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We give a semigroup characterization of kaleidoscopical graphs. A connected graph I" (con-
sidered as a metric space with the path metric) is called kaleidoscopical if there is a vertex
coloring of I which is bijective on each unit ball.
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Nel. — C.3-5.

IIpemioxkena moJyrpymnmnoBasi XapakTepu3alus KaJelocKommdeckux rpadon. CBsa3HBII
rpad I’ (kak MeTpuvecKoe IpoCTPAHCTBO C METPUKON KPATUANIINX PACCTOSHUI MEXK Ly BEPIIIH-
HAME) HA3bIBAETCsl KAJIEHIOCKOIMYECKUM, €CJIU CYIIECTBYeT PACKPACKA MHOXKECTBA BepInuH I
OMEeKTUBHAS HA KAXKJIOM €IMHUIHOM IIape.

Let T'(V, E) be a connected graph with the set of vertices V' and the set of edges E, d be
the path metric on V, B(v,r) ={u € V:d(v,u) <r},ve V,r e w={0,1,...}.

A graph T'(V, E) is called kaleidoscopical [4] if there exists a coloring (a surjective map-
ping) x: V — Kk, k is a cardinal, such that the restriction y|B(v,1): B(v,1) — & is a bijection
on each unit ball B(v,1),v € V. For kaleidoscopical graphs see also |2, Chapter 6] and [3].

Let G be a group, X be a transitive G-space with the action G x X — X, (g,x) — gz.
A subset A of X, |A| = k is said to be a kaleidoscopical configuration [1] if there exists
a coloring x: X — k such that, for each g € G, the restriction x|gA: gA — k is a bijection.

We note that kaleidoscopical graphs and kaleidoscopical configurations can be considered
as partial cases of kaleidoscopical hypergraphs defined in |2, p.5]. Recall that a hypergraph
is a pair (X,§) where X is a set, § is a family of subsets of X.

A hypergraph (X, §) is said to be kaleidoscopical if there exists a coloring x: X — & such
that, for each F' € §, the restriction y | F': F' — & is a bijection.

Clearly, a graph I'(V, E) is kaleidoscopical if and only if the hypergraph (V,{B(v,1):
v € V'}) is kaleidoscopical. A subset A of a G-space X is kaleidoscopical if and only if the
hypergraph (X, {g(A): g € G}) is kaleidoscopical.

We say that two hypergraphs (X7, §1), (X2, §2) with kaleidoscopical colorings x1: X7 — &,
X2: Xo — Kk are kaleidoscopically isomorphic if there is a bijection f: X; — X5 such that

0VA§X11A631<:>f(A)€32;

e Vz € Xi: xi(z) = xa2(f(2)).

We describe an algebraic construction which up to isomorphisms gives all kaleidoscopical
graphs.

The kaleidoscopical semigroup KS(k) is a semigroup in the alphabet s determined by
the relations xx = z, xyx = x for all x,y € k. For our purposes, it is convenient to identify
K S(k) with the set of all non-empty words in £ with no factors zz, ryx where z,y € k.
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For every = € k, the set KG(k,x) of all words from K S(k) with the first and the last
letter z is a subgroup (with the identity z) of the semigroup K S(x). To obtain the inverse
element to the word w € KG(k,z) it suffices to write w in the inverse order. The group
KG(k,x) is called the kaleidoscopical group in the alphabet x with the identity .

For finite cardinals &, the following theorem is proved in |2, p.64-66] but corresponding
arguments work for arbitrary k.

Theorem 1. For any cardinal r, the following statements hold:
e The only idempotents of the semigroup K S(k) are the words x, xy where x,y € k,x # y.
e The kaleidoscopical group KG(k,x) is a free group with the set of free generators

{zyzz: y,z € k\{z},y # 2}

e The kaleidoscopical semigroup KS(k) is isomorphic to the sandwich product L(x) X
KG(k,x) x R(x) with the multiplication

(I, 91,71)(l2, 92,72) = (l1, g1r1l2g2, 72),
where L(z) = {yz: y € v}, R(z) ={zy: y € k}.

