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For the Fourier image ﬁf of the algebra Df. of the distributions with supports on a cone
I the functional calculus for generators of n-parametric (C,)-semigroups of operators is deter-
mined. For this purpose, we consider construction of the dual pair (lA)’F, ﬁr>, and provide some
examples with respect to the formula of operator calculus.
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s @ypre-obpazos Dp. anrebper Di. pacnpenenennit ¢ HocuTeasMn B Konyce I' crponTesa
dyHKIMOHAIBHOE MCYKUCIEHHE JJisi TeHepaTOpoB n-napamerpudeckux (C),)-I0JyrpyIl onepa-
TopoB. C 9T0it EIbI0 PACCMATPHUBAECTCS HOCTPOEHHE JiyaabHoil naps! (Df., Dr). OTHOCHTEIBHO
bOPMYJIBI OIIEPATOPHOI'O UCUYHUCJIEHUS] PACCMOTPEHBI HECKOJIBKO IIPUMEDOB.

1. Introduction. In general, the idea of construction of the functional calculus is related to
Poincare’s work on the theory of continuous groups. Functional calculus in Sobolev spaces of
generalized functions for selfajoint operators is developed in the paper [1]|. A full mathemati-
cal verification of Heaviside operational calculus is constructed in [2]. Functional calculus
for generators of the one-parametric (C,)-semigroups of operators over Banach spaces in the
convolution algebra of distributions on the semiaxis is defined in [3].

The purpose of this article is the construction of functional calculus for generators of

n-parametric (C,)-semigroups of operators in convolution algebra of Schwartz distributions
with supports in any closed, acute-angled and convex cone. Special case of this functional
calculus is considered in [4].
2. Construction of the duality (f)’F, f)p> Let us consider the classical Schwartz duality
(D'(R™), D(R™)). As usually, D(R™) — the space of infinitely differentiable functions with
compact supports suppy C R", D'(R™) — the space of linear and continuous functionals over
D(R™), i.e. the space of Schwartz distributions.

We denote by I' any closed, acute—angled and convex cone in R", Dy, is the subspace of
D'(R™) of distributions f, such that suppf C T" [5, Sect. I, §4].

The polar of subspace D}, with respect to the duality (D'(R™), D(R™)) is given by

(Dr)° = {¥ € D(R"): suppp C R"\I'}.
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The restriction of bilinear form D'(R™) x D(R") 5 (f,¢) — (f,) € C onto the direct
product D x D(R™) is constant on any set {(f,, ¢)}, where f, € Dy is fixed functional and
function ¢ runs through quotient class [¢] in the quotient space D(R™)/(Dy)°. Thus, the
bilinear form D x D(R™)/(Dp)° 3 (f,[¢]) — (f,¢) € C, ¢ € [¢] leads the spaces D} and
D(R™)/(Dr)° into duality [6, Sect.II].

The topology convergence in D(R™)/(Df)° is equivalent to sequential convergence, i.e.
[©]m — [¢] if for any e—neighborhood O, x of compactum K C I', for any representatives
{om € [@]m: supppm C O.x} and {¢ € [p]: suppy C O. k} the following convergence is
fulfilled:

lim sup |8k90m(t) - Gkgp(t)‘ =0,Vk € Z,

where OF = 0f .. O 8? = sgj, J=1,...,n).

It is well known that, for any ¢ > 0 there exists p. € C*°(R") such that

1,t c OE K
ps<t) = 2
0,t ¢ O, k.

Therefore, the corresponding quotient class [p] € D(R")/(Df)° can be identified with
the germ of C'*°—functions of form p. - ¢, v € [p].

Let Ap(t) = {(l)i le: be the characteristic function of the cone I'. Define the mapping
0: D(R") > ¢ A =:1¢ € Dr

as multiplication operator by the characteristic function, and the space Dr is defined as
follows Dr: = {¢p = Arp: ¢ € D(R™)}. It is obvious that Kerp = (Dp)°.

