On algebraic bases of algebras of block-symmetric polynomials on Banach spaces

Author V. V. Kravtsiv, A. V. Zagorodnyuk
maksymivvika@gmail.com, andriyzag@yahoo.com
Vasyl Stefanyk Precarpathian National University, Pidstryhach Institute for Applied Problems of Mechanics and Mathematics

Abstract The paper contains a description of algebraic basis of algebra of block-symmetric polyno- mials on the $l_1$-sum of the copies of $l_1$
Keywords algebraic basis; block-symmetric polynomials; polynomials on Banach spaces
Reference 1. A.V. Zagorodnyuk, V.V. Kravtsiv, Spectr

a of algebra of block-symmetrical analitical functions, Applied Problem of Mekh.-Mat., (2011) (in press) (in Ukrainian)

2. V. Kravtsiv, Algebra of block-symmetric polynomials: generating elements and the transletion operator, Matemetychnyi visnyk NTSh, 8 (2011), 107121. (in Ukrainian)

3. I.V. Chernega, Symmetric polynomials on Banach spaces, Carpath. Mathem. Publications, 1 (2009), 2, 105125. (in Ukrainian)

4. R. Alencar, R. Aron, P. Galindo, A. Zagorodnyuk, Algebra of symmetric holomorphic functions on `p, Bull. Lond. Math. Soc., 35 (2003), 5564.

5. J. Dieudone, J. Carrell, D. Mumford, Geometric invariant theory, Mir, Moskow, 1974.

6. A. Nemirovskii, S. Semenov, On polynomial approximation of functions on Hilbert space, Mat. USSR Sbornik, 21 (1973), 255277.

7. H. Weyl, The classical group: their invariants and representations, Princeton university press, Princenton, New Jersey, 1973.

Pages 109-112
Volume 37
Issue 1
Year 2012
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML