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We consider an abstract Cauchy problem for parabolic differential-operator equations in
Hilbert spaces. Initial boundary value problems for parabolic equations are reduced to the Cau-
chy problem for a system of parabolic differential equations. It is proved that the solution of an
initial boundary value problem for partial parabolic equation can be approximated by linear
combinations of elementary solutions. Completeness of elementary solutions is also proved for
differential-operator equations in abstract Hilbert spaces. The obtained abstract results are
applied to differential equations.

М. М. Мамедов. Разрешимость и полнота решений параболических дифференциально-
операторных уравнений // Мат. Студiї. – 2011. – Т.36, №1. – C.77–85.

Рассматривается абстрактная задача Коши для параболических дифференциально-
операторных уравнений в гильбертовом пространстве. Краевая задача для параболиче-
ского уравнения сводится к задаче Коши для системы параболических дифференциаль-
ных уравнений. Доказывается, что решение для краевой задачи для параболического
уравнения в частных производных можно аппроксимировать линейной комбинацией эле-
ментарных решений. Для параболического дифференциально-операторного уравнения в
абстрактном гильбертовом пространстве доказывается полнота элементарных решений.
Полученные абстрактные результаты применяются к дифференциальным уравнениям.

1. Introduction. The issues of solvability of problems for differential operator equations
were investigated by many authors. The papers devoted to these issues can be divided into
two groups. The papers where the solvability conditions are formulated in the terms of
operator coefficients refer to the first group. The papers where the conditions are formulated
in terms of location of the spectrum and growth of the resolvent of an appropriate operator
bundle refer to the second group.

If in the papers of the first group the conditions are acceptable in the solvability issues
and spectral issues, the conditions of the second group that are acceptable in the solvability
issues, are not acceptable in the spectral issues. Notice that the these results are reflected in
S. Y. Yakubov monograph [1].

Notice that the results obtained the second group are reflected in S. G. Krein [4] and
S. Y. Yakubov and Ya. Yakubov’s monographs [5]. In recent papers A. Ashyralyev, Y. Sozen
and P. E. Sobolevskii [2], V. B. Shakmurov [7] the existence of solution is investigated.

In this paper in contrast to we consider an abstract Cauchy problem for parabolic
differential-operator equations in Hilbert spaces.
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It is proved that the solution of an initial boundary value problem for partial parabolic
equation can be approximated by linear combinations of elementary solutions. Completeness
of elementary solutions is also proved for differential-operator equations in abstract Hilbert
spaces. The obtained abstract results are applied to differential equations.

2. The existence of a solution of the Cauchy problem in a Hilbert space and
approximation by an elementary solution. We consider a Cauchy problem for a pertur-
bed homogeneous equation of first order

u′(t) = Au(t) +Bu(t), (1)
u(0) = ϕ0 (2)

in a Hilbert space H. We find the conditions providing approximation of solutions of Cauchy
problem (1)–(2) by linear combinations of elementary solutions of equation (1). By λj we
denote eigenvalues of the operator A+B with regard to algebraic multiplicity. If uj0, ..., ujkj
is a chain of root vectors of the operator A+B corresponding to λ, then the function

uj(t) = eλjt

(
tkj

kj!
uj0 +

tkj−1

(kj − 1)!
uj1 + ...+

t

1!
uj,kj−1 + ujkj

)
(3)

is a solution of equation (1) and is said to be elementary solution of equation (1).
We giving some definitions. σp(H), p > 0 set of operators A, which compact acting in H

and

‖A‖2p =
∞∑
n=1

Spn(A,H) <∞.

Hear Sn(A,H) s-number completed continuously operator A, i.e. eigenvalue of operator
T = (A∗A)1/2. At p = 2 σ2(H) is called classes of Hilbert-Shmidt C([0, T ], H(A)) — space of
continuously functions in interval [0, T ], with value in H(A), and

‖f‖C([0,T ],H(A)) = max
[0,T ]
‖f(x)‖H(A),

where H(A) = {u : u ∈ D(A), ‖u‖H(A) = (‖u‖H + ‖Au‖H)1/2}.
The space C1([0, T ], H(A), H) defined as follows:

C1([0, T ], H(A), H) =
{
f : f ∈ C([0, T ], H(A)) ∩ C1([0, T ], H(A)),

‖f‖C1([0,T ],H(A)) = max
[0,T ]
‖f(x)‖H + max

[0,T ]
‖f ′(x)‖H

}
.