For any natural number v we construct the set I',, as intersection of cone I' with the ball
of radius v and consider the space of functions

Dr,: ={v(t) = Ar(t)e(t): ¢(t) € D(R"),suppp NI CT,}.
The topology of the space Dr, is defined by the set of norms
1
my = — sup |0%(t)] < oo.
[[9]]m, V%ﬂ 1 S |0%(t)]

For any numbers v < p inclusions Dr, C Dr, are continuous. Thus, we can represent
the space Dr as the following inductive limit

Dr ~ U Dr, =limind Dr,. (1)

V—r00
r,cr
We can now formulate some useful propositions, which were proved in [7].

Proposition 1. The spaces Dr and D(R™)/(Dr)° are topologically isomorphic and canonical
bilinear form from (D'(R™), D(R™)) induces the duality (D, Dr).

Proposition 2. The space Dr is (LF)-space, in addition it is barreled, bornological Montel
space.
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Proposition 3. Suppose that for an arbitrary compactum K C I the space D’ is conjugate
to Dx endowed by the strong topology with respect to the duality (D}, D). Then the space
Dy, in its strong topology [3(Df, Dr) is topologically isomorphic to the projective limit
t =~ lim pr D}.
KcT
Let us observe that the space D being strongly conjugate to the space Dr, is a Montel

space. The space D is a convolution algebra [5, §4, p.75]. The convolution D x Df >
(f,h) —> fxh € Dy is determined by the formula

(f*9,9) = (f(2),&(@){h(y), n(y)¢(z + y))),

where ¢ € Dr and £(z),n(y) are arbitrary infinitely differentiable functions, which are equal
to 1 in the neighborhood of supports of distributions f and h respectively and equal to 0
out of these neighborhoods.

Lemma 1. The convolution in the algebra Df is continuous with respect to the strong
topology 3(Dr, Dr).

Proof. The locally convex space Dy is reflexive one in the topology B(Dy, Dr). Since the
multiplication of reflexive locally convex algebra is continuous [8, Ch.5, Pr. 5.1], the convoluti-
on in algebra Df is a continuous mapping with respect to the strong topology. O]

Lemma 2. Inclusion Dr C D} is dense with respect to the strong topology (Dy., Dr).

Proof. Let {1,}5°, be any sequence of test functions from the space D(R"), that approxi-
mate delta-function § with respect to the strong topology of the space D'(R™). The result
of convolution f 1, belongs to the space D(R") for any f € D'(R"™). Thus, D(R") is dense
in D/(R™). Then intersection Di. N D(R™) is dense in the subspace Di. C D'(R™). So, the
mapping o is the identity operator on the space D.N D(R™) as the operator of multiplication
by the characteristic function of the cone I'. Thus, the subspace DN D(R") = o[DND(R™)]
is dense in the space Dr.. O

The n-parametric semigroup of shifts along the cone I is defined as follows
Ts: D(R™) 2 ¢(t) = p(t+s) € D(R"),Vs e I',Vt € R".

We define the (C,)-semigroup T to be the unique semigroup satisfying the following
relation (75 0 0)p(t) = (00 Ts)e(t). Let L(Dr) denote the algebra of linear and continuous
mappings over the space Dr with the composition instead of the multiplication. Note that
T € L(Dr) and T is an equicontinuous semigroup on the space Dr (see [7]).

For every distribution f € D} and ¢ € D(R") we define the operation

Myp)(t) = (f %) (t) = (f(s), Tsp(t)),Vs € I',Vt € R™.
The operation of cross-correllation, denoted by My, is defined to be the unique operator
satisfying the following relation (My o p)¢(t) = (0 o My)p(t). In [7] it is proved, that the
mapping Dy 5 f — My € L(Dr) realizes the topological isomorphism of convolution algebra

of distributions D} onto the commutant of the semigroup 7} in the algebra L(Dr). In parti-
cular, for any distributions f, g € Df. the following equalities hold

Mf*g:MfOMg,M(;:],

where ¢ is the Dirac function and [ is the identity operator in L(Dr).
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Lemma 3. The following properties of the operation of cross—correllation are valid
VkeZh, |kl =ki+ -+ k,,Vf,g € Dr, V¢ € Dr

1) OF(Mpp) = Mo = (—1)|k|Makf¢;
2) Maryo My = Mgo Mak,;
3) Mgy (0) = (f,4).

