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We consider an abstract Cauchy problem for parabolic differential-operator equations in
Hilbert spaces. Initial boundary value problems for parabolic equations are reduced to the Cau-
chy problem for a system of parabolic differential equations. It is proved that the solution of an
initial boundary value problem for partial parabolic equation can be approximated by linear
combinations of elementary solutions. Completeness of elementary solutions is also proved for
differential-operator equations in abstract Hilbert spaces. The obtained abstract results are
applied to differential equations.
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PaccmarpuBaerca abcrpakTHas 3ajada Komn s mapaboimaeckux guddepeHnaabHo-
OIIepaTOPHBIX YpaBHEHU B rmyib0EPTOBOM IMpocTpaHcTBe. KpaeBas 3amada st napabosimdae-
CKOT'O ypaBHEHUs CBOAUTCS K 3amade Kormm myia cucrembl napabonmmdeckux auddepeHmaib-
HbIX ypaBHeHui. JloKa3bIBaeTCsi, 9TO pelleHne JJIs KPAeBoil 3ajadm Jjisd [HapaboImIecKoro
YPaBHEHUSI B YaCTHBIX IPOM3BOJIHBIX MOYKHO AIlIPOKCUMUPOBATD JIMHEHHON KOMOMHAIME dJ1e-
MeHTapHbIX pemtenuii. /s mapabosimueckoro nauddepeHIuajibHO-0ePATOPHOIO yPaBHEHNsST B
abCTPAKTHOM T'HJIBOEPTOBOM IIPOCTPAHCTBE JIOKA3BIBAETCs IOJIHOTA IJIEMEHTAPHBIX PEIIeHU.
Tlonmygenmbie abcTpakTHBIE PE3YIBTATHI IPUMEHSIOTCH K MUM@OEPEHITNATBHBIM YPABHEHUSIM.

1. Introduction. The issues of solvability of problems for differential operator equations
were investigated by many authors. The papers devoted to these issues can be divided into
two groups. The papers where the solvability conditions are formulated in the terms of
operator coefficients refer to the first group. The papers where the conditions are formulated
in terms of location of the spectrum and growth of the resolvent of an appropriate operator
bundle refer to the second group.

If in the papers of the first group the conditions are acceptable in the solvability issues
and spectral issues, the conditions of the second group that are acceptable in the solvability
issues, are not acceptable in the spectral issues. Notice that the these results are reflected in
S. Y. Yakubov monograph [1].

Notice that the results obtained the second group are reflected in S. G. Krein [4] and
S. Y. Yakubov and Ya. Yakubov’s monographs [5]. In recent papers A. Ashyralyev, Y. Sozen
and P. E. Sobolevskii [2]|, V. B. Shakmurov [7] the existence of solution is investigated.

In this paper in contrast to we consider an abstract Cauchy problem for parabolic
differential-operator equations in Hilbert spaces.
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It is proved that the solution of an initial boundary value problem for partial parabolic
equation can be approximated by linear combinations of elementary solutions. Completeness
of elementary solutions is also proved for differential-operator equations in abstract Hilbert
spaces. The obtained abstract results are applied to differential equations.

2. The existence of a solution of the Cauchy problem in a Hilbert space and
approximation by an elementary solution. We consider a Cauchy problem for a pertur-
bed homogeneous equation of first order

u'(t) = Au(t) + Bu(t), (1)
u(0) = ¢o (2)

in a Hilbert space H. We find the conditions providing approximation of solutions of Cauchy
problem (1)—(2) by linear combinations of elementary solutions of equation (1). By A; we
denote eigenvalues of the operator A+B with regard to algebraic multiplicity. If ujo, ..., uj,
is a chain of root vectors of the operator A+B corresponding to A, then the function

a0 thi—t t
Uj(t):e J —u][)—l-mujl—l-—l- 1|u]k,1+ujk (3)

is a solution of equation (1) and is said to be elementary solution of equation (1).
We giving some definitions. o,(H), p > 0 set of operators A, which compact acting in H
and

JA|2 = Zsp A H) < oo.

n=1

Hear S, (A, H) s-number completed continuously operator A, i.e. eigenvalue of operator
T = (A*A)Y/2. At p = 2 05(H) is called classes of Hilbert-Shmidt C([0, 7], H(A)) — space of
continuously functions in interval [0, 7], with value in H(A), and

1 f leqo, ey = I[I(}E;Xllf( M ay,

where H(A) = {u: u € D(A), ||ull) = ([ulla + | Aull)"/?}.
The space C'([0,T], H(A), H) defined as follows:

CH([0, 7], H(A), H) = { : | € C(10.T), H(4)) N C*([0.T), H(4)),

I llerom may = maxlf ()]l + max ||f’($)||H}-

Theorem 1. Let
1. the operator A in H have a dense domain of definition;
2. for some p > 0 and Ay € p(A) the operator R(\y, A) belong to o,(H);

3. there exist rays {y(a) with angles between the neighboring rays, at most %, and numbers
a >0, g€ (0,1] such that

IR, A)|| < CIA2, Jarg A| < g+ a, X € ly(a), [N — oo;
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4. B be an operator in H, D(B) D> D(A)and for any ¢ > 0||Bullz < e||Aul? ||u|}® +
C(e)||lullg, we D(A); C(e) > 0 some constant, depending only at ¢.

d. o € D(A)
Then problem (1)—(2) has a unique solution

we C([0,7), H) N CH([0,T], H(A), H)

and there exist numbers C},, such that

g - 3ot o
lim sup tH Ol (t H +HAut — CinAu;(t H =0,
Jm sup Z 50|, + [ Au®) Z i),

where u(t) is a solution of problem (1)—(2) and u;(t) are elementary solutions of equation (1).

Proof. Since the system of root vectors of the operator A+ B is complete in the space H(A),
there exist the numbers C},, such that

Jim, (oo =25 o], + [0 = 3 s ) =0 g
j=1 j=1

On the other hand, the estimation
Hu(t) = Cjnuj(f)H < C(H% =) Chnuge,
Jj=1 j=1

o —jilcjnu;(t)H +||Aute) —éojnAuj(t)]]H <

< Ct_l( ’900 - > CjnujijH + HASOO — > CjnAugy,
j=1

J=1

. + HA<P0 — Z; CinAujy,
‘]:

G

(6)

)

follows from theorem 3.3 (see [1], p.113), for f =0, up = o — Z?:l Cinljk,;- The affirmation
of the theorem follows from (5) and (6), by the virtue of (4). O

3. The estimate operator R(\, A) and completeness of elementary solutions in a
Hilbert space. In the Hilbert space H we consider the Cauchy problem

u'(t) = Au(t) + Bu(t) + f(t), u(0) = u. (7)

(H, H(A)), 1 ,-interpolation space between H(A) and H, which defined as follows:

1 1/p
(H,H(A))g,p = {Ui u € H, ||ull(m,m),, = </ tA=0OP=1 | gty P dt) +|u||lg < oo}.
0

1/p
At=1-1 ||u|| HH(A), 1 (fol | Ae=tAul|P dt) +Hlul| g < 0.

’U
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Theorem 2. Let

1. the operator A in H have a dense domain of definition and

_ T
IROL A < CIAY, Jarg ] < 5, A = o0

2. B be an operator in H, D(B) D D(A)and for any € > 0

[Bullp < ellAullg + C(e)llulla, we D(A).

Then the operator L: u — (u'(t) — Au(t) — Bu(t), u(0)) from W, ((0,T), H(A), H) onto
Ly((0,T), H) x (H, H(A)),_1_, for p € (1,00) is an isomorphism.

Proof. Based on the Banach theorem it suffices to prove that the operator L is an algebraic
isomorphism. By the definition of the space W ((0,T'), H(A), H), it follows from u € W, ((0,
T), H(A),H) that ' — Au — Bu € L,((0,T), H), and by the theorem on traces (see H.
Triebel [6], p.46) it follows from u € W, ((0,T), H(A), H) that u(0) € (H, H(A))k%,p

The following estimation is true (see for example [7], p.32, Lemma 11)
IR\, A+ Bl < CIA[™Y, Jarg Al < s Al = o0

The mapping L is injective. The injective of mapping h is consequence from theorem 3.2
(see [1], p.100). Prove that it is surjective, i.e. for any collection

(f= uO) € LP((()?T)JH) X (H7H(A))1—1

571)

there exists a solution of Cauchy problem (11), belonging to W, ((0,T), H(A), H). For s € C
the solution of the problem is represented in the form of the sum w(t) = uy(t) + uo(t) where
uy(t) is a contraction on [0, 7] of the solution of the equation

wy(t) — (A+ B — sDuy(t) = f(t), t€R, (8)
where f(t) = f(t) for t € [0,T], f(t) = 0 for t€[0,T], and @,(z) is a solution of the problem
uy(t) — (A+ B — sDua(t) =0, uz(0) = ug — uy(0). 9)

It follows from the conditions that, for sufficiently large s — oo

M = (A+ B —sD]7Y| <CIATY, arg A gg (10)

the equation (8) has a unique solition uy € W, (R, H(A), H).
By (10) there exists the semi-group eA+5=s0),

On the other hand, by the theorem on traces u,(0) € (H, H(A)),_1 .

Now it is easy to observe that the function

u2(t) _ et(A+B—sI) (UO — (0))
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belongs to the space W, ((0,T), H(A), H) and it is a solution of Cauchy problem (9). Indeed,
by ([6], p-109) we have

IN

[[uz ||€Vpl((0,T),H(A+B—sI),H)

T
< C/o [(A+ B — SI)et(A+B_SI) (uo — ul(o))||€Vz}((0,T),H(A+B—s[),H)dt

< Cllug — ul(O)HI()H,H(A—B-i-sI))P

5P

Now it suffices to take into account, that H(—A— B+sl) = H(A). Using the substitution
u(t) = e **V (t), we also establish the existence of the solution of problem (7). O

Theorem 3. Let
1. the operator A in H have a dense domain of definition D (A);
2. For some q > 0 and Ay € p(A) we have R(\y, A) € 0,(H);

3. there exist rays {;(A) with angles between neighboring rays, at most %, such that
RO A) < CINY, arg )| < g A€ L(A), |\ — oo

4. B be an operator in H, D(B) D D(A) and the operator BR(\y, A) in H be compact;
5. @0 € (H,H(A)),_1, for some p € (1,00).

Then problem (1)(2) has a unique solution v € W, ((0,T), H(A), H) and there exist the
numbers C},, such that

- i Cint(t) ]; + HAu(t) — i CjnAuj(t)HD dt =
j=1 =

where u(t) is a solution of problem (1)—(2), and w;(t), j = 1,...,n, are the elementary
solutions of equation (1).

lim ( ' (t

Proof. A linear span of the root vectors A 4+ B is dense in the space H(A). On the other
hand, by H. Triebel ([6], p.40), the set H(A) is dense in the space ((H,H(A)).9,p. So, the
linear span of root vectors of the operator A + B is dense in the space ((H, H(A)).gp. Then
by Theorem 2, we have

T T I
H Z s W((0,T),H(A),H) o Z Jntiik; (H,H(A)),

,l
whence the affirmation of the theorem follows. O]

4. Abstract results applied to partial differential equations. Consider the initial-
boundary value problem for the parabolic equation

dult, 2) 32m Z a;(t t‘x) f(t, ), (11)

Lu = 5 +a(t,x) 8x2m
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Lou = a,u™)(t,0) + Bul™ (t,1) + 215,,3 Wl (¢, 2,5) + Tyult,-) =0 (12)

u(0, ) = ug(x), (13)

where z,, € (0,1), m, <2m — 1.
Let W™ (0,1) — space of Sobolev, which defined as follows

Wy (0,1) = {uz u, w™ € Le(0, 1)}, Nullwye oy = {llullzyo + lu™ 03"

Theorem 4. Let
1. a € C([0,T] x [0,1]), a(t,z)#0, for (t,z) € [0,T] x [0,1],

a; € C([0,T], Ly(0,1)), 7=0,...,2m — 1,

2. For some 0 > 0 |arga(t, z)| < 5 — 6, if m is even and |arga(t, z)| > 5 + 9, if m is odd;

3. boundary conditions (16) be m-regular, i.e.

mi m
QW .. oqw,t Blme Blw
0= — _ £0
ma m m2 mo
QomWy =" - OégmwmQW Bmem—i-nll B2mUJ ™
. . B
Wherewl:lv w2:€lm7"-;w2m:€lm(2m 1)7

4. for some q € [1,00) the functionals T, in W™ (0, I) be continuous.

Then the operator L: v — (Lu, u(0,z)) from W((pl’f)m)((O, T)x(0,1), Lybu=0,v=1,...,2m)
onto L2 ((0,T) x (0,1) x (Ly(0,1), W5™((0,1), Lyu = 0, v = 1,...,2m), 1)) is an

isomorphism for p € (1,00).

Proof. We reduce problem (11)—(13) to the Cauchy problem for an abstract parabolic equa-
tion of first order.

By A(t) the denote an operator in Ly(0,1) with domain of definition D(A(t)) =
= D(A) = Wi™((0,1),L,u = 0, v = 1,...,2m) independent of ¢ € [0,7] and law of
action A(t)u = —a(t, z)u®"(z). By B(t) we denote an operator in Ly(0,1) with domain of
definition D(B(t)) = WZ™(0,1) and law of action

B(tju=— > a;(t,z)u¥ ().

J=0

Then problem (11)—(13) can be written in the form

u'(t) = A(t)u(t) + B(t)u(t) + f(t), u(0) = uy, (14)
where u(t) = u(t;-), f(t) = f(t,-) u = up(-) are functions with values in the Hilbert space
H = L,(0,1). The operator A(t) satisfies the estimation ||R(X, A(t))|| < C|A|7!, |argA| < 5
|A| — oc.

By condition 1, the operator B(t) is completely subjected to the operator A(t) uniformly
with respect to ¢ € [0, T]. Indeed, applying the estimation

||U(j)||Loo(0,1) < 5\|U(2m)||L2(0,1) + C(e)|lully0,), J < 2m
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we get

2m—1 2m—1

1
2
|1 B(t)ullL,0,1) < Z (/ |a;(t, ) *u" (z)| dﬂf) < Z lla; (& oo U | ooy <
< el|u®™|| 101y + C ()|l 0,1y < el At )UHLQ(O,l) + () |lull o0,

where C'(¢) > 0 finite number at any € > 0. So, all the conditions of Theorem 3.8 of the
paper ([1], p.139) are satisfied, whence the affirmation of Theorem 4 follows. H

Consider the initial-boundary value problem

0*™u(t, r) N ot oFu(t, )

St ar(x) e = 0. (15)
0

Lyu = c,ul™ (t, ) + Bul™(t,1) + z 8,,uS™ (8, 2,) + Tyu(t, ) =0,

p= (16)
v=1,...,2m,
u(0, ) = @o(), (17)
where z,, € (0,1), m, <2m — 1, and appropriate spectral problem

2m—1
() + a(x)u®™ (z) + Z ar(z)u® (z) = 0, (18)

k=0
Lau=0, v=1,...,2m (19)

The function of the form

ot tk: tk -1
Uj(t, iL') = eV k; 'UJO(Z') + mﬂjl(ﬂﬁ) + ...+ Ujk; (fE))
j :

becomes an elementary solution of problem (15)—(17), if and only if the system of functions
wjo(x), uji(x), ..., ujk, () is a chain of root functions of problem (18)—(19) corresponding to
the eigenvalue ;.
Theorem 5. Let

a(x) #0, a € C[0,1], ar € Ly(0,1

), o 2m— 1,
2. |arga(z)| < 7§, if m is even; | arg a(z )\ > T, if m is odd;
1

27

mi
Oélwl e oqw 151&} 51W2m
3. 0 — PRI PO “ e % 0’
m2 mo ma ma
QoW ™"t QW mﬁgmwmﬁ ... @Qmw2mm
i = s _
where wy = 1, w2:€lm7"-;w2m:€lm(2m 1)7

4. for some q € [1,00) the functions T, in W™ (0, 1) be continuous.

5. @0 € Wi ((0,1),Lu=0, v=1,...,2m).
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Then the problem (15)—(17) has a unique solution

u € C'([0,T), W3™(0,1), Ly(0,1))

and there exist numbers C;, such, that

lim max ()
n—o00 t€[0,7]

(1) = 32 Oyttt ) = D2 gL )= 0. (20)
J=1 ’ j=1 2 W

where u(t,x) is a solution of problem (15)—(17), and u;(t,x) are elementary solutions of
problem (15)—(17).

Proof. We apply Theorem 1 to problem (15)—(17). In H = L»(0, 1) we consider the operators
A and B given by the equalities.

D(A) = W2™((0,1), LLu=0,v=1,...,2m), Au = —a(a:)u(2m)(x); (21)
D(B) = Wi™(0,1), Bu= — i ap(2)u® (). (22)

Then problem (15)—(17) can be written in the form

u'(t) = Au(t) + Bu(t), (23)
u(0) = go. (24)

The operator A satisfies the first condition of Theorem 2. For some a > 0, R(\, A) < C|\| 71,
larg A\| < 7 4+ a, |A| = oo. By H. Triebel ([6], p.437)

s;(J, W5™(0,1), Ly(0,1)) ~ 572

2 14
1,...,2m) is a subspace of W3™(0,1), one has that J € o,(W3(0,1), L,u

L,...,2m, Ly(0,1)).
Then for p > 5~ and Ay € p(A) we have R(A\A) € 0,(L2(0,1)). Consequently condition 2
of Theorem 2 is satisfied. When proving Theorem 5 we establish the estimation

So, for p > 5= we have J € o,( W3™(0,1), Ly(0,1)). Since W3™((0,1),L,u = 0, v
0, v

Y

| Bullr,0) < ellAullpy00) + C€)Jullry01),  w € D(A), € >0,
i.e. condition of Theorem 2 holds.

Therefore, applying Theorem 1 to problem (23)—(24), we prove Theorem 5. O
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