Theorem 1. Let

1. the operator A in H have a dense domain of definition;

2. for some p > 0 and λ0 ∈ ρ(A) the operator R(λ0, A) belong to σp(H);

3. there exist rays `k(a) with angles between the neighboring rays, at most π
p
, and numbers

α > 0, β ∈ (0, 1] such that

‖R(λ,A)‖ ≤ C|λ|−β, | arg λ| ≤ π

2
+ α, λ ∈ `k(a), |λ| → ∞;
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4. B be an operator in H, D(B) ⊃ D(A)and for any ε > 0‖Bu‖H ≤ ε‖Au‖βH‖u‖
1−β
H +

C(ε)‖u‖H , u ∈ D(A); C(ε) > 0 some constant, depending only at ε.

5. ϕ0 ∈ D(A).

Then problem (1)–(2) has a unique solution

u ∈ C([0, T ], H) ∩ C1([0, T ], H(A), H)

and there exist numbers Cjn such that

lim
n→∞

max
t∈[0,T ]

∥∥∥u(t)−
n∑
j=1

Cjnuj(t)
∥∥∥
H

= 0,

lim
n→∞

sup
t∈[0,T ]

t
∥∥∥u′(t)− n∑

j=1

Cjnu
′
j(t)
∥∥∥
H

+
∥∥∥Au(t)−

n∑
j=1

CjnAuj(t)
∥∥∥
H

= 0,

where u(t) is a solution of problem (1)–(2) and uj(t) are elementary solutions of equation (1).

Proof. Since the system of root vectors of the operator A+B is complete in the space H(A),
there exist the numbers Cjn such that

lim
n→∞

(∥∥∥ϕ0 −
n∑
j=1

Cjnujkj

∥∥∥
H

+
∥∥∥Aϕ0 −

n∑
j=1

CjnAujkj

∥∥∥
H

)
= 0. (4)

On the other hand, the estimation∥∥∥u(t)−
n∑
j=1

Cjnuj(t)
∥∥∥ ≤ C

(∥∥∥ϕ0 −
n∑
j=1

Cjnujkj

∥∥∥
H

+
∥∥∥Aϕ0 −

n∑
j=1

CjnAujkj

∥∥∥
H

)
(5)

∥∥∥u′(t)− n∑
j=1

Cjnu
′
j(t)
∥∥∥+

∥∥∥Au(t)−
n∑
j=1

CjnAuj(t)
∥∥∥
H
≤

≤ Ct−1
(∥∥∥ϕ0 −

n∑
j=1

Cjnujkj

∥∥∥
H

+
∥∥∥Aϕ0 −

n∑
j=1

CjnAujkj

∥∥∥
H

) (6)

follows from theorem 3.3 (see [1], p.113), for f = 0, u0 = ϕ0−
∑n

j=1 cjnujkj . The affirmation
of the theorem follows from (5) and (6), by the virtue of (4).

3. The estimate operator R(λ,A) and completeness of elementary solutions in a
Hilbert space. In the Hilbert space H we consider the Cauchy problem

u′(t) = Au(t) +Bu(t) + f(t), u(0) = u0. (7)

(H,H(A))1− 1
p
, p-interpolation space between H(A) and H, which defined as follows:

(H,H(A))θ, p =

{
u : u ∈ H, ‖u‖(H,H(A))θ, p =

(∫ 1

0

t(1−θ)p−1 ‖Ae−tAu‖p dt

)1/p

+‖u‖H <∞

}
.

At θ = 1− 1
p
, ‖u‖(H,H(A))

1− 1
p , p

=
(∫ 1

0
‖Ae−tAu‖p dt

)1/p
+‖u‖H <∞.
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Theorem 2. Let

1. the operator A in H have a dense domain of definition and

‖R(λ,A)‖ ≤ C|λ|−1, | arg λ| < π

2
, |λ| → ∞;

2. B be an operator in H, D(B) ⊃ D(A)and for any ε > 0

‖Bu‖H ≤ ε‖Au‖H + C(ε)‖u‖H , u ∈ D(A).

Then the operator L : u → (u′(t) − Au(t) − Bu(t), u(0)) from W 1
p ((0, T ), H(A), H) onto

Lp((0, T ), H)× (H,H(A))1− 1
p
, p for p ∈ (1,∞) is an isomorphism.

Proof. Based on the Banach theorem it suffices to prove that the operator L is an algebraic
isomorphism. By the definition of the space W 1

p ((0, T ), H(A), H), it follows from u ∈ W 1
p ((0,

T ), H(A), H) that u′ − Au − Bu ∈ Lp((0, T ), H), and by the theorem on traces (see H.
Triebel [6], p.46) it follows from u ∈ W 1

p ((0, T ), H(A), H) that u(0) ∈ (H,H(A))1− 1
p
, p.

