O. B. Skaskiv, O. Yu. Zadorozhna

ON DOMAINS OF CONVERGENCE OF MULTIPLE RANDOM DIRICHLET SERIES

 O. B. Skaskiv, O. Yu. Zadorozhna. On domains of convergence of multiple random Dirichlet series, Mat. Stud. 36 (2011), 51-57.We establish relations between domains of convergence and absolute convergence of the multiple random Dirichlet series.
О. Ю. Задорожна, О. Б. Скаскив. Об областях сходимости кратных случайных рядов Дирихле // Мат. Студії. - 2011. - Т.36, №1. - С.51-57.

Устанавливаются соотношения для областей сходимости и абсолютной сходимости случайных кратных рядов Дирихле.

Let

$$
\left(\lambda_{k}^{(i)}\right), 0=\lambda_{0}^{(i)} \leq \lambda_{1}^{(i)}<\lambda_{2}^{(i)}<\ldots(i \in\{1, \ldots, p\}),
$$

be a sequence of nonnegative numbers increasing to $+\infty$, and let $\left(a_{n}\right)$ be a sequence of complex numbers,

$$
\begin{gathered}
n=\left(n_{1}, \ldots, n_{p}\right), n_{i} \in \mathbb{Z}_{+} \stackrel{\text { def }}{=} \mathbb{N} \cup\{0\}(i \in\{1, \ldots, p\}) \\
\|n\|=n_{1}+\ldots+n_{p}, s=\left(s_{1}, s_{2}, \ldots, s_{p}\right) \in \mathbb{C}^{p}, s_{j}=\sigma_{j}+i t_{j}(j \in\{1, \ldots, p\}), \\
\left\langle\lambda_{n}, s\right\rangle=\lambda_{n_{1}}^{(1)} s_{1}+\ldots+\lambda_{n_{p}}^{(p)} s_{p}, \lambda_{n}=\left(\lambda_{n_{1}}^{(1)}, \ldots, \lambda_{n_{p}}^{(p)}\right)
\end{gathered}
$$

Consider a multiple Dirichlet series of the form

$$
\begin{equation*}
F(s)=\sum_{\|n\|=0}^{+\infty} a_{n} e^{\left\langle\lambda_{n}, s\right\rangle} \tag{1}
\end{equation*}
$$

where $\lambda_{n}=\left(\lambda_{n_{1}}^{(1)}, \ldots, \lambda_{n_{p}}^{(p)}\right)$ for $n=\left(n_{1}, \ldots, n_{p}\right)$.
Let $\tau \in \mathbb{R}_{+}^{p}$ be a system of positive numbers such that

$$
\begin{equation*}
\varlimsup_{\|n\| \rightarrow \infty} \frac{\ln n_{1}+\ldots+\ln n_{p}}{\left\langle\tau, \lambda_{n}\right\rangle} \leq 1 \tag{2}
\end{equation*}
$$

The domains of convergence and absolutely convergence of series (1) are denoted by $\mathbf{G}_{3}(F)$ and $\mathbf{G}_{a}(F)$. Let
$G_{3}(F)=\left\{x \in \mathbb{R}^{p}: x=\operatorname{Re} z, z \in \mathbf{G}_{3}(F)\right\}, G_{a}(F)=\left\{x \in \mathbb{R}^{p}: x=\operatorname{Re} z, z \in \mathbf{G}_{a}(F)\right\}$
be their tracks in $\left\{x \in \mathbb{R}^{p}: x=\operatorname{Re} z, z \in \mathbb{C}^{p}\right\}$, and let G_{μ} be the domain of the existence of the maximal term

$$
\mu(\sigma)=\max \left\{\left|a_{n}\right| \exp \left\{\left\langle\lambda_{n}, \sigma\right\rangle\right\}: n \in \mathbb{Z}_{+}^{p}\right\}
$$

of series (1), i.e. the set of $\sigma \in \mathbb{R}^{p}$ such that $\mu(\sigma)<+\infty$.
The domains $G_{3}(F), G_{a}(F), G_{\mu}(F)$ are convex ([1]). It is easy to see, that $G_{a} \subset G_{3} \subset G_{\mu}$, and it is known ([1]), that $G_{\mu} \subset G_{a}+\tau$.