Fourier transformation in the space D(R™) is defined by

F: D(R") 3 ¢ — 3(¢) € DR,

n

\mmeﬁwﬂ::{@@%:f@@KW@ﬁ:@GD@W%,S:QLHWQ)ER?

Let the Fourier transformation of functions from space Dr be given by
Fs D> wlt) o 5 = [ e o)t &)
r

Let Dy denote the codomain of the space Dr, i.e. Dp = {¢(€): 1(t) € Dr}. Note that
for any function ¢ € Dr the equality F[)] = F[¢] is valid because of the condition ¢ (t) = 0,
vVt e R™\I.

Since Dr has the form of inductive limit (1) of subspaces Dr, with norms {|| - ||, }men,
the 1nJeot1V1ty of mapping (2) 1mphes that we can define the topology on the Fourier-image
Dr {w ¢ € Dr,} by norms Hzﬂ“my = ||¢||m,,- Then Dr = U,~o Dp , and inclusion

ﬁr‘ - Dp is continuous, when v < p. Thus, we may endow the space Dp with the locally

v

convex topology of inductive limit lA)p = limind ﬁry.
V—00

As results, the basic properties of the space Dr are transferred into the space ﬁr. That
is, the Fourier-image Dr is a Montel, barreled and bornologic (LF')-space.

Let us observe that the inverse Fourier transformation F~!: ﬁp E) 12 — Y € Dr exists
and has the following property

Y(t) = FH(FR]) = Ac ()T (F[¥),

where F! D(R”) — D(R") is the inverse mapping to JF.
Let D’ be the conjugate space to Dp We shall denote by

F*=Q2mn)"(F'): D> f f € D'F (3)

the conjugate mapping to the inverse Fourier transformation F~!. We call F'* the genera-
lized Fourier transformation of distributions from the space Df.. The definition of F™* can be
written as

(F*f, ) = @m)"(f, F'F[¢]), f€ D¢ € Dr.

For similarity of notation, we write fAinstead of F*f. Then we may write
(F,9) = @m)"(f, F'FR) = 2m)™(f, ). (4)

Formula (4) with mapping (3) defines a new duality <l3’r, Dr).

3. The vector cross-correllation operation. In this part of the paper we shall prove
the nuclearity of the spaces of duality (Dy., Dr) and shall define the vector cross-correllation
operation.



82 O. V. LOPUSHANSKY, S. V. SHARYN, A. V. SOLOMKO

Lemma 4. The spaces Dr and D} are nuclear.

Proof. As known |9, §2, Theor. 7|, the nuclearity of any locally convex space implies that its
quotient space with respect to a close subspace and the strongly conjugate space are nuclear
too. The space D(R") is nuclear (see [10, §10, p. 405]). Thus, the space Dr: = D(R")/(Dy)°
and Dy, are nuclear. O

Let {Y, | - ||} be a complex Banach space. We consider the space D(R",Y) of infinitely
smooth Y-valued functions z(t) with compact supports in R™. Topology of D(R™,Y) is defined
by the set of norms

1
2l = -7 Sup 0% 2(t)| < co.
l<m PR

The space D”(R") = {¢ € D(R"™): suppy C B}'} is a Fréchet subspace of D(R"). Here
B is the ball in R" of radius v. Let us note, that the space Dr, can be reintroduced as
Dr, = o(D"(R™)), where p is the characteristic function of the cone T'.

We shall denote by Dr(Y) the space of infinitely smooth Y-valued functions x(t) with
compact supports in I'.

Theorem 1. The following topological isomorphisms are realized
D(R™ Y) ~ Y D(R™) ~ lim ind Yo D* (R™), (5)
V—r00
Dr(Y) ~ Y®Dr ~ D(R",Y)/Y&Kere ~ lim ind Y& Dr,, (6)

where the sign @ denotes the completion of tensor product in the projective topology.

Proof. The topological isomorphism D(R",Y) ~ Yo D(R") is realized by virtue of well known
Grothendieck’s theorem [9, §3, theor. 13] about a representation of tensor product of two
complete spaces one of which is nuclear. Then Proposition 1 implies

D(R",Y)/Y®Kerp ~ Y2 D(R") /Y@Kerp ~ Y[D(R") /Kerg] ~ Y& Dr.
Let EéDp be completion of tensor product in the uniform convergence topology on the

equicontinuous subsets of the dual spaces Y and Df. It is known [11, Sect. IV, 9.4 that

the isomorphism relation Dr(Y) ~ Y®Dr holds. The isomorphism relation YDy ~ YR Dr
is realized due to the nuclearity of Dr [11, Sect. IV, 94|, i.e. Dr(Y) ~ Y®Dr. Thus, the
topological isomorphism relation (5) and (6) are proved. O

Lemma 5. For any element x = x(t) € Dr(Y), t € I' there exists a number v > 0 such that
x(t) € Y®Dr, and x(t) can be written as absolutely convergent series in the space Y® Dr,
in the following way

2(t) =Y Anm @ Y (t), (7)

where > |\,| < 0o, and the sequences of functions {1, (t)} and {z,,} converge to zero in

Dy, and Y respectively.
In addition, the equality

OFx(t) =D AnTm ® 0"y (), VE € 21 (8)
m=1

holds.
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Proof. From definition of the space Dr(Y) it follows that for every x € Dr(Y) there exists
a number v > 0 such that x € Y ® Dr, . Obviously, the spaces Y and Dr, are metrizable.
Then for an arbitrary element x &€ H@)DFV we can use the theorem about representation
of elements of metrizable spaces, which competed in the projective tensor product topolo-
gy |11, Sect.III, 6.4]. Thus, from this theorem we obtain expansion z(t) into series (7).
Equality (8) follows from absolute convergence of series (7). O

Let Iy be the identity operator in a Banach space Y, M; € L(Dr) the operator of cross-
correllation. We define the vector cross—correllation operation by

(Iy @ Mp)a(t) = 2, Aot Myt ) (0, £ € T 9)

0, teT.

Lemma 6. For any distributions f, g € Dy and function x(t) € Dr(Y) we have (Iy® My) €
L(Dr(Y)) and the following equalities hold

(Iy @ Mypug)a(t) = (Iy @ (My o My))x(t),
0" (Iy ® My)a(t) = (Iy @ My)o"a(t) = (1) (Iy © Myef)a(t), Vk € L1,
(Iy @ My)a(0) = (Iy @ f)a(t).

Proof. Let f € Dp. Then definition (9) implies that the operator Iy ® M is a linear and
continuous transformation from the space Dr(Y) into itself.
From the definition of operator Iy ® M; we obtain

(1y©My.y)a Z Anon(M gt (8 Z At (M7 My)) (8) = (Iy® Mo M, (1),
Let us prove the second property. For all k& € Z”, we have
" (Iy @ My)x(t) = o Z A (M 1) (¢ Z AT (Mpab) (1) = (Iy @ My)0*(t).
Besides,

m=1
= (=1)M(Iy @ Mgrs)z(t), VseT.
The last property follows from the definition of vector cross-correllation operation. [
The vector operator of shifts, denoted by Iy ® T, is defined as follows

Iy @ Ty: Dr(Y) > x(t) — i Mmoo (Tsthy)(t) € Dr(Y).

m=1
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Theorem 2. For every distribution f € Dy the operator Iy ® My is nuclear and invariant
with respect to the vector operator of shifts.

Conversely, for an arbitrary operator K € L(Dr), which is invariant with respect to the
vector operator of shifts, there exists a unique distribution f € Dy such that K = M and
(Iy ® K)x(t) = (Iy @ My)z(t) for all x(t) € Dr(Y).

Proof. We have that Iy ® My is a linear and continuous mapping from the space Dr(Y) into
itself and

(Iy ® M)z Z AT (M b, ) (t Z AmTin(f, Tetbm(£)),

where the sequences {x,, }men and {Ts1)r(t) }men converge to zero in Y and Dr respectively.
Therefore from the known criterion of nuclearity [10, Sect.X, theor.1| we obtain that Iy ® M;
is a nuclear operator.

Further,

(Iy@MyoT,)x Z AT (M T )ty () Z A (Tso M)y (t) = (Iy@Ty0 M) (t).

Conversely, for any function (t) € Dr the linear and continuous functional
f: 1 — (K)(0) defines the distribution f € Df. Then for any function z(t) € Dr(Y)
we can write that (f,z) = (Iy ® K)z(0), since (Iy ® K)z(0) = (f,z) = (Iy ® M;)x(0). If we
replace (Iy ® Ts)x(t) instead of z(¢) and use the condition of invariance for operator Iy ® K,
we obtain (Iy ® K)z(t) = (Iy ® My)z(t). O

4. Functional calculus for distributions on cone. Let Us: I' 5 s — Us; € L(Y) be an
n—parametric semigroups of class (C,) over the space Y. Generators of this n—parametric
(C,)—semigroup are determined by the following way

oUsx
asj

=—iAjz,x € D(A)),j=1,...,n

s=0

We assume that each A; is a closed and dense operator with the domain D(A;). Throughout
the article, A stands for A: = (Ay,..., A,).
Let us define the mapping F4 as

—

Fa: Dp<y) = .I'(S) T e DF(%), (10)

where the space D/p@ is defined by

Dr(Y): = {fz /FUSQZ(S)dSZ x(s) € DF(H)}. (11)

Theorem 3. If {Us: s € T'} is an n-parametric (C,)-semigroup of operators, then the
subspace Dr(Y) is dense in the Banach space Y.

Proof. Let Y’ be the conjugate space to Y of linear and continuous functionals and 2’ € Y’
any functional. Then the properties of the Bochner integral [12, Sect.III, 3.5] imply that

o/, 5) = /F (o Usa(s))ds. (12)
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Now assume, that for some functional 2’ € Y the condition (z/,Z) = 0 holds for all

—

7 € Dr(Y). Our next goal is to prove that 2’ = 0. Without restriction of generality it is suffici-
ent to show 2’ = 0 for elements of the form z(s) = y®1(s), only, where y € Y and ¥(s) € Dr.
In this case we have (2/, Usz(s)) = (2, Usy)1(s). Thus, the polar (Dr(Y))° = {2’: (2/,Z) = 0}
consists of the unique element ' = 0. Then the bipolar theorem, as a consequence of the

—

Hahn-Banach theorem (see [11, Sect. IV, theor. 1.5]), yields that the space Dr(Y) is dense
inY. O

—

We endow the space Dr(Y) with the weakest topology with respect to which the mapping

—

F 4 is continuous. Let Dr,(Y) be the image of Dr (Y) by the mapping (10). Then on the
space Dr,(Y) define a topology by the set of norms

[Zllm = inf [z,
TET 4T

where the norms ||z||,,,,, determine the topology of the space Dr,(Y).

Obviously, the mapping Dr,(Y) 3 x(s) — = € Dr,(Y) is linear and continuous. Thus,

—

Dr,(Y) is a Fréchet space. The diagrams
Dr,(4) — Dr,(9)

Fad gad

—

Dr,(Y) — DFH (Y)

—_—

and injection Dr,(Y) C Dr,(Y) are continuous for any v < .

— o —

Since, Dr(Y) = U,~o Dr,(Y), we may endow the space Dr(Y) with the topology of
inductive limit of Fréchet subspaces

—

Dr(Y) = limind Dr,(Y).

V—00

So, the mapping F 4 realizes the topological homomorphism of the respective spaces.

Let L(Dr(Y)) be the space of linear and continuous operator of Dr(Y) into itself, endowed
with the topology of uniform convergence on the bounded sets. For an n—parametric semi-
group of shifts {Iy ® T,: s € I'} C L(Dr(Y)) we consider the n—parametric semigroup
defined by

{T,: sel'} c L(Dr(Y)), T =Fa0(ly@T,) 0T,
Indeed, for any s,t € I’
Tt =Fao(ly®@Tups) 0 F; =Fao(ly@T,) o F oFso(ly®T) o F; =T, 07,

and R
To=TFa0(ly®@Ty) 0T, =TFa0T,

is the identity operator over the space Dr(Y).
Then by the formula

Fa: [I)3T—TeFao(lye [T)) o T,

we define an algebraic isomorphism of commutant [T5]° on the commutative
subalgebra F4 o (Iy ® [T,]°) o F,'.
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Theorem 4. The mapping

®: D3 f— f(A) € L(Dr(Y)), (13)

is a continuous isomorphism of the algebra B’F into the closed subalgebra of operators
f

[i]e = Fyo0 (Iy®[T,]°) o F,': s € T'} of the algebra L(D/@), where the operator
A(A) is defined by the formula

o~ o —

F(A): Dr(Y) 37 — f(A)T = / (U, ® My)z(s)ds. (14)

In particular,

O(f-g) = f(A) 0 g(A),

o~

f.g€Dr
and we can extend the operator 0(A) to the identity operator Iy of the space Y.

Proof. The bijective mapping of commutant [T]° on commutative subalgebra [5’ 1°b

ﬁA: T—>‘/J\', T :?Ao(fy®T)off21
realizes an algebraic isomorphism. In [7] it is proved that the mapping M : Dj — [T

¢ is
an algebraic isomorphism. Besides, the generalized Fourier transformation F*: D, — Dy
realizes an algebraic isomorphism too. Thus, the next commutative diagram

Dy M [T

P | Fa

Dy = [
identifies the algebraic isomorphism M Al ZA)’F — [‘j's]c

The mapping ® is continuous as a composition of continuous mappings. Let us show,
that ® is a homomorphism of algebras. For any x(s) = = ® (s) we can obtain

[cb(f) 0o ®(g)]z = //F Usirz @ (Mg o M,)p(s + t)dsdt

— [ e Myyelo)dp = ©(75)7 = 0(F-9)7

In particular,

(87 = /F (U, @ My)z(s)ds = .

By Lemma 5, any element x € Dr(Y) can be written as absolutely convergence series
T =" Aulm @ ©n(s). This fact implies that

[(I)(f) o (I)(/g\)]i/b‘\ = Z >\m / prm ® Mf*ggpm(p)dp = Z )\mq)(.]? §)$@m (I)(f /g\)ZU\
m=1 T m=1

for any o € Dr(Y).
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Note that the partial differentiation operators 07"z, (j = 1, ..., n) are defined in the space
Dr(Y) of the test Y—valued functions z(s) = x(sq,...,S,) on the cone I'. For the interior of
I' it is the usual differentiation and on the limit of cone it is one-sided differentiation.

Lemma 7. For any f € Dy, v € Dr(Y) and m € N the following formula holds
F(A)drz = (iA;)" f(A Z £001), (G=1,...,n). (15)

Proof. Without restriction of generality it is sufficient to show (15) for elements of the form
z(s) =z ® p(s) € Dr(Y). only. So, for any function z(s) = x ® ¢(s) we have

f(A)(f”\x = /F(Us ® My)0i"x(s)ds = /1“ Usx 0" Myp(s)ds.

Last integral we integrate by parts [~times. Then from the property of the cross—correllation
operation 07" (My)(0) = (f,dj"p) and the definition of generator % = —iA;x;, we
7 1s=0

obtain formula (15). O

Note that mapping (13) we designate as the functional calculus in the algebra lA)f over
the Banach space Y.

Let us consider examples, where we use constructed functional calculus.
Example 1. The value of the Dirac function for the generator A = (Ay,..., A,) of the
n-parametric (Cp)-semigroup defined by

U, = e 04 = pmilsiditodsndn) g — ($1,...,8,) €T

we can evaluate by the formula
S(A)F = — /T/\dt € Dr(Y)
T = oo ) yrdt, x r(Y).