The following estimation is true (see for example [7], p.32, Lemma 11)

‖R(λ,A+B)‖ ≤ C|λ|−1, | arg λ| < π

2
, |λ| → ∞.

The mapping L is injective. The injective of mapping h is consequence from theorem 3.2
(see [1], p.100). Prove that it is surjective, i.e. for any collection

(f, u0) ∈ Lp((0, T ), H)× (H,H(A))1− 1
p
, p

there exists a solution of Cauchy problem (11), belonging to W 1
p ((0, T ), H(A), H). For s ∈ C

the solution of the problem is represented in the form of the sum u(t) = u1(t) + u2(t) where
u1(t) is a contraction on [0, T ] of the solution of the equation

u′1(t)− (A+B − sI)u1(t) = f̃(t), t ∈ R, (8)

where f̃(t) = f(t) for t ∈ [0, T ], f̃(t) = 0 for t∈̄[0, T ], and ϕ2(x) is a solution of the problem

u′2(t)− (A+B − sI)u2(t) = 0, u2(0) = u0 − u1(0). (9)

It follows from the conditions that, for sufficiently large s→∞

‖[λI − (A+B − sI)]−1‖ ≤ C|λ|−1, | arg λ| ≤ π

2
(10)

the equation (8) has a unique solition u1 ∈ W 1
p (R,H(A), H).

By (10) there exists the semi-group et(A+B−sI).
On the other hand, by the theorem on traces u1(0) ∈ (H,H(A))1− 1

p
, p.

Now it is easy to observe that the function

u2(t) = et(A+B−sI)(u0 − u1(0))
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belongs to the spaceW 1
p ((0, T ), H(A), H) and it is a solution of Cauchy problem (9). Indeed,

by ([6], p.109) we have

‖u2‖pW 1
p ((0,T ),H(A+B−sI),H) ≤

≤ C

∫ T

0

‖(A+B − sI)et(A+B−sI)(u0 − u1(0))‖pW 1
p ((0,T ),H(A+B−sI),H)dt

≤ C‖u0 − u1(0)‖p(H,H(A−B+sI))
1− 1

p ,p
.

Now it suffices to take into account, that H(−A−B+sI) = H(A). Using the substitution
u(t) = e−stV (t), we also establish the existence of the solution of problem (7).

Theorem 3. Let

1. the operator A in H have a dense domain of definition D (A);

2. For some q > 0 and λ0 ∈ ρ(A) we have R(λ0, A) ∈ σp(H);

3. there exist rays `k(A) with angles between neighboring rays, at most π
q
, such that

R(λ,A) ≤ C|λ|−1, | arg λ| ≤ π

2
, λ ∈ `k(A), |λ| → ∞;

4. B be an operator in H, D(B) ⊃ D(A) and the operator BR(λ0, A) in Н be compact;

5. ϕ0 ∈ (H,H(A))1− 1
p
,p for some p ∈ (1,∞).

Then problem (1)–(2) has a unique solution u ∈ W 1
p ((0, T ), H(A), H) and there exist the

numbers Cjn such that

lim
n→∞

∫ T

0

(∥∥∥u′(t)− n∑
j=1

Cjnu
′
j(t)
∥∥∥p
H

+
∥∥∥Au(t)−

n∑
j=1

CjnAuj(t)
∥∥∥p
H

)
dt = 0,

where u(t) is a solution of problem (1)–(2), and uj(t), j = 1, . . . , n, are the elementary
solutions of equation (1).

Proof. A linear span of the root vectors A + B is dense in the space H(A). On the other
hand, by H. Triebel ([6], p.40), the set H(A) is dense in the space ((H,H(A)).θ,p. So, the
linear span of root vectors of the operator A+B is dense in the space ((H,H(A)).θ,p. Then
by Theorem 2, we have∥∥∥u(·)−

n∑
j=1

Cjnuj(·)
∥∥∥
W 1
p ((0,T ),H(A),H)

≤ C
∥∥∥ϕ0 −

n∑
j=1

Cjnujkj

∥∥∥
(H,H(A))

1− 1
p ,p

,

whence the affirmation of the theorem follows.

4. Abstract results applied to partial differential equations. Consider the initial-
boundary value problem for the parabolic equation

Lu =
∂u(t, x)

∂t
+ a(t, x)

∂2mu(t, x)

∂x2m
+

2m−1∑
j=1

aj(t, x)
∂ju(t, x)

∂xj
= f(t, x), (11)
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Lνu = ανu
(mν)(t, 0) + βνu

(mν)
x (t, 1) +

Nν∑
s=1

δ
(nν)
νs u

(mν)
x (t, xνs) + Tνu(t, ·) = 0

ν = 1, . . . , 2m,
(12)

u(0, x) = u0(x), (13)

where xνs ∈ (0, 1), mν ≤ 2m− 1.
Let Wmν

q (0, 1) — space of Sobolev, which defined as follows

Wmν
q (0, 1) = {u : u, umν ∈ Lq(0, 1)}, ‖u‖Wmν

q (0,1) = {‖u‖Lq(0,1) + ‖umν‖Lq(0,1)}1/q.

Theorem 4. Let

1. a ∈ C([0, T ]× [0, 1]), a(t, x) 6= 0, for (t, x) ∈ [0, T ]× [0, 1],

aj ∈ C([0, T ], L2(0, 1)), j = 0, . . . , 2m− 1;

2. For some δ > 0 | arg a(t, x)| ≤ π
2
− δ, if m is even and | arg a(t, x)| ≥ π

2
+ δ, if m is odd;

3. boundary conditions (16) be m-regular, i.e.

θ =

∣∣∣∣∣∣
α1ω

m1
1 . . . α1ω

m1
m β1ω

m1
m+1 . . . β1ω

m1
2m

− − −
α2mω

m2m
1 . . . α2mω

m2m
m β2mω

m2m
m+1 . . . β2mω

m2m
2m

∣∣∣∣∣∣ 6= 0

where ω1 = 1, ω2 = ei
π
m , . . . , ω2m = ei

π
m
(2m−1);

4. for some q ∈ [1,∞) the functionals Tν in Wmν
q (0, I) be continuous.

Then the operator L : u→ (Lu, u(0, x)) fromW
(1,2m)
(p,2) ((0, T )×(0, 1), Lνu = 0, ν = 1, . . . , 2m)

onto L(ν,2)((0, T ) × (0, 1) × (L2(0, 1), W 2m
2 ((0, 1), Lνu = 0, ν = 1, . . . , 2m)1− 1

p
,p)) is an

isomorphism for p ∈ (1,∞).

Proof. We reduce problem (11)–(13) to the Cauchy problem for an abstract parabolic equa-
tion of first order.

By A(t) the denote an operator in L2(0, 1) with domain of definition D(A(t)) =
= D(A) = W 2m

2 ((0, 1), Lνu = 0, ν = 1, . . . , 2m) independent of t ∈ [0, T ] and law of
action A(t)u = −a(t, x)u(2m)(x). By B(t) we denote an operator in L2(0, 1) with domain of
definition D(B(t)) = W 2m

2 (0, 1) and law of action

B(t)u = −
2m−1∑
j=0

aj(t, x)u(j)(x).

Then problem (11)–(13) can be written in the form

u′(t) = A(t)u(t) +B(t)u(t) + f(t), u(0) = u0, (14)

where u(t) = u(t; ·), f(t) = f(t, ·) u = u0(·) are functions with values in the Hilbert space
H = L2(0, 1). The operator A(t) satisfies the estimation ‖R(λ,A(t))‖ ≤ C|λ|−1, | arg λ| ≤ π

2
,

|λ| → ∞.
By condition 1, the operator B(t) is completely subjected to the operator A(t) uniformly

with respect to t ∈ [0, T ]. Indeed, applying the estimation

‖u(j)‖L∞(0,1) ≤ ε‖u(2m)‖L2(0,1) + C(ε)‖u‖L2(0,1), j < 2m



SOLUTIONS OF PARABOLIC DIFFERENTIAL-OPERATOR EQUATIONS 83

we get

‖B(t)u‖L2(0,1) ≤
2m−1∑
j=0

(∫ 1

0

|aj(t, x)|2|u(j)(x)|2dx

) 1
2

≤
2m−1∑
j=0

‖aj(t, ·)‖L2(0,1)‖u(j)‖L∞(0,1) ≤

≤ ε‖u(2m)‖L2(0,1) + C(ε)‖u‖L2(0,1) ≤ ε‖A(t)u‖L2(0,1) + C(ε)‖u‖L2(0,1),

where C(ε) > 0 finite number at any ε > 0. So, all the conditions of Theorem 3.8 of the
paper ([1], p.139) are satisfied, whence the affirmation of Theorem 4 follows.

Consider the initial-boundary value problem

∂u(t, x)

∂t
+ a(t)

∂2mu(t, x)

∂x2m
+

2m−1∑
k=0

ak(x)
∂ku(t, x)

∂xk
= 0. (15)

Lνu = ανu
(mν)
x (t, x) + βνu

(mν)
x (t, 1) +

Nν∑
p=1

δνpu
(mν)
x (t, xνp) + Tνu(t, ·) = 0,

ν = 1, . . . , 2m,

(16)

u(0, x) = ϕ0(x), (17)

where xνp ∈ (0, 1), mν ≤ 2m− 1, and appropriate spectral problem

λu(x) + a(x)u(2m)(x) +
2m−1∑
k=0

ak(x)u(k)(x) = 0, (18)

Lνu = 0, ν = 1, . . . , 2m. (19)

The function of the form

uj(t, x) = eλjt

(
tkj

kj!
uj0(x) +

tkj−1

(kj − 1)!
uj1(x) + ...+ ujkj(x)

)
becomes an elementary solution of problem (15)–(17), if and only if the system of functions
uj0(x), uj1(x), ..., ujkj(x) is a chain of root functions of problem (18)–(19) corresponding to
the eigenvalue λj.

Theorem 5. Let

1. a(x) 6= 0, a ∈ C[0, 1], ak ∈ L2(0, 1), k = 0, . . . , 2m− 1;

2. | arg a(x)| < π
2
, if m is even; | arg a(x)| > π

2
, if m is odd;

3. θ =

∣∣∣∣∣∣
α1ω

m1
1 · · · α1ω

m1
m β1ω

m1
m+1 · · · β1ω

m1
2m

· · · · · · · · · · · · · · ·
α2mω

m2m
1 · · · α2mω

m2m
m β2mω

m2m
m+1 · · · β2mω

m2m
2m

∣∣∣∣∣∣ 6= 0,

where ω1 = 1, ω2 = ei
π
m , . . . , ω2m = ei

π
m
(2m−1);

4. for some q ∈ [1,∞) the functions Tν in Wmν
q (0, 1) be continuous.

5. ϕ0 ∈ W 2m
2 ((0, 1), Lνu = 0, ν = 1, . . . , 2m).
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Then the problem (15)–(17) has a unique solution

u ∈ C ′([0, T ],W 2m
2 (0, 1), L2(0, 1))

and there exist numbers Cjn such, that

lim
n→∞

max
t∈[0,T ]

(∥∥∥u′t(t, ·)− n∑
j=1

Cjnu
′
jt(t, ·)

∥∥∥
L2(0,1)

+
∥∥∥u(t, ·)−

n∑
j=1

Cj nuj(t, ·)
∥∥∥
W 2m

2 (0,1)

)
= 0, (20)

where u(t, x) is a solution of problem (15)–(17), and uj(t, x) are elementary solutions of
problem (15)–(17).

Proof. We apply Theorem 1 to problem (15)–(17). In H = L2(0, 1) we consider the operators
A and B given by the equalities.

D(A) = W 2m
2 ((0, 1), Lνu = 0, ν = 1, . . . , 2m), Au = −a(x)u(2m)(x); (21)

D(B) = W 2m
2 (0, 1), Bu = −

2m−1∑
k=0

ak(x)u(k)(x). (22)

Then problem (15)–(17) can be written in the form

u′(t) = Au(t) +Bu(t), (23)
u(0) = ϕ0. (24)

The operator A satisfies the first condition of Theorem 2. For some α > 0, R(λ,A) ≤ C|λ|−1,
| arg λ| ≤ π

2
+ α, |λ| → ∞. By H. Triebel ([6], p.437)

sj(J, W
2m
2 (0, 1), L2(0, 1)) ∼ j−2m.

So, for p > 1
2m

we have J ∈ σp(W
2m
2 (0, 1), L2(0, 1)). Since W 2m

2 ((0, 1), Lνu = 0, ν =
1, . . . , 2m) is a subspace of W 2m

2 (0, 1), one has that J ∈ σp(W
2
2 (0, 1), Lνu = 0, ν =

1, . . . , 2m, L2(0, 1)).
Then for p > 1

2m
and λ0 ∈ ρ(A) we have R(λ0A) ∈ σp(L2(0, 1)). Consequently condition 2

of Theorem 2 is satisfied. When proving Theorem 5 we establish the estimation

‖Bu‖L2(0,1) ≤ ε‖Au‖L2(0,1) + C(ε)‖u‖L2(0,1), u ∈ D(A), ε > 0,

i.e. condition of Theorem 2 holds.
Therefore, applying Theorem 1 to problem (23)–(24), we prove Theorem 5.
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