functional representation of the hyperspace functor exp
is given in [5]. This representation essentially uses the linear structure on function spaces.
The hyperspace functor could be included in the hyperspace monad ([4]). From the algebraic
point of view, hyperspaces are free Lawson semilattices. Some functional representations
of the hyperspace monad which involves the semilattice structure on function spaces are
given in [6], [7]. A characterization of functional representation for the inclusion hyperspace
monad G was given in [1]. The main goal of this paper is to obtain characterizations of
functional representation for the superextension monad and linked system monad.

The paper is organized as follows: in Section 1 we give some necessary definitions, in
Section 2 we obtain the main results.

1. By Comp we denote the category whose objects are compacta (compact Hausdorff spaces)
and morphisms are continuous mappings.
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We need some definitions concerning monads (see [4] for more details). A monad T =
(T, η, µ) in the category Comp consists of an endofunctor T : Comp → Comp and natural
transformations η : Id Comp → T (unity), µ : T 2 → T (multiplication) satisfying the relations
µ ◦ Tη = µ ◦ ηT =1T and µ ◦ µT = µ ◦ Tµ. (By Id Comp we denote the identity functor on
the category Comp and T 2 is the superposition T ◦ T of T .)

A natural transformation ψ : T → T ′ is called a morphism from a monad T = (T, η, µ) to
a monad T′ = (T ′, η′, µ′) if ψ ◦ η = η′ and ψ ◦ µ = µ′ ◦ ηT ′ ◦ Tψ. If all the components of ψ
are monomorphisms then the monad T is called a submonad of T′ and ψ is called a monad
embedding.

We need the definition of the monad of order-preserving functionalsO ([8]) which contains
all considered monads as submonads.

Let X be a compactum. By C(X) we denote the Banach space of all continuous functions
φ : X → R with the sup-norm. We consider C(X) with the natural order, linear structure
and lattice operations ∧ and ∨ (pointwise minimum and maximum). For each c ∈ R we
denote by cX the constant function from C(X) defined by the formula cX(x) = c for each
x ∈ X.

A functional ν : C(X) → R is called weakly additive if for each c ∈ R and φ ∈ CX we
have ν(φ+ cX) = ν(φ)+ c; normalized if ν(1X) = 1; order-preserving if for each φ, ψ ∈ C(X)
with φ ≤ ψ we have ν(φ) ≤ ν(ψ).

For a compactum X by OX we will denote the set of all order-preserving weakly addi-
tive normalized functionals. We consider O(X) as a subspace of the space Cp(C(X)) of all
continuous functions on C(X) equipped with pointwise convergence topology.

Let X, Y be compacta and let f : X → Y be a continuous map. Define a map O(f) :
O(X)→ O(Y ) by the formula (O(f)(µ))(φ) = µ(φ ◦ f), where µ ∈ O(X) and φ ∈ C(Y ).

We define a mapping νX : O2(X) → O(X) by the formula νX(α)(g) = α(g̃), where
α ∈ O2(X), g ∈ C(X) and the mapping g̃ : O(X) → R is defined by the formula g̃(γ) =
γ(g), γ ∈ O(X). It is easy to check that νX is well-defined and continuous. Let us define a
map ξX : X → OX by the formula ξX(x)(φ) = φ(x), φ ∈ C(X), x ∈ X.

The maps ξX and νX are the components of natural transformations ξ : Id Comp → O
and ν : O2 → O and the triple O = (O, ξ, ν) forms a monad on the category Comp ([8]).

Let us describe the inclusion hyperspace monad G and its submonads L and N. For a
compactum X by hyperspace expX we denote the set of non-void compact subsets of X
endowed with the Vietoris topology.

A base of this topology consist of the sets of the form 〈U1, ...., Un〉 = {A ∈ expX|A ⊂
U1 ∪ · · · ∪ Un and A ∩ Ui 6= ∅ for every i}, where U1, ...., Un are open subsets of X.

An elementA ∈ exp2X is called an inclusion hyperspace if for each A ∈ A and B ∈ expX
with A ⊂ B we have B ∈ A. Let us denote GX = {A ∈ exp2X | A is inclusion hyperspace}.
We consider GX as a subset of exp2X. For a map f : X → Y define a map Gf : GX → GY
by the formula Gf(A) = {A ∈ expY | f(B) ⊂ A for some B ∈ A}, A ∈ GX. Define natural
transformations η : IComp → G and µ : G2 → G as follows: ηX(x) = {A ∈ expX | x ∈ A},
x ∈ X and µX(Ã) =

⋃
{
⋂
α | α ∈ Ã}, where Ã ∈ G2X. The triple G = (G, η, µ) is a monad

on the category Comp ([9]).
By NX we denote the subspace of GX consisting of all linked systems of closed subsets

of X (a system is called linked if the intersection of every its two elements is nonempty).
A linked system is a maximal linked system if it is maximal with respect to the inclusion.
A subspace of all maximal linked systems in NX is called the superextension of X (written
λX). The subspaces λX and NX define the submonads L and N of the monad G (see [10]
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and [11]).
The map lX : GX → OX is defined by the formula lX(A)(φ) = sup{inf φA|A ∈ A},

A ∈ GX and φ ∈ CX. The maps lX are components of a monad embedding l : G→ O ([1]).
We say that a functional ν ∈ OX weakly preserves ∧ (weakly preserves ∨) if for each

φ ∈ CX and c ∈ R we have ν(φ ∧ cX) = min{ν(φ), c} (ν(φ ∨ cX) = max{ν(φ), c}). For each
X ∈ Comp, the subset lX(GX) of OX consists of all ν ∈ OX which weakly preserve ∧ and
∨ ([1]).

2. Since L and N are submonads of the monad G, the restrictions of natural transformation l
define monad imbeddings of the monads L and N. The problem of characterizing of images
lX(λX) and lX(NX) arises naturally.

Definition 1. We say that a functional ν ∈ OX partially preserves ∧ (partially preserves ∨)
if for each ϕ ∈ CX and ψ ∈ CX such that ψ|ϕ−1[ν(ϕ);+∞) ≡ const (ψ|ϕ−1(−∞; ν(ϕ)] ≡ const)
we have ν(ϕ ∧ ψ) = min{ν(ϕ), ν(ψ)} (ν(ϕ ∨ ψ) = max{ν(ϕ), ν(ψ)}).

Obviously, if ν ∈ OX partially preserves ∧ (partially preserves ∨), then ν ∈ OX weakly
preserves ∧ (weakly preserves ∨).

Theorem 1. lX(NX) = {ν ∈ OX | ν partially preserves ∧ and weakly preserves ∨}.

Proof. We denote nX = {ν ∈ OX | ν partially preserves ∧ and weakly preserves ∨}. Let
us prove the inclusion lX(NX) ⊂ nX. Consider any A ∈ NX and put νA = lX(A). Since
NX ⊂ GX, νA weakly preserves ∨. We should prove that νA partially preserves ∧.

Consider any functions ϕ, ψ ∈ C(X) such that ψ|ϕ−1[ν(ϕ),+∞) ≡ const. We have νA(ϕ) =
sup{inf ϕ(A)|A ∈ A}.

Since A is a compact family of compact sets, there exists A0 ∈ A such that inf ϕ(A0) =
νA(ϕ). Hence ψ|A0 ≡ c, for some c ∈ R and we obtain νA(ψ) ≥ c. On the other hand, since
A ∩ A0 6= ∅ for each A ∈ A, we have νA(ψ) ≤ c. Thus, νA(ψ) = c.

Let us consider two cases:
1. νA(ϕ) ≥ c. Then (ϕ∧ψ)|A0 ≡ c, so, using previous arguments, we obtain νA(ϕ∧ψ) =

c = min{νA(ϕ), νA(ψ)}.
2. νA(ϕ) ≤ c. In this case (ϕ ∧ ψ)(A0) ⊂ [νA, c] and inf(ϕ ∧ ψ)(A0) = νA. Moreover, for

any A ∈ A there exists x ∈ A such that ϕ(x) ≤ νA(ϕ), hence inf(ϕ ∧ ψ)(A) ≤ νA(ϕ) and
sup{inf(ϕ∧ψ)(A)|A ∈ A}= νA(ϕ). Thus we obtain νA(ϕ∧ψ) = νA(ϕ) = min{νA(ϕ), νA(ψ)}.

Now we shall prove the reverse inclusion lX(NX) ⊃ nX. Consider any ν ∈ nX, then
there exists A ∈ GX such that lX(A) = ν. We should prove that A ∈ NX. Assume the
contrary. Then there exist A1, A2 ∈ A, such that A1 ∩A2 = ∅. Choose open sets V1, V2 such
that A1 ⊂ V1, A2 ⊂ V2 and V1 ∩ V2 = ∅.

Now we can choose a continuous function ϕ1 : X → [0, 1] such that ϕ1(A1) ⊂ {1} and
ϕ1(X\V1) ⊂ {0}. Then we have ν(ϕ1) = 1. Choose another continuous function ϕ2 : X →
[0, 1], with the properties ϕ2(A2) ⊂ {1} and ϕ2(X\V2) ⊂ {0}. Then ν(ϕ2) = 1.

