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For the Fourier image D̂′
Γ of the algebra D′

Γ of the distributions with supports on a cone
Γ the functional calculus for generators of n-parametric (Co)-semigroups of operators is deter-

mined. For this purpose, we consider construction of the dual pair 〈D̂′
Γ, D̂Γ〉, and provide some

examples with respect to the formula of operator calculus.

О. В. Лопушанский, С. В. Шарин, А. В. Соломко. Векторнозначное функциональное ис-
числение для сверточной алгебры распределений в конусе // Мат. Студiї. – 2011. – Т.35,
№1. – C.78–90.

Для Фурье-образов D̂′
Γ алгебры D′

Γ распределений с носителями в конусе Γ строится
функциональное исчисление для генераторов n-параметрических (Co)-полугрупп опера-
торов. С этой целью рассматривается построение дуальной пары 〈D̂′

Γ, D̂Γ〉. Относительно
формулы операторного исчисления рассмотрены несколько примеров.

1. Introduction. In general, the idea of construction of the functional calculus is related to
Poincare’s work on the theory of continuous groups. Functional calculus in Sobolev spaces of
generalized functions for selfajoint operators is developed in the paper [1]. A full mathemati-
cal verification of Heaviside operational calculus is constructed in [2]. Functional calculus
for generators of the one-parametric (Co)-semigroups of operators over Banach spaces in the
convolution algebra of distributions on the semiaxis is defined in [3].

The purpose of this article is the construction of functional calculus for generators of
n-parametric (Co)-semigroups of operators in convolution algebra of Schwartz distributions
with supports in any closed, acute-angled and convex cone. Special case of this functional
calculus is considered in [4].
2. Construction of the duality 〈D̂′Γ, D̂Γ〉. Let us consider the classical Schwartz duality
〈D′(Rn), D(Rn)〉. As usually, D(Rn) — the space of infinitely differentiable functions with
compact supports suppϕ ⊂ Rn, D′(Rn) — the space of linear and continuous functionals over
D(Rn), i.e. the space of Schwartz distributions.

We denote by Γ any closed, acute–angled and convex cone in Rn, D′Γ is the subspace of
D′(Rn) of distributions f , such that suppf ⊂ Γ [5, Sect. I, §4].

The polar of subspace D′Γ with respect to the duality 〈D′(Rn), D(Rn)〉 is given by

(D′Γ)o = {ϕ ∈ D(Rn) : suppϕ ⊂ Rn\Γ}.
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The restriction of bilinear form D′(Rn) × D(Rn) 3 (f, ϕ) 7−→ 〈f, ϕ〉 ∈ C onto the direct
product D′Γ ×D(Rn) is constant on any set {(fo, ϕ)}, where fo ∈ D′Γ is fixed functional and
function ϕ runs through quotient class [ϕ] in the quotient space D(Rn)/(D′Γ)o. Thus, the
bilinear form D′Γ ×D(Rn)/(D′Γ)o 3 (f, [ϕ]) 7−→ 〈f, ϕ〉 ∈ C, ϕ ∈ [ϕ] leads the spaces D′Γ and
D(Rn)/(D′Γ)o into duality [6, Sect.II].

The topology convergence in D(Rn)/(D′Γ)o is equivalent to sequential convergence, i.e.
[ϕ]m −→ [ϕ] if for any ε–neighborhood Oε,K of compactum K ⊂ Γ, for any representatives
{ϕm ∈ [ϕ]m : suppϕm ⊂ Oε,K} and {ϕ ∈ [ϕ] : suppϕ ⊂ Oε,K} the following convergence is
fulfilled:

lim
m→∞

sup
t∈Oε,K

∣∣∂kϕm(t)− ∂kϕ(t)
∣∣ = 0,∀k ∈ Zn+,

where ∂k = ∂k1
1 . . . ∂knn , ∂

kj
j = ∂kj

∂t
kj
j

, (j = 1, . . . , n).

It is well known that, for any ε > 0 there exists ρε ∈ C∞(Rn) such that

ρε(t) =

{
1, t ∈ Oε/2,K ;

0, t /∈ Oε,K .

Therefore, the corresponding quotient class [ϕ] ∈ D(Rn)/(D′Γ)o can be identified with
the germ of C∞–functions of form ρε · ϕ, ϕ ∈ [ϕ].

Let λΓ(t) =
{

1, t ∈ Γ

0, t /∈ Γ
be the characteristic function of the cone Γ. Define the mapping

% : D(Rn) 3 ϕ 7−→ λΓϕ =: ψ ∈ DΓ

as multiplication operator by the characteristic function, and the space DΓ is defined as
follows DΓ : = {ψ = λΓϕ : ϕ ∈ D(Rn)}. It is obvious that Ker% = (D′Γ)o.

For any natural number ν we construct the set Γν as intersection of cone Γ with the ball
of radius ν and consider the space of functions

DΓν : = {ψ(t) = λΓ(t)ϕ(t) : ϕ(t) ∈ D(Rn), suppϕ ∩ Γ ⊂ Γν} .

