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For the Laplace—Stieltjes integrals new description of the exceptional set in asymptotic
upper estimates in terms of the maximum of the integrand function is obtained.
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s unrerpasos Jlammaca-CTuabTbeca MOIYIEHO HOBOE ONUCAHIE MCKIIOYNTETHHOTO MHO-
JKECTBa B aCHMIITOTUYECKHUX OIIEHKAaX CBEPXY Yepe3 MAKCUMyM IOJUHTErPAJIbHON (DYyHKIUN.

Let Ry = (0,400). For z,y € R%, we denote

P

P 1 P
(z,y) = Z%?Ji, |z = <Zmz2>2, lz|| = sz
i=1 i=1

=1

Let v be a countably additive nonnegative measure on R’ with unbounded support
supp v, f(x) an arbitrary nonnegative v-measurable function on RY . By Z?(v) we denote the
class of function F': R? — [0, +00) of the form

F(o) = . f(2)e"u(dx), o € RP. (1)

By v(FE) we denote the v-measure of a v-measurable set £ C RP.

The class of nonnegative continuous functions ¥(t) on [0, +00) such that ¢ (t) — +oo
as t — +oo is denoted by L, the subclass of functions ¢» € L such that (t) / +oo as
t — +oo is denoted by L™; L; is the subclass of L consisting of functions ¢y € L such that
S oo % < +4o00; L = L1 N LT; Ly is the class differentiable concave functions w € LT such
that
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LY is the subclass of L which contains functions w € Lo such that for all function £(t) — +0
(t = +00)

W) N0 (t— +o0)i lim '((1—e()t)/'(t) =1,

t—+o00

Ls is the class of differentiable functions w € L such that w'(t) Int = o(1) (t — 400) and for
all function ¢(t) — +0 (t — +o0)

m - 0(%@)) (t = +00).

Example. For
wt)=t*, 0<a<l1, wt) =)' g>o0,
we have w € ﬂ?ZQ L;.

1. Asymptotic relations with restrictions only to the measure: a new description
of exceptional sets. In papers [1, 2| the problem of obtaining asymptotic upper estimates
of functions F' € ZP(v) (for p = 1 in [1]) via

px (0, F) = sup{ f(x)e!”®: z € supp v}

with restrictions only to the measure v was considered.
Theorem 6 (|1]) implies that for each function F' € Z'(v) as soon as the function w € Lo
condition

@1 € L} s € L): T Wi )t — Vi@t + V0] <d. - (2)

holds for v4(a,b] = v({t € R: a < t < b}), then there exists a set £ C [0;+00) finite
Lebesgue measure such that

T (w(nF(0)) ~w(lnp(o, F))) < d. 3)

In the general case, according to [9, 10| the finiteness of the measure of an exceptional

set E in relation
w(n F(o)) — w(n g (o, F)) < d+o(1) (4)

with d = 0 is the best possible description. It is proved in |9, 10| for entire Dirichlet series
and w(x) = Inz, i.e. for integrals of the form (1) with an atomic measure v = > ¢, , where
J», is a unit measure concentrated at the point A, (Dirac’s measure). The such proposition
is contained in Theorem 1 ([2]) in the case of the class ZP(v) (p > 2).

Theorem A. (Theorem 1([2])) Let 14(0,t] = v({x € RP: ||z|| < t}),t > 0. Then for each
function F € IP(v) satisfying (2) with v1(a,b] = vo(a,b] = v({z € RP: a < ||z|| < b}), there
exists a measurable set ' C RP such that

meas,(E NC(R)) = O(R"™") (R — +00) (5)
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and the relation (4) holds as || — 400 (0 € K\E), where K C RP is an arbitrary real cone
with the vertex at the point O = (0,...,0) such that

R\O} € A(F) = {o € R”: lim %lnF(tJ) Y

t—00

and C(R) is a direct unbounded cylinder with the axis {oc € RP: 0y = 0y = ... = 0,} and
guide surface be a (p — 1)-dimensional ball of radius R > 0 centered at the point O.

Note (|1]) that condition (2) with d = 0 and w € Lj is equivalent to the condition

/+°° k(Inw4(0,t])

3 dt < 400, to>0, (6)

0

where k(t) is the inverse function to w,#(t)
Therefore, choosing the measure v such that for each bounded set G C R?

V(@) =D 0.(G), (7)
Inl=0

where J,(G) is a unit Dirac’s measure concentrated at point A, then Theorem A yields
Theorem 3 [3] for entire multiple Dirichlet series

+oo
F(z) = Z apel#A) (8)
lIn]|=0
where A, = (A,) i, is a fixed sequence such that A, = A A forn = (ny,... ny) €

/i andOﬁ)\,(j)T+oo (k= 4o00) for all 1 < j <p.
By H(A,) we denote the class of entire multiple Dirichlet series with a fixed sequence of
the exponents A, = (\,). For F € H(A,) and o € R”. we denote

M(o,F) = sup{|F(c +iy)|: y € R}, (o, F) = max{|a,|e/”* : n € Z2}.

For each measurable set £ € RP and o > 1 we define

TQ(E):/dal...dap‘
E

|O-|a—1

If we choose w(x) = Inx, then condition (6) can be rewritten as

/+°° dInwvy (0,1
0

; < 400 y(a,b] =v{r € RP: a < |z| <b}.

In [4, 5, 6] it is proved that if the last condition is satisfied for 11 (0, ¢] = na(t) = >\ < 1,
then for each entire multiple Dirichlet series I € H(A,) and for each cone K with the vertex
at the origin O = (0,...,0) such that K\{O} C R%, Borel’s relation

InM(o,F)=(14o0(1))Inpu(o, F) 9)
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is valid as |o| — +00,0 € K\E, where the set E C RY such that
7,(E) < 400. (10)

And this description of exceptional set in Borel’s relation is the best possible in a certain
sense. For entire Dirichlet series H(A;) (that is the class H(A,) for p = 1) similar results
was obtained in [8, 9, 10]. Note that this, in particular, implies that in the case of the class

v =U1"(v)

the description of an exceptional set in relati(l;n
InF(o) < (1+0(1))Inp(o, F) (11)

can not be improved considerable.

The aim of this paper is to prove that in the class Z¥ condition (6) implies relation (4)
with d = 0 outside an exceptional set satisfying condition (10). The following theorem is
true.

Theorem 1. Let F' € ZP(v). If the condition

+00 1
/ dinwo©.4 (12)
0 t
holds, then the relation
InF(o) < (1+o0(1))Inp. (o, F) (13)

holds as |o| — 400,06 € K\E, where K is an arbitrary real cone in RY. with the vertex at
the point O such that K\{O} C RY and the set E satisfies (10).

Proof. For og € RY, |og| = 1, we define
Voo (0,t] = v({z € RE : (09, z) < t}).

Let F' € ZP(v). Without loss of generality, we suppose that F'(0) = 1.

For fixed oy € R%,|og| = 1, we consider the function g(t) = In F(top),t € Ry. It is
proved in [2]| (Proposition 5) that g(¢) is a convex function for ¢ > 0. Let us consider the
probabilistic space € = RE with the probabilistic measure

_ Hoo,x V(dx)
P(dx) = f(z)e!t >F(t00)'

and the random variable £ = (0, x). Similar to |2] we can prove that M¢ = ¢/'(¢).
It is proved in [2] (Proposition 5') that for every K real cone with the vertex at the point
O such that K \ {O} C v(F)

In F (o)

1m
|o|—+00, o€K |O'|

= +00.

Since, R C v(F), we obtain

g(t) —9(0) _ InF(toy)
t t

In F'(t
gt) > Zinf{nTM:fo\zl,aeK}%—i-oo (t — +o0).
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So, ¢'(t) = +oo (t = +00).
By Markov’s inequality P{¢ > a} < ™ (a > 0) for a = 2M¢ = 2¢/(t) and z = toy, we
have P{¢ > 2¢'(t)} < 3. Thus,

F(tog) = / f(@)et o dy(z) + / f(@)etoo® dy(z) <
{z€RY : (00,2)<2¢'(t)} {z€RE : (g0,x)>2¢' (1)}

< p(tog, F)v({z € RY: (00, 2) < 24¢'(t)}) + F(tog)P({z € RE : (og,2) > 24'(t)}) <
< u(too, F)ve, (0,24 (t)] + %F(tao).