The coordinates of the points that on the boundary of the domains $G_{3}(F), G_{a}(F)$, $G_{\mu}(F)$ are called the conjugate abscissas of convergence, conjugate abscissas of absolutely convergence and conjugate abscissas of the existence of the maximal term, respectively.

For example, the point $\left(\sigma_{c 1}, \ldots, \sigma_{c p}\right)$ is said to be the system of the conjugate abscissas of convergence of Dirichlet series (1), if this series converges on every domain of the form $\left\{s: \operatorname{Re} s_{k}<\sigma_{c k}, k \in\{1, \ldots, p\}\right\}$ and every domain of the form $\left\{s: \operatorname{Re} s_{k}<\sigma_{k}^{0}, k \in\{1, \ldots, p\}\right\}$, where $\sigma_{i}^{0}>\sigma_{c i}, i \in I$ i $\sigma_{j}^{0} \geq \sigma_{c j}, j \in J$ and $I \sqcup J=\{1, \ldots, p\}$, contains points of divergence.

Let (Ω, \mathcal{A}, P) be a probability space. For real or complex random variable ξ let

$$
\mathbf{M} \xi=\int_{\Omega} \xi(\omega) P(d \omega) \text { be its mean value and } \mathbf{D} \xi=\mathbf{M}\left(|\xi-M \xi|^{2}\right) \text { be its variance. }
$$

Consider the multiple random Dirichlet series

$$
\begin{equation*}
F_{\omega}(s)=F_{\omega}(s, \omega)=\sum_{\|n\|=0}^{+\infty} \eta_{n}(\omega) a_{n} e^{\left\langle\lambda_{n}, s\right\rangle}, \tag{3}
\end{equation*}
$$

where $\left(a_{n}\right)$ are the coefficients of the above series (1) and $\left(\eta_{n}\right)$ is a sequence of random variables on the probability space (Ω, \mathcal{A}, P).

The main result of this paper is contained in the following theorem.
Theorem 1. Let $\left(\eta_{n}\right)$ be a sequence of complex independent random variables such that $\left(\forall n \in \mathbb{Z}_{+}\right): 0<c_{1} \leq\left|\eta_{n}(\omega)\right| \leq c_{2}<+\infty$ almost surely (a.s.), and $\mathbf{M} \eta_{n}=0$. Then for the random Dirichlet series $F_{\omega}(s)$

$$
\begin{equation*}
G_{a}\left(F_{\omega}\right) \subset \frac{G_{a}\left(F_{\omega}\right)+G_{\mu}\left(F_{\omega}\right)}{2} \subset G_{3}\left(F_{\omega}\right) \subset\left(\left(G_{a}\left(F_{\omega}\right)+\frac{\tau}{2}\right) \cap G_{\mu}\left(F_{\omega}\right)\right) \tag{4}
\end{equation*}
$$

holds (a.s.).
Note, that in $[2,3]$ and $[1,4]$ there were obtained main relations between abscissas of convergence and absolutely convergence of double and multiple Dirichlet series, respectively. In [5] a similar result to Theorem 1 is proved for the abscissa of convergence for random series of one variable, and in [6] the same theorem is proved for the case of double random Dirichlet series and symmetric real independent random variables.

To prove this theorem, we need some auxiliary results.
Let

$$
\begin{equation*}
F_{2}(s)=\sum_{\|n\|=0}^{+\infty} a_{n}^{2} e^{2\left\langle\lambda_{n}, s\right\rangle} \tag{5}
\end{equation*}
$$

Lemma 1. For the Dirichlet series (1) and (5)

$$
\begin{equation*}
G_{a}(F) \subset \frac{G_{a}(F)+G_{\mu}(F)}{2} \subset G_{a}\left(F_{2}\right) \subset\left(\left(G_{a}(F)+\frac{\tau}{2}\right) \cap G_{\mu}(F)\right) \tag{6}
\end{equation*}
$$

Proof of Lemma 1. To prove the first inclusion we observe that, by definition

$$
\begin{gathered}
G_{a}(F)+G_{\mu}(F)=\left\{\sigma_{a}+\sigma_{\mu}: \sigma_{a} \in G_{a}(F), \sigma_{\mu} \in G_{\mu}(F)\right\} \\
2 G_{a}(F)=\left\{2 \sigma_{a}: \sigma_{a} \in G_{a}(F)\right\} \text { and } G_{a}(F)+G_{a}(F)=\left\{\sigma_{a}^{*}+\sigma_{a}^{* *}: \sigma_{a}^{*}, \sigma_{a}^{* *} \in G_{a}(F)\right\} .
\end{gathered}
$$

So, we obtain

$$
2 G_{a}(F) \subset G_{a}(F)+G_{a}(F) \subset G_{a}(F)+G_{\mu}(F)
$$

and that it was necessary to prove.
Now we prove the second inclusion. Let $\sigma \in \frac{G_{a}(F)+G_{\mu}(F)}{2}$. We choose $\sigma_{a} \in \partial G_{a}(F)$ and $\sigma_{\mu} \in \partial G_{\mu}(F)$ such that

$$
\sigma_{i}<\frac{\sigma_{a i}+\sigma_{\mu i}}{2}(i \in\{1, \ldots, p\}) .
$$

Denote $\varepsilon_{i}:=\frac{\sigma_{a i}+\sigma_{\mu i}-2 \sigma_{i}}{2}(i \in\{1, \ldots, p\})$. Then $\varepsilon_{i}>0$ and $2 \sigma_{i}-\sigma_{\mu i}+\varepsilon_{i}=\sigma_{a i}-\varepsilon_{i}<\sigma_{a i}$ $(i \in\{1, \ldots, p\})$. So, the series (1) converges absolutely at the point $\left(2 \sigma-\sigma_{\mu}+\varepsilon\right)$, and

$$
\sum_{\|n\|=0}^{+\infty}\left|a_{n}\right| \exp \left\{\left\langle 2 \sigma-\sigma_{\mu}+\varepsilon, \lambda_{n}\right\rangle\right\}<+\infty
$$

Moreover,

$$
\left|a_{n}\right| \exp \left\{\left\langle\sigma_{\mu}-\varepsilon, \lambda_{n}\right\rangle\right\} \leq 1,\|n\| \geq k_{0} .
$$

Using the last two inequalities, we obtain

$$
\begin{aligned}
\sum_{\|n\|=k_{0}}^{\infty}\left|a_{n}\right|^{2} e^{2\left\langle\sigma, \lambda_{n}\right\rangle} & =\sum_{\|n\|=k_{0}}^{\infty}\left|a_{n}\right| \exp \left\{\left\langle\sigma_{\mu}-\varepsilon, \lambda_{n}\right\rangle\right\} \cdot\left|a_{n}\right| \exp \left\{\left\langle 2 \sigma-\sigma_{\mu}+\varepsilon, \lambda_{n}\right\rangle\right\} \leq \\
& \leq \sum_{\|n\|=k_{0}}^{\infty}\left|a_{n}\right| \exp \left\{\left\langle 2 \sigma-\sigma_{\mu}+\varepsilon, \lambda_{n}\right\rangle\right\}<\infty
\end{aligned}
$$

so, (5) converges absolutely at the point σ, i.e. $\sigma \in G_{a}\left(F_{2}\right)$, and this is what we need to prove.

Now we prove the last inclusion, using a similar method as in the case of $p=2$ ([6]).
Let $\gamma=\left(\gamma_{1}, \ldots, \gamma_{p}\right) \in G_{a}\left(F_{2}\right)$, i.e. the series (5) converges absolutely at the point γ. It is easy to see that $\gamma \in G_{\mu}(F)$. So we need to prove that $\gamma \in \overline{G_{a}(F)}+\frac{\tau}{2}$. Since $G_{a}\left(F_{2}\right), G_{a}(F)$ are open, we immediately obtain that $G_{a}\left(F_{2}\right) \subset G_{a}(F)+\frac{\tau}{2}$.

Assume on the contrary, that $\gamma \notin \overline{G_{a}(F)}+\frac{\tau}{2}$. Then for $\gamma=\left(\gamma_{1}, \ldots, \gamma_{p}\right)$ there exists a point $\sigma_{a}=\left(\sigma_{a 1}, \ldots, \sigma_{a p}\right) \in \partial G_{a}(F)$ such that $\sigma_{a}+\frac{\tau}{2}=\left(\sigma_{a 1}+\frac{\tau_{1}}{2}, \ldots, \sigma_{a p}+\frac{\tau_{p}}{2}\right) \in \partial\left(G_{a}(F)+\frac{\tau}{2}\right)$ and $\sigma_{a i}+\frac{\tau_{i}}{2}<\gamma_{i}, \forall i \in\{1, \ldots, p\}$. Let

$$
\delta=\left(\delta_{1}, \ldots, \delta_{p}\right), \delta_{i}:=\frac{1}{3}\left(\gamma_{i}-\sigma_{a i}-\frac{\tau_{i}}{2}\right)>0, i \in\{1, \ldots, p\}
$$

It is easy to see, that $\sigma_{a}+\delta \notin \overline{G_{a}(F)}$. Condition (2) implies that $\sum_{i=1}^{p} \ln n_{i} \leq\left\langle\tau+\delta, \lambda_{n}\right\rangle$ ($\|n\| \geq n_{0}$). Then

$$
\sum_{\|n\|=n_{0}}^{\infty} \exp \left\{-\left\langle\tau+2 \delta, \lambda_{n}\right\rangle\right\}=\sum_{\|n\|=n_{0}}^{\infty} \exp \left\{-\left\langle\frac{\tau+4 \delta}{\tau+\delta}(\tau+\delta), \lambda_{n}\right\rangle\right\}<
$$

$$
\begin{equation*}
<\sum_{\|n\|=n_{0}}^{\infty}\left(n_{1} \cdot \ldots \cdot n_{p}\right)^{-A}<\infty \tag{7}
\end{equation*}
$$

where $A=\min \left\{\frac{\tau_{i}+4 \delta_{i}}{\tau_{i}+\delta_{i}}: i \in\{1, \ldots, p\}\right\}>1$. Furthermore,

$$
\begin{equation*}
\sum_{\|n\|=0}^{\infty}\left|a_{n}\right|^{2} \exp \left\{2\left\langle\gamma, \lambda_{n}\right\rangle\right\}<\infty \tag{8}
\end{equation*}
$$

because the series in (5) absolutely converges at the point γ. Thus, considering (7), (8) and Cauchy-Bunyakovsky's inequality, we obtain

$$
\begin{gathered}
\sum_{\|n\|=0}^{\infty}\left|a_{n}\right| \exp \left\{\left\langle\sigma_{a}+\delta, \lambda_{n}\right\rangle\right\}=\sum_{\|n\|=0}^{\infty}\left|a_{n}\right| \exp \left\{\left\langle\gamma, \lambda_{n}\right\rangle\right\} \exp \left\{-\left\langle\frac{\tau+4 \delta}{2}, \lambda_{n}\right\rangle\right\} \leq \\
\leq\left(\sum_{\|n\|=0}^{\infty}\left|a_{n}\right|^{2} \exp \left\{2\left\langle\gamma, \lambda_{n}\right\rangle\right\}\right)^{\frac{1}{2}} \times\left(\sum_{\|n\|=0}^{\infty} \exp \left\{-\left\langle\tau+4 \delta, \lambda_{n}\right\rangle\right\}\right)^{\frac{1}{2}}<\infty
\end{gathered}
$$

So, the series in (1) converges at the point $\left(\sigma_{a}+\delta\right)$, but $\left(\sigma_{a}+\delta\right) \notin \overline{G_{a}(F)}$. We get a contradiction.

The lemma is proved.
We need also the following theorem.
Theorem (J.-P. Kahane [7]). Let $\left(\theta_{n}\right)$ be a sequence of independent random variables and

$$
\theta_{n}^{\prime}(\omega)=\left\{\begin{array}{cl}
\theta_{n}(\omega), & \left|\theta_{n}(\omega)\right| \leq 1 \\
\frac{\theta_{n}(\omega)}{\left|\theta_{n}(\omega)\right|}, & \left|\theta_{n}(\omega)\right|>1
\end{array}\right.
$$

The series $\sum_{\|n\|=0}^{\infty} \theta_{n}$ converges a.s. if and only if the series $\sum_{\|n\|=0}^{\infty} \mathbf{D} \theta_{n}^{\prime}$ and $\sum_{\|n\|=0}^{\infty} \mathbf{M} \theta_{n}^{\prime}$ converge.
Now let us prove an auxiliary lemma.
Lemma 2. Let $\left(\forall n \in \mathbb{Z}_{+}\right): \quad 0<c_{1} \leq\left|\eta_{n}(\omega)\right| \leq c_{2}<+\infty$ (a.s.). If $s \in G_{3}\left(F_{\omega}\right)$ (a.s.), then $\sum_{\|n\|=0}^{\infty} a_{n} e^{\left\langle s, \lambda_{n}\right\rangle} \mathbf{M} \eta_{n}$ converges.

Proof of Lemma 2. Let $s \in G_{3}\left(F_{\omega}\right)$ (a.s.) $(\omega \in B, P(B)=1)$. Since $\left|\eta_{n}\right| \geq c_{1}>0$ (a.s.), one has that $s \in G_{\mu}(F)$, and

$$
\left(\exists k_{0}\right)\left(\forall n,\|n\| \geq k_{0}\right):\left|a_{n} e^{\left\langle s, \lambda_{n}\right\rangle}\right|<\varepsilon .
$$

We denote $A_{n}=\left\{\omega:\left|\eta_{n} a_{n} e^{\left\langle s, \lambda_{n}\right\rangle}\right| \leq 1\right\}$. We take $\varepsilon=\frac{1}{c_{2}}$. Then $\left|a_{n} e^{\left\langle s, \lambda_{n}\right\rangle}\right|<\frac{1}{c_{2}}$, as $\|n\| \geq k_{0}$ so

$$
\left|\eta_{n} a_{n} e^{\left\langle s, \lambda_{n}\right\rangle}\right| \leq c_{2}\left|a_{n} e^{\left\langle s, \lambda_{n}\right\rangle}\right| \leq 1 \text { (a.s.). }
$$

Then as $\|n\| \geq k_{0}: P\left(A_{n}\right)=1, P\left(\overline{A_{n}}\right)=0$.

We denote $\theta_{n}=\eta_{n} a_{n} e^{\left\langle s, \lambda_{n}\right\rangle}$ and consider

$$
\begin{gathered}
\mathbf{M} \theta_{n}^{\prime}=a_{n} e^{\left\langle s, \lambda_{n}\right\rangle} \int_{A_{n}} \eta_{n} P(d \omega)+\frac{a_{n} e^{\left\langle s, \lambda_{n}\right\rangle}}{\left|a_{n} e^{\left\langle s, \lambda_{n}\right\rangle}\right|} \int_{\overline{A_{n}}} \frac{\eta_{n}}{\left|\eta_{n}\right|} P(d \omega)= \\
=a_{n} e^{\left\langle s, \lambda_{n}\right\rangle} \int_{\Omega} \eta_{n} P(d \omega)=a_{n} e^{\left\langle s, \lambda_{n}\right\rangle} \mathbf{M} \eta_{n} .
\end{gathered}
$$

Since $s \in G_{3}\left(F_{\omega}\right)$ (a.s.), the series $\sum_{\|n\|=0}^{\infty} \mathbf{M} \theta_{n}^{\prime}$ converges by Kahane's theorem and the series $\sum_{\|n\|=0}^{\infty} a_{n} e^{\left\langle s, \lambda_{n}\right\rangle} \mathbf{M} \eta_{n}$ converges as well.

Now we prove Theorem 1.
Proof of Theorem 1. We first prove, that $G_{3}\left(F_{\omega}\right)=G_{a}\left(F_{2}\right)$ (a.s.). Let $s \in G_{3}\left(F_{\omega}\right)$ (a.s.). Then, using the fact $\mathbf{M} \eta_{n}=0$ and Lemma 2 we obtain that $\mathbf{M} \theta_{n}^{\prime}=0$ and

$$
\mathbf{D} \theta_{n}^{\prime}=\mathbf{M}\left|\theta_{n}^{\prime}\right|^{2}=\left|a_{n} e^{\left\langle s, \lambda_{n}\right\rangle}\right|^{2} \mathbf{M}\left|\eta_{n}\right|^{2} \geq c_{1}^{2}\left|a_{n} e^{\left\langle s, \lambda_{n}\right\rangle}\right|^{2}
$$