The topology of the space DΓν is defined by the set of norms

‖ψ‖m,ν =
∑
|k|≤m

1

k!
sup
t∈Γν

|∂kψ(t)| <∞.

For any numbers ν ≤ µ inclusions DΓν ⊂ DΓµ are continuous. Thus, we can represent
the space DΓ as the following inductive limit

DΓ '
⋃

Γν⊂Γ

DΓν = lim ind
ν→∞

DΓν . (1)

We can now formulate some useful propositions, which were proved in [7].

Proposition 1. The spacesDΓ andD(Rn)/(D′Γ)o are topologically isomorphic and canonical
bilinear form from 〈D′(Rn), D(Rn)〉 induces the duality 〈D′Γ, DΓ〉.

Proposition 2. The space DΓ is (LF)–space, in addition it is barreled, bornological Montel
space.
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Proposition 3. Suppose that for an arbitrary compactum K ⊂ Γ the space D′K is conjugate
to DK endowed by the strong topology with respect to the duality 〈D′K , DK〉. Then the space
D′Γ in its strong topology β(D′Γ, DΓ) is topologically isomorphic to the projective limit

D′Γ ' lim pr
K⊂Γ

D′K .

Let us observe that the space D′Γ being strongly conjugate to the space DΓ, is a Montel
space. The space D′Γ is a convolution algebra [5, §4, p.75]. The convolution D′Γ × D′Γ 3
(f, h) 7−→ f ∗ h ∈ D′Γ is determined by the formula

〈f ∗ g, ψ〉 = 〈f(x), ξ(x)〈h(y), η(y)ψ(x+ y)〉〉,

where ψ ∈ DΓ and ξ(x), η(y) are arbitrary infinitely differentiable functions, which are equal
to 1 in the neighborhood of supports of distributions f and h respectively and equal to 0
out of these neighborhoods.

Lemma 1. The convolution in the algebra D′Γ is continuous with respect to the strong
topology β(D′Γ, DΓ).

Proof. The locally convex space D′Γ is reflexive one in the topology β(D′Γ, DΓ). Since the
multiplication of reflexive locally convex algebra is continuous [8, Ch.5, Pr. 5.1], the convoluti-
on in algebra D′Γ is a continuous mapping with respect to the strong topology.

Lemma 2. Inclusion DΓ ⊂ D′Γ is dense with respect to the strong topology β(D′Γ, DΓ).

Proof. Let {ψn}∞n=1 be any sequence of test functions from the space D(Rn), that approxi-
mate delta-function δ with respect to the strong topology of the space D′(Rn). The result
of convolution f ∗ψn belongs to the space D(Rn) for any f ∈ D′(Rn). Thus, D(Rn) is dense
in D′(Rn). Then intersection D′Γ ∩ D(Rn) is dense in the subspace D′Γ ⊂ D′(Rn). So, the
mapping % is the identity operator on the space D′Γ∩D(Rn) as the operator of multiplication
by the characteristic function of the cone Γ. Thus, the subspace D′Γ∩D(Rn) = %[D′Γ∩D(Rn)]
is dense in the space D′Γ.

The n-parametric semigroup of shifts along the cone Γ is defined as follows

Ts : D(Rn) 3 ϕ(t) 7→ ϕ(t+ s) ∈ D(Rn),∀s ∈ Γ,∀t ∈ Rn.

We define the (Co)–semigroup Ts to be the unique semigroup satisfying the following
relation (Ts ◦ %)ϕ(t) = (% ◦ Ts)ϕ(t). Let L(DΓ) denote the algebra of linear and continuous
mappings over the space DΓ with the composition instead of the multiplication. Note that
Ts ∈ L(DΓ) and Ts is an equicontinuous semigroup on the space DΓ (see [7]).

For every distribution f ∈ D′Γ and ϕ ∈ D(Rn) we define the operation

(Mfϕ)(t) = (f ? ϕ)(t) = 〈f(s),Tsϕ(t)〉,∀s ∈ Γ,∀t ∈ Rn.

The operation of cross-correllation, denoted by Mf , is defined to be the unique operator
satisfying the following relation (Mf ◦ %)ϕ(t) = (% ◦Mf )ϕ(t). In [7] it is proved, that the
mapping D′Γ 3 f 7→Mf ∈ L(DΓ) realizes the topological isomorphism of convolution algebra
of distributions D′Γ onto the commutant of the semigroup Ts in the algebra L(DΓ). In parti-
cular, for any distributions f, g ∈ D′Γ the following equalities hold

Mf∗g = Mf ◦Mg,Mδ = I,

where δ is the Dirac function and I is the identity operator in L(DΓ).
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Lemma 3. The following properties of the operation of cross–correllation are valid
∀k ∈ Zn+, |k| = k1 + · · ·+ kn,∀f, g ∈ D′Γ,∀ψ ∈ DΓ

1) ∂k(Mfψ) = Mf∂
kψ = (−1)|k|M∂kfψ;

2) M∂kf ◦Mg = Mf ◦M∂kg;
3) Mfψ(0) = 〈f, ψ〉.

Fourier transformation in the space D(Rn) is defined by

F : D(Rn) 3 ϕ 7→ ϕ̂(ξ) ∈ D̂(Rn),

where D̂(Rn) : =

{
ϕ̂(ξ) =

∫
Rn
ϕ(t)e−i(t,ξ)dt : ϕ ∈ D(Rn)

}
, ξ = (ξ1, . . . , ξn) ∈ Rn.

Let the Fourier transformation of functions from space DΓ be given by

F : DΓ 3 ψ(t) 7→ ψ̂(ξ) =

∫
Γ

e−i(t,ξ)ψ(t)dt, (2)

Let D̂Γ denote the codomain of the space DΓ, i.e. D̂Γ = {ψ̂(ξ) : ψ(t) ∈ DΓ}. Note that
for any function ψ ∈ DΓ the equality F[ψ] = F [ψ] is valid because of the condition ψ(t) ≡ 0,
∀t ∈ Rn\Γ.

Since DΓ has the form of inductive limit (1) of subspaces DΓν with norms {‖ · ‖m,ν}m∈N,
the injectivity of mapping (2) implies that we can define the topology on the Fourier–image
D̂Γν = {ψ̂ : ψ ∈ DΓν} by norms ‖ψ̂‖m,ν = ‖ψ‖m,ν . Then D̂Γ =

⋃
ν>0 D̂Γν , and inclusion

D̂Γν ⊂ D̂Γµ is continuous, when ν ≤ µ. Thus, we may endow the space D̂Γ with the locally
convex topology of inductive limit D̂Γ = lim ind

ν→∞
D̂Γν .

As results, the basic properties of the space DΓ are transferred into the space D̂Γ. That
is, the Fourier–image D̂Γ is a Montel, barreled and bornologic (LF )–space.

Let us observe that the inverse Fourier transformation F−1 : D̂Γ 3 ψ̂ 7→ ψ ∈ DΓ exists
and has the following property

ψ(t) = F−1(F [ψ]) = λΓ(t)F−1(F [ψ]),

where F−1 : D̂(Rn)→ D(Rn) is the inverse mapping to F.

Let D̂′Γ be the conjugate space to D̂Γ. We shall denote by

F ∗ = (2π)n(F−1)′ : D′Γ 3 f 7→ f̂ ∈ D̂′Γ (3)

the conjugate mapping to the inverse Fourier transformation F−1. We call F ∗ the genera-
lized Fourier transformation of distributions from the space D′Γ. The definition of F ∗ can be
written as

〈F ∗f, ψ̂〉 = (2π)n〈f, F−1F [ψ]〉, f ∈ D′Γ, ψ̂ ∈ D̂Γ.

For similarity of notation, we write f̂ instead of F ∗f . Then we may write

〈f̂ , ψ̂〉 = (2π)n〈f, F−1F [ψ]〉 = (2π)n〈f, ψ〉. (4)

Formula (4) with mapping (3) defines a new duality 〈D̂′Γ, D̂Γ〉.
3. The vector cross-correllation operation. In this part of the paper we shall prove
the nuclearity of the spaces of duality 〈D′Γ, DΓ〉 and shall define the vector cross-correllation
operation.
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Lemma 4. The spaces DΓ and D′Γ are nuclear.

Proof. As known [9, §2, Theor. 7], the nuclearity of any locally convex space implies that its
quotient space with respect to a close subspace and the strongly conjugate space are nuclear
too. The space D(Rn) is nuclear (see [10, §10, p. 405]). Thus, the space DΓ : = D(Rn)/(D′Γ)o

and D′Γ are nuclear.

Let {Y, ‖ · ‖} be a complex Banach space. We consider the space D(Rn,Y) of infinitely
smooth Y-valued functions x(t) with compact supports in Rn. Topology ofD(Rn,Y) is defined
by the set of norms

‖x‖m =
∑
|k|≤m

1

k!
sup
t∈Rn
|∂kx(t)| <∞.

The space Dν(Rn) = {ϕ ∈ D(Rn) : suppϕ ⊂ Bn
ν } is a Fréchet subspace of D(Rn). Here

Bn
ν is the ball in Rn of radius ν. Let us note, that the space DΓν can be reintroduced as

DΓν = %(Dν(Rn)), where % is the characteristic function of the cone Γ.
We shall denote by DΓ(Y) the space of infinitely smooth Y–valued functions x(t) with

compact supports in Γ.

Theorem 1. The following topological isomorphisms are realized

D(Rn,Y) ' Y⊗̃D(Rn) ' lim ind
ν→∞

Y⊗̃Dν(Rn), (5)

DΓ(Y) ' Y⊗̃DΓ ' D(Rn,Y)/Y⊗̃Ker% ' lim ind
ν→∞

Y⊗̃DΓν , (6)

where the sign ⊗̃ denotes the completion of tensor product in the projective topology.

Proof. The topological isomorphismD(Rn,Y) ' Y⊗̃D(Rn) is realized by virtue of well known
Grothendieck’s theorem [9, §3, theor. 13] about a representation of tensor product of two
complete spaces one of which is nuclear. Then Proposition 1 implies

D(Rn,Y)/Y⊗̃Ker% ' Y⊗̃D(Rn)/Y⊗̃Ker% ' Y⊗̃[D(Rn)/Ker%] ' Y⊗̃DΓ.

Let Y ˜̃⊗DΓ be completion of tensor product in the uniform convergence topology on the
equicontinuous subsets of the dual spaces Y′ and D′Γ. It is known [11, Sect. IV, 9.4] that
the isomorphism relation DΓ(Y) ' Y ˜̃⊗DΓ holds. The isomorphism relation Y⊗̃DΓ ' Y ˜̃⊗DΓ

is realized due to the nuclearity of DΓ [11, Sect. IV, 9.4], i.e. DΓ(Y) ' Y⊗̃DΓ. Thus, the
topological isomorphism relation (5) and (6) are proved.

Lemma 5. For any element x = x(t) ∈ DΓ(Y), t ∈ Γ there exists a number ν > 0 such that
x(t) ∈ Y⊗̃DΓν and x(t) can be written as absolutely convergent series in the space Y⊗̃DΓν

in the following way

x(t) =
∞∑
m=1

λmxm ⊗ ψm(t), (7)

where
∑
m

|λm| < ∞, and the sequences of functions {ψm(t)} and {xm} converge to zero in

DΓν and Y respectively.
In addition, the equality

∂kx(t) =
∞∑
m=1

λmxm ⊗ ∂kψm(t),∀k ∈ Zn+ (8)

holds.
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Proof. From definition of the space DΓ(Y) it follows that for every x ∈ DΓ(Y) there exists
a number ν > 0 such that x ∈ Y ⊗ DΓν . Obviously, the spaces Y and DΓν are metrizable.
Then for an arbitrary element x ∈ Y⊗̃DΓν we can use the theorem about representation
of elements of metrizable spaces, which competed in the projective tensor product topolo-
gy [11, Sect.III, 6.4]. Thus, from this theorem we obtain expansion x(t) into series (7).

Equality (8) follows from absolute convergence of series (7).

Let IY be the identity operator in a Banach space Y, Mf ∈ L(DΓ) the operator of cross-
correllation. We define the vector cross–correllation operation by

(IY ⊗Mf )x(t) =


∞∑
m=1

λmxm(Mfψm)(t), t ∈ Γ,

0, t /∈ Γ.
(9)

Lemma 6. For any distributions f, g ∈ D′Γ and function x(t) ∈ DΓ(Y) we have (IY⊗Mf ) ∈
L(DΓ(Y)) and the following equalities hold

(IY ⊗Mf∗g)x(t) = (IY ⊗ (Mf ◦Mg))x(t),

∂k(IY ⊗Mf )x(t) = (IY ⊗Mf )∂
kx(t) = (−1)|k|(IY ⊗M∂kf )x(t), ∀k ∈ Zn+,

(IY ⊗Mf )x(0) = (IY ⊗ f)x(t).

Proof. Let f ∈ D′Γ. Then definition (9) implies that the operator IY ⊗Mf is a linear and
continuous transformation from the space DΓ(Y) into itself.

From the definition of operator IY ⊗Mf we obtain

(IY⊗Mf∗g)x(t) =
∞∑
m=1

λmxm(Mf∗gψm)(t) =
∞∑
m=1

λmxm((Mf ◦Mg)ψm)(t) = (IY⊗Mf ◦Mg)x(t).

Let us prove the second property. For all k ∈ Zn+ we have

∂k(IY ⊗Mf )x(t) = ∂k
∞∑
m=1

λmxm(Mfψm)(t) =
∞∑
m=1

λm∂
kxm(Mfψm)(t) = (IY ⊗Mf )∂

kx(t).

Besides,

(IY ⊗Mf )∂
kx(t) =

∞∑
m=1

λmxm(Mf∂
kψm)(t) = (−1)|k|

∞∑
m=1

λmxm〈∂kf, (Tsψm)(t)〉

= (−1)|k|(IY ⊗M∂kf )x(t), ∀s ∈ Γ.

The last property follows from the definition of vector cross-correllation operation.

The vector operator of shifts, denoted by IY ⊗ Ts, is defined as follows

IY ⊗ Ts : DΓ(Y) 3 x(t) 7→
∞∑
m=1

λmxm(Tsψm)(t) ∈ DΓ(Y).
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Theorem 2. For every distribution f ∈ D′Γ the operator IY ⊗Mf is nuclear and invariant
with respect to the vector operator of shifts.

Conversely, for an arbitrary operator K ∈ L(DΓ), which is invariant with respect to the
vector operator of shifts, there exists a unique distribution f ∈ D′Γ such that K = Mf and
(IY ⊗K)x(t) = (IY ⊗Mf )x(t) for all x(t) ∈ DΓ(Y).

Proof. We have that IY⊗Mf is a linear and continuous mapping from the space DΓ(Y) into
itself and

(IY ⊗Mf )x(t) =
∞∑
m=1

λmxm(Mfψm)(t) =
∞∑
m=1

λmxm〈f, Tsψm(t)〉,

where the sequences {xm}m∈N and {Tsψm(t)}m∈N converge to zero in Y and DΓ respectively.
Therefore from the known criterion of nuclearity [10, Sect.X, theor.1] we obtain that IY⊗Mf

is a nuclear operator.
Further,

(IY⊗Mf ◦Ts)x(t) =
∞∑
m=1

λmxm(Mf ◦Ts)ψm(t) =
∞∑
m=1

λmxm(Ts◦Mf )ψm(t) = (IY⊗Ts◦Mf )x(t).

Conversely, for any function ψ(t) ∈ DΓ the linear and continuous functional
f : ψ 7→ (Kψ)(0) defines the distribution f ∈ D′Γ. Then for any function x(t) ∈ DΓ(Y)
we can write that 〈f, x〉 = (IY ⊗K)x(0), since (IY ⊗K)x(0) = 〈f, x〉 = (IY ⊗Mf )x(0). If we
replace (IY⊗ Ts)x(t) instead of x(t) and use the condition of invariance for operator IY⊗K,
we obtain (IY ⊗K)x(t) = (IY ⊗Mf )x(t).

4. Functional calculus for distributions on cone. Let Us : Γ 3 s → Us ∈ L(Y) be an
n–parametric semigroups of class (Co) over the space Y. Generators of this n–parametric
(Co)–semigroup are determined by the following way

∂Usx

∂sj

∣∣∣∣
s=0

= −iAjx, x ∈ D(Aj), j = 1, . . . , n.

We assume that each Aj is a closed and dense operator with the domain D(Aj). Throughout
the article, A stands for A : = (A1, . . . , An).

Let us define the mapping FA as

FA : DΓ(Y) 3 x(s) 7→ x̂ ∈ D̂Γ(Y), (10)

where the space D̂Γ(Y) is defined by

D̂Γ(Y) : =
{
x̂ =

∫
Γ

Usx(s)ds : x(s) ∈ DΓ(Y)
}
. (11)

Theorem 3. If {Us : s ∈ Γ} is an n-parametric (Co)-semigroup of operators, then the
subspace D̂Γ(Y) is dense in the Banach space Y.

Proof. Let Y′ be the conjugate space to Y of linear and continuous functionals and x′ ∈ Y′

any functional. Then the properties of the Bochner integral [12, Sect.III, 3.5] imply that

〈x′, x̂〉 =

∫
Γ

〈x′, Usx(s)〉ds. (12)
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Now assume, that for some functional x′ ∈ Y′ the condition 〈x′, x̂〉 = 0 holds for all
x̂ ∈ D̂Γ(Y). Our next goal is to prove that x′ = 0.Without restriction of generality it is suffici-
ent to show x′ = 0 for elements of the form x(s) = y⊗ψ(s), only, where y ∈ Y and ψ(s) ∈ DΓ.
In this case we have 〈x′, Usx(s)〉 = 〈x′, Usy〉ψ(s). Thus, the polar (D̂Γ(Y))o = {x′ : 〈x′, x̂〉 = 0}
consists of the unique element x′ = 0. Then the bipolar theorem, as a consequence of the
Hahn–Banach theorem (see [11, Sect. IV, theor. 1.5]), yields that the space D̂Γ(Y) is dense
in Y.

We endow the space D̂Γ(Y) with the weakest topology with respect to which the mapping
FA is continuous. Let D̂Γν (Y) be the image of DΓν (Y) by the mapping (10). Then on the
space D̂Γν (Y) define a topology by the set of norms

‖x̂‖m,ν = inf
x∈F−1

A x̂
‖x‖m,ν ,

where the norms ‖x‖m,ν determine the topology of the space DΓν (Y).

Obviously, the mapping DΓν (Y) 3 x(s) 7→ x̂ ∈ D̂Γν (Y) is linear and continuous. Thus,
D̂Γν (Y) is a Fréchet space. The diagrams

DΓν (Y) −−−→ DΓµ(Y)

FA ↓ FA ↓

D̂Γν (Y) −−−→ D̂Γµ(Y)

and injection D̂Γν (Y) ⊂ D̂Γµ(Y) are continuous for any ν ≤ µ.
Since, D̂Γ(Y) =

⋃
ν>0 D̂Γν (Y), we may endow the space D̂Γ(Y) with the topology of

inductive limit of Fréchet subspaces

D̂Γ(Y) = lim ind
ν→∞

D̂Γν (Y).

So, the mapping FA realizes the topological homomorphism of the respective spaces.
Let L(D̂Γ(Y)) be the space of linear and continuous operator of D̂Γ(Y) into itself, endowed

with the topology of uniform convergence on the bounded sets. For an n–parametric semi-
group of shifts

{
IY ⊗ Ts : s ∈ Γ

}
⊂ L(DΓ(Y)) we consider the n–parametric semigroup

defined by {
T̂s : s ∈ Γ

}
⊂ L(D̂Γ(Y)), T̂s : = FA ◦ (IY ⊗ Ts) ◦ F−1

A .

Indeed, for any s, t ∈ Γ

T̂s+t = FA ◦ (IY ⊗ Ts+t) ◦ F−1
A = FA ◦ (IY ⊗ Ts) ◦ F−1

A ◦ FA ◦ (IY ⊗ Tt) ◦ F−1
A = T̂s ◦ T̂t

and
T̂0 = FA ◦ (IY ⊗ T0) ◦ F−1

A = FA ◦ F−1
A

is the identity operator over the space D̂Γ(Y).
Then by the formula

F̂A : [Ts]
c 3 T 7→ T̂ ∈ FA ◦

(
IY ⊗ [Ts]

c
)
◦ F−1

A .

we define an algebraic isomorphism of commutant [Ts]
c on the commutative

subalgebra FA ◦
(
IY ⊗ [Ts]

c
)
◦ F−1

A .
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Theorem 4. The mapping

Φ: D̂′Γ 3 f̂ −→ f̂(A) ∈ L(D̂Γ(Y)), (13)

is a continuous isomorphism of the algebra D̂′Γ into the closed subalgebra of operators{
[T̂s]

c := FA ◦
(
IY ⊗ [Ts]

c
)
◦ F−1

A : s ∈ Γ
}

of the algebra L(D̂Γ(Y)), where the operator
f̂(A) is defined by the formula

f̂(A) : D̂Γ(Y) 3 x̂→ f̂(A)x̂ =

∫
Γ

(Us ⊗Mf )x(s)ds. (14)

In particular,
Φ(f̂ · ĝ) = f̂(A) ◦ ĝ(A), f̂ , ĝ ∈ D̂′Γ

and we can extend the operator δ̂(A) to the identity operator IY of the space Y.

Proof. The bijective mapping of commutant [Ts]
c on commutative subalgebra [T̂s]

c by

F̂A : T −→ T̂, T̂ : = FA ◦ (IY ⊗ T ) ◦ F−1
A

realizes an algebraic isomorphism. In [7] it is proved that the mapping M : D′Γ −→ [Ts]
c is

an algebraic isomorphism. Besides, the generalized Fourier transformation F ∗ : D′Γ −→ D̂′Γ
realizes an algebraic isomorphism too. Thus, the next commutative diagram

D′Γ
M−−−→ [Ts]

c

F ∗ ↓ ↓ F̂A

D̂′Γ
M̂A−−−→ [T̂s]

c

identifies the algebraic isomorphism M̂A : D̂′Γ −→ [T̂s]
c.

The mapping Φ is continuous as a composition of continuous mappings. Let us show,
that Φ is a homomorphism of algebras. For any x(s) = x⊗ ϕ(s) we can obtain[

Φ(f̂) ◦ Φ(ĝ)
]
x̂ =

∫∫
Γ

Us+tx⊗ (Mf ◦Mg)ϕ(s+ t)dsdt

=

∫
Γ

Upx⊗Mf∗gϕ(p)dp = Φ(f̂ ∗ g)x̂ = Φ(f̂ · ĝ)x̂.

In particular,

Φ(δ̂)x̂ =

∫
Γ

(Us ⊗Mδ)x(s)ds = x̂.

By Lemma 5, any element x ∈ DΓ(Y) can be written as absolutely convergence series
x =

∑∞
m=1 λmxm ⊗ ϕm(s). This fact implies that

[
Φ(f̂) ◦ Φ(ĝ)

]
x̂ =

∞∑
m=1

λm

∫
Γ

Upxm ⊗Mf∗gϕm(p)dp =
∞∑
m=1

λmΦ(f̂ · ĝ) ̂xm ⊗ ϕm = Φ(f̂ · ĝ)x̂

for any x ∈ DΓ(Y).
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Note that the partial differentiation operators ∂mj x, (j = 1, . . . , n) are defined in the space
DΓ(Y) of the test Y–valued functions x(s) = x(s1, . . . , sn) on the cone Γ. For the interior of
Γ it is the usual differentiation and on the limit of cone it is one-sided differentiation.

Lemma 7. For any f ∈ D′Γ, x ∈ DΓ(Y) and m ∈ N the following formula holds

f̂(A)∂̂mj x = (iAj)
mf̂(A)x̂−

m−1∑
kj=0

(iAj)
m−kj−1〈f, ∂kjj x〉, (j = 1, . . . , n). (15)

Proof. Without restriction of generality it is sufficient to show (15) for elements of the form
x(s) = x⊗ ϕ(s) ∈ DΓ(Y). only. So, for any function x(s) = x⊗ ϕ(s) we have

f̂(A)∂̂mj x =

∫
Γ

(Us ⊗Mf )∂
m
j x(s)ds =

∫
Γ

Usx∂
m
j Mfϕ(s)ds.

Last integral we integrate by parts l–times. Then from the property of the cross–correllation
operation ∂mj (Mfϕ)(0) = 〈f, ∂mj ϕ〉 and the definition of generator ∂Usxk

∂sj

∣∣∣
s=0

= −iAjxk we
obtain formula (15).

Note that mapping (13) we designate as the functional calculus in the algebra D̂′Γ over
the Banach space Y.

Let us consider examples, where we use constructed functional calculus.
Example 1. The value of the Dirac function for the generator A = (A1, . . . , An) of the
n-parametric (C0)-semigroup defined by

Us = e−i(s,A) = e−i(s1A1+...+snAn), s = (s1, . . . , sn) ∈ Γ

we can evaluate by the formula

δ(A)x̂ =
1

(2π)n

∫
Γ

T̂txdt, x ∈ DΓ(Y).

Note that any n–parametric (C0)–semigroup can be written as a product of one–parametric
(C0)–semigroups [12, Sect. IX, 9.7]. Thus,

δ(A)x̂ =
1

(2π)n

∫
Γ

(Us ⊗MλΓ
)x(s)ds =

1

(2π)n

∫
Γ

e−i(s,A)

∫
Γ

x(t+ s)dtds

=
1

(2π)n

∫
Γ

∫
Γ

e−i(s,A)Ttx(s)dsdt =
1

(2π)n

∫
Γ

T̂txdt.

Example 2. Now we use generalized Fourier transformation to the known formula

λΓ ∗ (∂1 . . . ∂nδ) = (∂1 . . . ∂nδ) ∗ λΓ = δ.

Then we obtain
δ · ̂(∂1 . . . ∂nδ) = ̂(∂1 . . . ∂nδ) · δ =

1

(2π)n
.

Thus, the Dirac function δ has inverse element (2π)n ̂∂1 . . . ∂nδ in the algebra D̂′Γ.
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Let A = (A1, . . . , An) be the generator of the n-parametric (C0)-semigroup Us = e−i(s,A).
Then from Lemma 7 we conclude that the equation

̂(∂1 . . . ∂nδ)(A)x̂ =
ŷ

(2π)n

has a unique solution x̂ = δ(A)ŷ = 1
(2π)n

∫
Γ
T̂txdt for any ŷ ∈ D̂Γ(Y).

Example 3. Let Γ = Rn
+, Y = L1(R+)⊗̃ · · · ⊗̃L1(R+) = L1(Rn

+). The semigroup of fractional
integration [0,+∞) 3 t −→ ft∗ ∈ L

[
L1(R+)

]
is defined over the space L1(R+), where

element ft ∈ D′R+
is defined by formula

ft(s) =
θ(s)st−1

Γ(t)
, s ∈ [0,+∞). (16)

Determine the operator ft∗ as the convolution with the function ψ ∈ L1(R+), then ft ∗ ψ ∈
L1(R+). In formula (16) θ(s) is the Heaviside function with support [0,+∞) and Γ(t) =∫ +∞

0

yt−1e−ydy is the gamma function. The generator of fractional integration semigroup

we designate by G. Thus, ft∗ = etG.
Let us consider the n–parametric semigroup of convolution operators

Rn
+ 3 t = (t1, . . . , tn) 7→ Ft = (ft1∗)⊗ · · · ⊗ (ftn∗) ∈ L

[
L1(Rn

+)
]
.

Every operator Gj := I1 ⊗ · · · ⊗ Ij−1 ⊗ Gj ⊗ Ij+1 ⊗ · · · ⊗ In generates one-parametric (C0)-
semigroup

etjGj := I1 ⊗ · · · ⊗ Ij−1 ⊗ etjGj ⊗ Ij+1 ⊗ · · · ⊗ In
over the space L1(Rn

+), where the identity operator Ij = δj∗ is the convolution with the
Dirac function in the variable tj ∈ [0,+∞). Semigroups {etjGj : t ∈ [0,+∞)} belong to the
algebra L

[
L1(Rn

+)
]
. So, the generator G of the n–parametric semigroup can be written as

G = (G1, . . . , Gn).
Let t 7→ ψτ (t) be an L1(Rn

+)–valued function of a variable τ ∈ Rn
+ from the space

DRn+

(
L1(Rn

+)
)
. Then ψ̂τ ∈ ̂DRn+

(
L1(Rn

+)
)
and the subspace ̂DRn+

(
L1(Rn

+)
)
is dense in L1(Rn

+).