On the other hand, we have ϕ1 ∧ ϕ2 ≡ 0, and then ν(ϕ1 ∧ ϕ2) = 0 6= ν(ϕ1) ∧ νA(ϕ2),
which is a contradiction.

Lemma 1. Let A ∈ NX and A0 ∈ expX such that A0 6∈ A. Then there exists an open set
V ⊂ X such that A0 ⊂ V and for any A ∈ A we have A \ V 6= ∅.

Proof. Since A is a closed subset of expX we can choose a basic open neighborhood
〈V1, . . . , Vk〉 of A0 in expX such that A ∩ 〈V1, ..., Vk〉 = ∅. Put V =

⋃k
i=1 Vi. Then we
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have A0 ⊂ V . Consider any A ∈ A. Since A is an inclusion hyperspace, A ∪ A0 ∈ A, hence
(A ∪ A0) /∈ 〈V1, ..., Vk〉. On the other hand, (A ∪ A0) ∩ Vi ⊃ A0 ∩ Vi 6= ∅ for each i. Hence,
A \ V = (A ∪ A0) \ V 6= ∅.

Theorem 2. lX(λX) = {ν ∈ OX | ν partially preserves ∧ and ∨}.

Proof. Denote sX = {ν ∈ OX | ν partially preserves ∧ and ∨}. Let us prove the inclusion
sX ⊂ lX(λX). Consider any ν ∈ sX. Since sX ⊂ nX, by Theorem 1, there exists A ∈ NX
such that ν = lX(A). We should prove that the linked system A is maximal with respect to
the inclusion.

Assume the contrary. Then there exists A0 ∈ expX such that for any A ∈ A we have
A0 ∩ A 6= ∅ and A0 6∈ A. By Lemma 1, there exists an open set V ⊂ X such that A0 ⊂ V
and for any A ∈ A we have A \ V 6= ∅.

Let ϕ : X → [0; 1] be a continuous function such that ϕ(A0) ⊆ 0 and ϕ(X \ V ) ⊆ {1}.
We can choose a continuous function ψ : X → [0; 1] such that and ψ(ϕ−1({0})) ⊆ 1 and
ψ(X \ V ) ⊆ {0}. Then we have (ϕ ∨ ψ)(x) > 0 for each x ∈ X. Since X is compact, there
exists a > 0 such that (ϕ ∨ ψ)(x) ≥ a for each x ∈ X, hence ν(ϕ ∨ ψ) ≥ a.

On the other hand, since any element A ∈ A has non-empty intersection with A0 and
ϕ|A0 ≡ 0, we have ν(ϕ) = sup{inf ϕ(A)|A ∈ A} = 0. Similarly, since any element A ∈ A
has non-empty intersection with X \ V and ψ|X\V ≡ 0, we have ν(ψ) = 0. Since ν partially
preserves ∨, we have ν(ϕ ∨ ψ) = 0 and we obtain a contradiction.

Now, let us prove the inclusion lX(λX) ⊂ sX. Consider any A ∈ λX and put νA =
lX(A). Since λX ⊂ NX, the functional νA partially preserves ∧. We have to prove the
equality νA(ϕ ∨ ψ) = max{νA(ϕ), νA(ψ)} for any functions ϕ, ψ ∈ C(X) such that

ψ|ϕ−1(−∞, νA(ϕ)] ≡ c

for some c ∈ R. Since νA preserves order, we have νA(ϕ ∨ ψ) ≥ max{νA(ϕ), νA(ψ)}. Let us
prove the inequality νA(ϕ ∨ ψ) ≤ max{νA(ϕ), νA(ψ)}.

Put B = ϕ−1(−∞, νA(ϕ)]). Since νA(ϕ) = sup{inf ϕ(A)|A ∈ A}, we have B ∩A 6= ∅ for
each A ∈ A. Since the system A is maximal, B ∈ A. We have ψ|B ≡ c, hence νA(ψ) = c.

Consider the following two cases:
1. νA(ϕ) ≤ c. Then we have (ϕ ∨ ψ)(b) ≤ c for each b ∈ B, hence νA(ϕ ∨ ψ) ≤ c =

max{νA(ϕ), νA(ψ)}.
2. νA(ϕ) ≥ c. Then we have (ϕ ∨ ψ)(b) ≤ νA for each b ∈ B, hence νA(ϕ ∨ ψ) ≤ νA =

max{νA(ϕ), νA(ψ)}.
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