Hence,
F(tog) < 2u(too, F)ve, (0,24'(1)]. (14)

Let ([5]) y* := inf{inf{y;: y = (y1,-- -,y )yl = Ly € K}:1 < j < p}. Since
K\{O} Cc R%, we have y* > 0, and for y € K, |y| =1, t € R4, we obtain

1y (0,1] = v({z € RY: (y,2) < t}) < wl{o € RE: |z <)) = (0, yi}

Applying the previous inequality to (14), we have

F(tog) < 2u(tog, F)sup{v,(0,2¢9'(t)]: y € K, |y| = 1} < 2u(too, F)vg <O, 2gy’£t)} (15)

We prove that Ju € LT : Inyy(0,¢] = o(¢p~1(t))(t — +00) holds. We denote

—+o00
l(t):/lnf#dt, Ct) = (1) (t>0).
t
Since
+o00 e
/danE(O,t] _ IHVot(O,t] 4 / hw(;#’t]dt < +o0,
0 0

we have C(t) / +o00o(t — +00). Now, we choose a positive function ¢ increasing to +oo as
t — 400 such that the inverse function has the form

V() = ?(t) In 10(0, ¢], if t > to,
5C(to) Inwg(0, 6] (1 + ), if ¢ € [05to)],

where ¢y > 0 such that C(ty) In (0, t] > 0. Therefore,

o) o) (0, 1] e

+oo

1/2
:2(1@0))1/2:2( / mﬁﬂw) < 400,

to
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+o0

v, L VA
10y 47

A

we have ¢t = o(¢(t)) (t — +00). Therefore, since

It is clear that ¢ is nondecreasing, hence / . Thus, by Cauchy’s criterion

+oo t

A fa Tt
oot v

T Tatwy ool Tee
R — dt
o() / / i * / g <o
to ¥(to) ¥(to)  y(to)

we obtain ¢ € L and Invy(0,t] = o(¢p=1(t)) (t — +00).
We denote E(0g) = {o =tog: t > 0, ylg’( ) > 1(g(t))} for fixed oy € K, and

E= |J Elo).

loo|=1,00€RY.

Then for 0 = toy, 0 € K\ E we have

InF(o) <In2+Inu.(o, F)+ 1nu0<0, Qiit)] = Inp.(o, F) + O(wﬂ (%@)) <
<Inp(o,F)+ 0¥ (¢(In F(0))) = In (0, F) + o(ln F(a)) (o] — +00).

Hence, the relation (13) holds as |o| — +o00 (0 € K\ E).
Let Sy = {0 € K: |o| = 1}. Finally, we obtain the following estimate for the exceptional

set K/
/
m(ENRE) = dt |ds < —
e /(/ Joos i (] S =
S1 E(O’O UD)
(] e [
51 9(0)
Theorem 1 is completely proved. O

Necessity of condition (12) in Theorem 1 for p = 1 is proved in [11]. It follows from
Theorem 3 (|11]) that if a measure v is a countably additive measure on R, such that

+oo
/ w — too, (0,4 = O(t) (t = +o0),
0

where v(0,t] = v({x € R, : z < t}), then there exists a nonnegative function ' € Z'(v), a
constant d > 0, and a fixed point oy > 0 such that for all o > g

InF(o) > (1+d)Inu(e, F). (16)

If p > 2 and a measure v on RY is a direct product of countably additive measures v; on
R, then the necessity of condition (12) in Theorem 1 follows from the following theorem.
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Theorem 2. Let v be a direct product of countably-additive measures v; on Ry, v =
v X ... X v,. If condition (12) does not hold and Invy(0,t] = O(t) (t — +00), then there
exist a function F' € IP(v), a constant d > 0, and a measurable set E such that for allc € E
inequality (16) holds and 7,(E) = +o0.