By Kahane's theorem, we have $\sum_{\|n\|=0}^{\infty} \mathbf{D} \theta_{n}^{\prime}<+\infty$ and

$$
\sum_{\|n\|=0}^{\infty}\left|a_{n}\right|^{2} e^{2\left\langle s, \lambda_{n}\right\rangle} \leq \frac{1}{c_{1}} \sum_{\|n\|=0}^{\infty} \mathbf{D} \theta_{n}^{\prime}<+\infty
$$

so $s \in G_{a}\left(F_{2}\right)$.
Now let $s \in G_{a}\left(F_{2}\right)$. Then $s \in G_{\mu}\left(F_{2}\right)=G_{\mu}(F)$. We get as well as in Lemma 2 that $P\left(A_{n}\right)=1$ and $\mathbf{M} \theta_{n}^{\prime}=0$ for $\|n\| \geq k_{0}$. Consider

$$
\mathbf{D} \theta_{n}^{\prime}=\mathbf{M}\left|\theta_{n}^{\prime}\right|^{2}=\left|a_{n} e^{\left\langle s, \lambda_{n}\right\rangle}\right|^{2} \mathbf{M}\left|\eta_{n}\right|^{2} \leq c_{2}^{2}\left|a_{n}\right|^{2}\left|e^{2\left\langle s, \lambda_{n}\right\rangle}\right|
$$

Since $s \in G_{a}\left(F_{2}\right)$, we have that

$$
\sum_{\|n\|=0}^{\infty} \mathbf{D} \theta_{n}^{\prime}<+\infty
$$

and $s \in G_{3}\left(F_{\omega}\right)$ (a.s.) by Kahane's theorem. Thus, $s \in G_{3}\left(F_{\omega}\right)$ (a.s.) if and only if $s \in G_{a}\left(F_{2}\right)$. Note that

$$
G_{\mu}(F)=G_{\mu}\left(F_{\omega}\right) \text { (a.s.) and } G_{a}(F)=G_{a}\left(F_{\omega}\right) \text { (a.s.). }
$$

as soon as $\left(\forall n \in \mathbb{Z}_{+}\right): 0<c_{1} \leq\left|\eta_{n}(\omega)\right| \leq c_{2}<+\infty$ (a.s.). Finally we get

$$
G_{3}\left(F_{\omega}\right)=G_{a}\left(F_{2}\right) \subset\left(\left(G_{a}(F)+\frac{\tau}{2}\right) \cap G_{\mu}(F)\right)=\left(\left(G_{a}\left(F_{\omega}\right)+\frac{\tau}{2}\right) \cap G_{\mu}\left(F_{\omega}\right)\right) \text { (a.s.). }
$$

The theorem is proved.
Consider a random Dirichlet series of the form

$$
\begin{equation*}
\widetilde{F}_{\omega}(s)=\sum_{\|n\|=0}^{\infty} \xi_{n}(\omega) \exp \left\{\left\langle s, \lambda_{n}\right\rangle\right\} \tag{9}
\end{equation*}
$$

where $\left(\xi_{n}\right)$ be a sequence of random variables in a probability space (Ω, \mathcal{A}, P).

Corollary 1. Let $\left(\xi_{n}\right)$ be a sequence of independent symmetric random variables in a probability space (Ω, \mathcal{A}, P). Then for the random Dirichlet series defined by (9)

$$
\begin{equation*}
\left.G_{a}\left(\widetilde{F}_{\omega}\right) \subset \frac{G_{a}\left(\widetilde{F}_{\omega}\right)+G_{\mu}\left(\widetilde{F}_{\omega}\right)}{2} \subset G_{3}\left(\widetilde{F}_{\omega}\right) \subset\left(\left(G_{a}\left(\widetilde{F}_{\omega}\right)+\frac{\tau}{2}\right) \cap G_{\mu}\left(\widetilde{F}_{\omega}\right)\right) \quad \text { a.s. }\right) \tag{10}
\end{equation*}
$$

holds.

Proof of Corollary 1. Let $\left(\varepsilon_{n}\right)$ be a Rademacher sequence in the Steinhaus probability space $\left(\Omega^{\prime}, \mathcal{A}^{\prime}, P^{\prime}\right)$. Consider the series (9) and the series

$$
F_{\left(\omega^{\prime}, \omega\right)}(s)=\sum_{\|n\|=0}^{\infty} \varepsilon_{n} \xi_{n} \exp \left\{\left\langle s, \lambda_{n}\right\rangle\right\}
$$

in the probability space $\left(\Omega^{\prime} \times \Omega, \mathcal{A}^{\prime} \times \mathcal{A}, P^{\prime} \times P\right)$. Note that $G_{\mu}\left(F_{\left(\omega^{\prime}, \omega\right)}\right)=G_{\mu}\left(\widetilde{F}_{\omega}\right)$ and $G_{a}\left(F_{\left(\omega^{\prime}, \omega\right)}\right)=G_{a}\left(\widetilde{F}_{\omega}\right)$ (a.s.) by Fubini's theorem, and $G_{3}\left(F_{\left(\omega^{\prime}, \omega\right)}\right)=G_{3}\left(\widetilde{F}_{\omega}\right)$ (a.s.) by the reduction principle ([2, p.20]). For every fixed $\omega \in \Omega$ and for almost all $\omega^{\prime} \in \Omega^{\prime}$, by Lemma 1,

$$
\begin{align*}
G_{a}\left(F_{\left(\omega^{\prime}, \omega\right)}\right) & \subset \frac{G_{a}\left(F_{\left(\omega^{\prime}, \omega\right)}\right)+G_{\mu}\left(F_{\left(\omega^{\prime}, \omega\right)}\right)}{2} \subset G_{3}\left(F_{\left(\omega^{\prime}, \omega\right)}\right) \subset \\
& \subset\left(\left(G_{a}\left(F_{\left(\omega^{\prime}, \omega\right)}\right)+\frac{\tau}{2}\right) \cap G_{\mu}\left(F_{\left(\omega^{\prime}, \omega\right)}\right)\right) \tag{11}
\end{align*}
$$

and this implies (10).
Corollary 2. Let $\left(\xi_{n}\right)$ be a sequence of independent random variables in a probability space (Ω, \mathcal{A}, P). Then for the random Dirichlet series (9), either inclusions (4) are valid or there exists a usual Dirichlet series F of the form (1) with $G_{3}(F)=G_{3}\left(\widetilde{F}_{\omega}\right), G_{a}(F)=$ $G_{a}\left(\widetilde{F}_{\omega}\right), G_{\mu}(F)=G_{\mu}\left(\widetilde{F}_{\omega}\right)$ (a.s.) such that $F_{\omega}^{*}=\widetilde{F}-F$ (a.s.) and

$$
G_{a}\left(F_{\omega}^{*}\right) \subset \frac{G_{a}\left(F_{\omega}^{*}\right)+G_{\mu}\left(F_{\omega}^{*}\right)}{2} \subset G_{3}\left(F_{\omega}^{*}\right) \subset\left(\left(G_{a}\left(F_{\omega}^{*}\right)+\frac{\tau}{2}\right) \cap G_{\mu}\left(F_{\omega}^{*}\right)\right)
$$

holds.
Proof of Corollary 2. Let $\eta_{n}\left(\omega^{\prime}, \omega\right)=\xi_{n}(\omega)-\xi_{n}\left(\omega^{\prime}\right)$ for every $\|n\| \geq 0$ and $\left(\omega^{\prime}, \omega\right) \in \Omega \times \Omega$. Then $\left(\eta_{n}\right)$ is a sequence of independent symmetric random variables in the probability space $(\Omega \times \Omega, \mathcal{A} \times \mathcal{A}, P \times P)$. Now we consider the series

$$
F_{\left(\omega^{\prime}, \omega\right)}(s)=F_{\omega}(s)-F_{\omega^{\prime}}(s)=\sum_{\|n\|=0}^{\infty}\left(\xi_{n}(\omega)-\xi_{n}\left(\omega^{\prime}\right)\right) \exp \left\{\left\langle s, \lambda_{n}\right\rangle\right\}
$$

As well as in Corollary 1 inclusions (11) hold (a.s.) for this series in $\Omega \times \Omega$. By the converse Fubini theorem, there exists a fixed point $\omega^{\prime} \in \Omega^{\prime}$ such that for almost all $\omega \in \Omega$ and for the series $F(s)=F_{\omega^{\prime}}(s)$

$$
G_{3}(F)=G_{3}\left(\widetilde{F}_{\omega}\right), G_{a}(F)=G_{a}\left(\widetilde{F}_{\omega}\right), G_{\mu}(F)=G_{\mu}\left(\widetilde{F}_{\omega}\right)
$$

and (11) are valid. This completes the proof of Corollary 2.

We remark that the inclusions in Lemma 1 and Theorem 1 are exact. Consider the series

$$
F(z)=\sum_{\|n\|=0}^{+\infty}(-1)^{\|n\|} e^{z_{1} \ln \left(n_{1}+1\right)+\ldots+z_{p} \ln \left(n_{p}+1\right)}
$$

We can easy see that the domain of the absolutely convergence is the following set

$$
G_{a}(F)=\left\{\sigma \in \mathbb{R}^{p}:(\forall j \in\{1, \ldots, p\})\left[\sigma_{j}<-1\right]\right\}
$$

and the domain of the existence of the maximal term of this series is the set

$$
G_{\mu}(F)=\left\{\sigma \in \mathbb{R}^{p}:(\forall j \in\{1, \ldots, p\})\left[\sigma_{j}<0\right]\right\}
$$

Let the system τ be as follows: $\tau=(1, \ldots, 1) \in \mathbb{R}^{p}$. Consider the series

$$
F_{2}(s)=\sum_{\|n\|=0}^{+\infty} e^{2\left(z_{1} \ln \left(n_{1}+1\right)+\ldots+z_{p} \ln \left(n_{p}+1\right)\right)}
$$

We see that the domain of absolutely convergence is equal to

$$
G_{a}\left(F_{2}\right)=\left\{\sigma \in \mathbb{R}^{p}:(\forall j \in\{1, \ldots, p\})\left[\sigma_{j}<-1 / 2\right]\right\}
$$

Thus,

$$
\frac{G_{a}(F)+G_{\mu}(F)}{2}=G_{a}\left(F_{2}\right)=\left(\left(G_{a}(F)+\frac{\tau}{2}\right) \cap G_{\mu}(F)\right),
$$

and from Theorem 1 follows that (a.s.)

$$
G_{a}\left(F_{\omega}\right)=\frac{G_{a}\left(F_{\omega}\right)+G_{\mu}\left(F_{\omega}\right)}{2}=G_{3}\left(F_{\omega}\right)=G_{a}\left(F_{2}\right)=\left(G_{a}\left(F_{\omega}\right)+\frac{\tau}{2}\right) \cap G_{\mu}\left(F_{\omega}\right)
$$

REFERENCES

1. Задорожна О.Ю., Скасків О.Б. Про спряжені абсииси збіжності кратного ряду Діріхле// Карпатські математичні публікації. - 2010. - Т.1, №2. - С. 152-160.
2. Leja F. Sur les séries de Dirichlet doubles// Comptes-rendus du I Congrès des mathématiciens des pays slaves. - Warszawa, 1930. - P. 140-158.
3. Zadorozhna O.Yu., Mulyava O.M. On the conjugate abscissas convergence of the double Dirichlet series// Mat. Stud. - 2007. - V.28, №1. - P. 29-36. (in Ukrainian)
4. Liang M., Gao Z. On convergence and growth of multiple Dirichlet series// Matem. zametki. - 2010. V.88, №5. - P. 759-769.
5. Filevych P.V On relations between the abscissa of convergence and the abscissa of absolute convergence of random Dirichlet series// Mat. Stud. - 2003. - V.20, №1. - P. 33-39.
6. Zadorozhna O.Yu., Skaskiv O.B. On the domains of convergence of the double random Dirichlet series// Mat. Stud. - 2009. - V.32, №1. - P. 81-85. (in Ukrainian)
7. Кахан Ж.-П. Случайные функциональные ряды. - М.: Мир, 1973. - 302с.

Ivan Franko national university of L'viv Faculty of mechanics and mathematics matstud@franko.lviv.ua
olzadorozhna@gmail.com