We fix x € k, denote by a(w) the first letter of the word w € KS(k) and say that
an equivalence ~ on K S(k) is kaleidoscopical if, for all w,w’ € KS(k) and y € &,

w~w = e(w)=aew)Ayw=yuw,

w~w = wr ~w'r.

Let [w] be the class of equivalence ~ containing w € KS(k).
We put
S = [z] N KG(k, x),

observe that S, is a subgroup of KG(k,x) and show that ~ is uniquely determined by S,
w~w = x(w) = (W) Arwr ~ w'r <= (zwr) (zw'z) € S,.

We see also that any subgroup of KG(k,z) can be taken as S, to determine a kalei-
doscopical equivalence on KS(k).

A kaleidoscopical equivalence ~ determines a graph I'(k,~) with the set of vertices
KS(k)/ ~ and the set of edges E defined by the rule

(u,v) e E<=3Jweculye€r: elw)#yAyw e .

A coloring x: KS(k)/ ~— k defined by x(Jw]) = &(w) shows that ['(k,~) is kalei-
doscopical.

Now let T'(V, E) be a kaleidoscopical graph with kaleidoscopical coloring x: V' — k. We
define a transitive action of the semigroup K S(x) on the set V' as follows. Let v € V', z € k.
Pick w € B(v,1) such that x(u) = = and put z(v) = u. Then we extended the action onto
KS(k) inductively. If w = KS(k), w = 2w, w' € KS(k), € k, we put w(v) = z(w'(v)).
Given any vy, vs € V, the sequence of colors of the vertices on a path from v; to vy determines
a word w € KS(k) such that w(vy) = vy so KS(k) acts on V' transitively. Clearly, the group
KG(k,x) acts transitively on the set y~!(x) of vertices of color .



KALEIDOSCOPICAL GRAPHS AND SEMIGROUPS 5

We fix v € V with y(v) = z, determine a kaleidoscopical equivalence ~ on KS(k)
by the rule w ~ w' <= w(v) = w'(v), and note that the graphs I'(V, E) and I'(k, ~)
are kaleidoscopically isomorphic via bijection f: V — KS(k)/ ~, f(u) = {w € KS(k):
w(v) = u}.

All above considerations are focused in the following theorem.

Theorem 2. For every kaleidoscopical graph I'(V, E') with kaleidoscopical coloring x: V —
K, there exists a kaleidoscopical equivalence ~ on the semigroup KS(k) such that I'(V, E)
is kaleidoscopically isomorphic to I'(k, ~). Every kaleidoscopical equivalence ~ on KS(k) is
uniquely determined by some subgroup of the group KG(k,x).

Every group G can be considered as a G-space with the left regular action (g, x) — yx.
Let A be a kaleidoscopical configuration in G. By |1, Corollary 1.3|, A is complemented,
i.e. there exists a subset B of G such that the multiplication A x B — G, (a,b) — ab is
bijective.

Let A be a system of generators of a group G such that A = A™' and e € A, e is
the identity of G. We consider the Cayley graph Cay(G, A) with the set of vertices G and
the set of edges F defined by the rule

(g,h) e E<= g 'hec A g#h.

Clearly, Cay(G, A) is connected. Assume that Cay(G, A) is kaleidoscopical with kalei-
doscopical coloring y: G — |A|. Since B(g,1) = gA and x is bijective on each ball B(g,1),
we see that A is a kaleidoscopical configuration. On the other hand, if A is a kaleidoscopical
configuration in G with kaleidoscopical coloring x: G — A then y is bijective on each set
gA so Cay(G, A) is kaleidoscopical. Thus, we get the following theorem.

Theorem 3. Let G be a group, A be a system of generators of G such that A = A~! and
e € A. Then A is a kaleidoscopical configuration if and only if Cay(G, A) is kaleidoscopical.

We conclude the paper with two open questions.

Question 1. How to detect whether a kaleidoscopical hypergraph is kaleidoscopically iso-
morphic to a hypergraph of unit balls of some kaleidoscopical graph?

Question 2. How to detect whether a kaleidoscopical hypergraph is kaleidoscopically iso-
morphic to a hypergraph determined by a kaleidoscopical configuration in a G-space.
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