Proof. 1f condition (12) does not hold and Inyy(0,t] = O(t) (t — 400), then there exists
j€{1,...,p} such that

—+00

/ w = +oo, Inv;(0,t] =O(t) (t = +00), (17)

where v(0,t] = v{z € Ry : z < t}.
Without loss of generality we may suppose that condition (17) holds for j = 1. Then by
Theorem 3 ([11]) there exists a function

Fi(oy) = /fl(w)e"”dl/l(x),

such that for o; > 0y the inequality In F(oq) > (1 + d) In p, (o, Fy) holds.
Convexity of Inu(t, Fy) implies that [(t) = $Inpu(t, Fi) /oo (t = +00). We choose

1
I1(t) = Inl(t) and I5(t) = ti(t)/l1(t). It is easy to see that Elz(t) T +oo (tg <t 1 +00).
Therefore, there exist positive functions f;(y),j € {2,...,p} such that for each s > ¢, and

jed{2,...,p}

1
sup{ln fo(y) + ys: to <y < 400} < ]—9[2(8).

For each o € R’i we define the functions
+0o0
Fi(s) = / fiy)e¥dv;(y),  F(o) = / Fr(yn) faly2) - - Fo(yp)e ™V du(y).
to Ri

Since for each s € R and j € {2,...,p} F;(s) < +oo, we have F' € IP(v).
Let ¢t > ty. Then

p p
Zln,u(s, F;) = Zsup{ln fily) +ys: y € suppr; N [ty; +o0)} <
j=2 j=2

< Zsup{ln fity) +ys: tg <y < +oo} < Z %lg(s) = ls(s) = o(In pu(s, F1)) (s = +00),

=2

that is,
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for all sufficiently large s.
Since

v(0:1) = viy € B yll < ¢} < [ vs(0.1]

J=1

and Fj(s) > 1 for all 2 < j < p, we obtain the following inequality

InF(o) > ilnFj(Uj) > In Fi(o1) > (1 +d)Inp(oq, Fy) >

Jj=1

d d d
> (1 + 5) In pu(oy, Fr) + §ln,u(01,F1) > (1 + §> In pu(oy, Fr)+

4\ & d\ <
+(1+ 5) ]Z:;lw(al,Fj) > <1+§> ;mu(@,E)-

force E={ceR: 0, >ty to<o;<o01je{2,...,p}}
It remains to note that for all 0 € F

P
Inp(o, F) = Z Inpu(oj, F;).
j=1

We show that 7,(E) = 400

doy...do too o1 7 do
Tp(E) :\/% :/ do'l/ ddg/ pzil Z
|U| to to to |0-|

E
+oo o1 o1 +o00 _ p—1
2/ dol/ d@.../ Ll:/ %d01:+00.
to to to (0_1 \/Z_j)pi to (0-1 \/Z_j)pi

Theorem 2 is completely proved. O

Conjecture. Condition (12) in Theorem 1 is necessary in the case when the measure v on
R is arbitrary. Is it true in general case?

For the class H(A,) the description (10) of a exceptional set in Borel’s relation (9) can
not improved in the following sense.

Theorem 3 ([6]). Let h € L. There there exists a sequence A, = (Ay)nezr satislying the
condition

“+oo

/ Mdt < +00, (18)
0

a function F' € H,(A\,), a constant d > 0 and a measurable set E C RY such that:
1. Yz eE): mM(z,F)> (1+d)Inpu(x, F);
9 / h(|x|)dzy ... dx,

[P~

= 400.
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Corollary 1. For each function h € LT there exist a countably additive measure v on R,
satisfying condition (12), a function F' € IP(v), a constant d > 0 and a measurable set
E C R such that:

1. Vo€ E): nF(o) > (1+d)Inp.(o, F);
9 /h(\x|)d01...dap

o=t

= +00.

Proof. We choose the measure v of the form (7). Then condition (18) is equivalent to condi-
tion (12), and it remains to apply the previous theorem.

This completes the proof of Corollary 1. m
Theorem 4. Let F' € IP(v),w € Lo, k(t) be the inverse function to w,;(t) If condition (6)
holds for v1(0,t] = 14(0, t], then relation (4) with d = 0 holds as |o| — 4+o00,0 € K\E, where
K is an arbitrary real cone in R with the vertex at the point O such that K\{O} C R%,
and for the measurable set E (10) holds.

Proof. Without loss of generality we may suppose that F(0) = 1. Repeating arguments
similar to that in proof of Theorem 1 in the part of obtaining inequalities (15), and saving
notation, we obtain

29 (t
F(too) < 2u(toy, F)v (o, gyf )]. (19)
We prove that 3¢ € L7 : Inyp(0,¢] = o(¢p~1(¢))(t — +00). As above we define the

function
—+o00

(1) = / Mool 4 o) = (1))

t2

NI

(t > 0).