It is well known that the degrees of the Dirac function in the algebra D̂′R+
can be written

as
δm =

1

(2π)m
̂θ ∗ · · · ∗ θ =

1

(2π)m
θ̂∗m, δ =

1

2π
θ̂, m ∈ N.

So, the degrees of the Dirac function in the algebra D̂′Rn+ we determine by the formulae

δ|k|(s) =
1

(2π)|k|
θ̂∗k1(s1) · . . . · θ̂∗kn(sn) =

1

(2π)|k|
θ̂∗|k|(s), s = (s1, . . . , sn) ∈ Rn.

The Fourier transformation of functions from DRn+ is defined by the formula

F : DRn+ 3 θ
∗|k| −→ θ̂∗|k|, where θ̂∗|k|(s) =

∫
Rn+
e−i(ξ,s)θ∗|k|(ξ)dξ.

We use formula (14) of constructing functional calculus and compute
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δ|k|(G)ψ̂τ =
1

(2π)|k|

∫
Rn+
Ft(θ̂∗|k| ? ψτ )(t)dt =

1

(2π)|k|

∫
Rn+
θ∗|k|(ξ)

∫
Rn+
Ft(e

−i(ξ,·) ? ψτ )(t)dtdξ

=
1

(2π)|k|

∫
Rn+
θ∗|k|(ξ)

∫
Rn+
e−i(ξ,s)

∫
Rn+
Ftψτ (s+ t)dtdsdξ

=
1

(2π)|k|

∫
Rn+
θ∗|k|(ξ)

∫
Rn+
e−i(ξ,s)

∫
Rn+

∫
Rn+

θ(ζ)ζ |t−1|

Γ(t)
Ttψτ (s− ζ)dζdtdsdξ

=
1

(2π)|k|

∫
Rn+
θ∗|k|(ξ)

∫
Rn+

∫
Rn+

θ(ζ)ζ |t−1|

Γ(t)

∫
Rn+
e−i(ξ,s)Ttψτ (s− ζ)dsdtdζdξ

=
1

(2π)|k|

∫
Rn+
θ∗|k|(ξ)

∫
Rn+

∫
Rn+

θ(ζ)ζ |t−1|

Γ(t)
(̂Ttψτ )(ξ − ζ)dζdtdξ,

where ζ |t−1| = ζt1−1
1 · . . . · ζtn−1

n . Using the formula

θ∗|k|(ξ) =
ξk−1

1 . . . ξkn−1
n

(k1 − 1)! . . . (kn − 1)!
: =

ξ|k−1|

(k − 1)!

we obtain

δ|k|(G)ψ̂τ =
1

(2π)|k|

∫
Rn+

ξ|k−1|

(k − 1)!

∫
Rn+

(
Ft ∗ (̂Ttψτ )

)
(ξ)dtdξ.

For derivatives of the Dirac function the following formulae is known

∂kδ =
1

(2π)n
χ̂k, χk : Rn

+ 3 t −→ λΓ(t)(it)|k|,

where t = (t1, . . . , tn) ∈ Rn, |k| = k1 + . . . + kn, ∂
k = ∂k1

1 · . . . · ∂knn , ∂
kj
j : = (−i)kj ∂

kj

∂t
kj
j

,

t|k| = tk1
1 · . . . · tknn (j = 1, . . . , n).

Now we calculate derivatives of the Dirac function for the generator of fractional integrati-
on. We continue in this fashion obtaining

∂kδ(G)ψ̂τ =
1

(2π)n

∫
Rn+
Ft(χ̂k ? ψτ )(t)dt =

1

(2π)n

∫
Rn+
χk(ξ)

∫
Rn+
Ft(e

−i(ξ,·) ? ψτ )(t)dtdξ

=
1

(2π)n

∫
Rn+
χk(ξ)

∫
Rn+
e−i(ξ,s)

∫
Rn+
Ftψτ (s+ t)dtdsdξ

=
1

(2π)n

∫
Rn+
χk(ξ)

∫
Rn+
e−i(ξ,s)

∫
Rn+

∫
Rn+

θ(ζ)ζ |t−1|

Γ(t)
Ttψτ (s− ζ)dζdtdsdξ

=
1

(2π)n

∫
Rn+
χk(ξ)

∫
Rn+

∫
Rn+

θ(ζ)ζ |t−1|

Γ(t)

∫
Rn+
e−i(ξ,s)Ttψτ (s− ζ)dsdtdζdξ

=
1

(2π)n

∫
Rn+
χk(ξ)

∫
Rn+

∫
Rn+

θ(ζ)ζ |t−1|

Γ(t)
(̂Ttψτ )(ξ − ζ)dζdtdξ.

Thus, derivatives of the Dirac function can be written by the formula

∂kδ(G)ψ̂τ =
1

(2π)n

∫
Rn+

(iξ)|k|
∫
Rn+

(
Ft ∗ (̂Ttψτ )

)
(ξ)dtdξ.
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