As in the proof of Theorem 1 we have J € L : k(In(0,t]) = o(¢71(t)) (t — +00).
Since k(t) is the inverse function to w%(t) and w € Ly we obtain

o
w'(P=H(1))

It now follows from the proof of Theorem 1 that inequality (13) holds as 0 = tog, 0 €
K\E,, where

Invo(0, 4] = o(k™ (b 1(1))) = o( ): o(=L(t)) (t — +00).

B= U BBl ={o=to:t>0 %g’(t) > w(e()}.

‘O’o‘:l, UOERi

Moreover 7,(E NRY) < +o0.
Hence

In p. (o, F) > %lnF(a) (lo| = +o0) (20)

as 0 = tog,0 € K\Fj.
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Since w € Lo, W' is a decreasing function. Then from (15) and by the mean value
Lagrange’s theorem of finite increments we obtain
w(ln F(0)) — w(ln (0, F)) < /(I i (o, F)) (10 F(0) — In (0, F)) <

< w'(In p. (o, F))<1n2 + In vy (07 2gy’£t)}>

as 0 = tog,0 € K\Fj.
Let

BE= |J Esoo) BExoo) = {a — tog: t > 0, ?%g'(t) > @zj(?)}

loo|=1, ooeRﬁ_

Then for o = toy, 0 € K\(E, U Es),

W (In py (o, F)) < w'(%lm F(J))) = w'(ig(t))) < W,<¢_1( v

as |o| — +o0.
Since
(0, 8] = o(kH (71 (1)) = o(1/w' (™ (1)) (t = +00),

we have
w(ln F(0)) — w(ln g (o, F)) < ' (In 4 (o, F))<1n2 + In vy <07 2g/<t)D

<u(w—l(w))(lnuo(w—l(%@)):0(1)+w’<¢—1( e ))mz

y*

(21)

Therefore 1)~! is nondecreasing and w € Ly, we obtain (4).
Finally, we obtain the following estimate for the exceptional set £ = E; U F,

)ds§

(+00)

Tp<Eszﬂ>s§/(/ j(g)dod“%&/(g/ w@)

+
S1 Es(o0) (0)

+0o0
dt
c | —- )
< (/¢(t) < 400

Since 7,(Ey NRE) < +o00, we have 7,(ENRY) < +o0.
In [3] an analogue of Theorem 4 for the class H(A,) is proved.

Theorem 5 (|3]). Let w € Ly N Ly N Ls. For each function F € H(A,) the relation
w(ln Mo, F)) — w(in (o, F)) = of1) (22)

holds |o| = 400 (0 € K\ E,meas,(ENS,) = O™ ') (r = +00)) if and only if

/ wdt < 00, (23)
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holds, where K is an arbitrary cone K C RP with vertex in point such that (K \ O) C
{o € RP: limy 100 1 Inpu(to, F) = +oc}, S, is a cylinder, which obtains from the cylinder
Sy ={z = (21,...,m,) € RP: 23+ ... 42 < r*} by turning the coordinate system so that the
axle Oz moves in ray {v € RP: x1 =29 = ... + x,}.

From the proof in [3| necessary condition (23) in Theorem 5 and from Theorem 4 we
obtain the following theorem.

Theorem 6. Let F' € H(A,),w € Lo N Ly N Ly, k(t) be the inverse function to the function

w%(t). For each function F' € H(A,) relation (22) holds as |o| — +00,0 € K\E, where K is

an arbitrary real cone in RY. with the vertex at the point O such that K\{O} C R’ and
measurable set E satisfied (10) if and only if condition (23) holds.

Proof. Sufficiency. We choose the measure v of the form (7). Then condition (18) is equiva-
lent to condition (12). It remains to apply Theorem 4.

Necessity. The necessity of condition (23) one can prove in a similar way to the proof of
Corollary 3 ([3]), where for all 0 € E = {0 € RY: 0y > ty,01 > max{os,03,...,0,}}
relation (22) holds, and that for this set 7,(E) = 400 (see. proof of Theorem 2). O
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