Note that any n—parametric (Cy)-semigroup can be written as a product of one-parametric
(Cp)—semigroups [12, Sect. IX, 9.7]. Thus,

(2;) /(U ®@ My )z(s) ds—

—i(s,A)

S(A)E = x(t + s)dtds

/ / e~ N T (s)dsdt = T,xdt.
(2m)™ (27T) r

Example 2. Now we use generalized Fourier transformation to the known formula

Then we obtain

— — 1

5+ (01 008) = (01 0nd) 6 = (5

Thus, the Dirac function ¢ has inverse element (27)”6’1 .0,0 in the algebra Di..
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Let A= (Ay,...,A,) be the generator of the n-parametric (Cp)-semigroup U, = e~*(54),
Then from Lemma 7 we conclude that the equation
) y

(0BT =

has a unique solution Z = §(A)y = @ I8 Zit\a:dt for any y € D/@
Example 3. Let ' =R, Y = L'(R;)® - - - ®L'(Ry) = L'(R"). The semigroup of fractional
integration [0, +00) > t — fix € L[L*(Ry)] is defined over the space L'(R.), where

element f; € Dy, is defined by formula

fi(s) = , $ €10,+00). (16)

Determine the operator f;* as the convolution with the function ¢ € L'(R,), then f; x ¢ €
L*(R,). In formula (16) 6(s) is the Heaviside function with support [0,+00) and T'(t) =

+oo
/ y"le ¥dy is the gamma function. The generator of fractional integration semigroup
0

we designate by G. Thus, fx = e'%.
Let us consider the n—parametric semigroup of convolution operators

RYSt=(t,....t,) = Fy = (fy*) ® - @ (fi,x) € L[L'(R})].

Every operator G; =L ® -+ ®[;_1 ® G, ® [;41 ® - - - ® I,, generates one-parametric (Cp)-
semigroup
etiGi .= ]1®...®]j_1®@tj9j QLR 1,

over the space L'(R"), where the identity operator I; = §;* is the convolution with the
Dirac function in the variable ¢; € [0, +00). Semigroups {e'%: ¢ € [0, +00)} belong to the
algebra L[LI(RC';)]. So, the generator G of the n—parametric semigroup can be written as
G: (Gl,...,Gn).

Let ¢t — .(t) be an L'(R")-valued function of a variable 7 € R’ from the space
Dga (L'(R?)). Then U, € Dgn (L*(R2)) and the subspace Dgn (L'(R?)) is dense in L' (R7).

It is well known that the degrees of the Dirac function in the algebra ﬁﬁh can be written
as

O5 %0 o, 5= —0 N.
eom F YT Gt o ME

o =

So, the degrees of the Dirac function in the algebra EI’M we determine by the formulae

SM(s) = L GoFi(s)) .. Gn(s,) =

2 OFI(s), 5= (51,0, 50) R

(27r)\k\
The Fourier transformation of functions from Dre is defined by the formula

F: DRi > gl e/@, where 9/*m(8) =/ G_i(g’s)g*lk‘@)df-

RY

We use formula (14) of constructing functional calculus and compute
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—~ 1 —— 1 " —i(€,
(G = / B ) (Bt = e /R 10 *(€) / . Fi(e™"&) sy ) (t)dtdg
= / o ¢) / 6 / Fitbo(s + t)drdsde
[ e / i) / / < 1'Ttw7<s—<>d<dtdsdf
- -
/ / C't ! / €Ty, (s — C)dsdtdCd
B ; " ‘ It 1| —
ok / o / n / n (T (€ = C)dCatde,
where (It = ¢t Lt Usmg the formula
«[k| gt . glE—l
o) = <k1—1) k=1 (k=1
we obtain

R k—1] _
5(G)D, = (273)k /R n (lf — /}R (B (Tn)) ()t

For derivatives of the Dirac function the following formulae is known

1 o~ n 1
0% = GoyaXe e RLSE— Ar(B)(in)",
k k; 0%
where t — (th...,tn) c Rn7 |k| = l{,‘l —|—+kn7 ak = 811 c .. 85"7 ajjj = (_Z'>kjak.7
t.
J
th =k ke (=1, n).

Now we calculate derivatives of the Dirac function for the generator of fractional integrati-
on. We continue in this fashion obtaining

! Xk * _ i) 4
. i) 0= 6 / o [ B e

(271r) / Xk(8) / e & / Fy (s + t)dtdsde

N (271r) /n Xk( /n 5S)/n /n - 1|Tt"¢7(8—C)dCdtdsd§
(2m / /n /n C't 1 /n e "CIT ). (s — ¢)dsdtd(de

" (2 / / / Clt ”m(é‘ ¢)d¢dtde.

Thus, derivatives of the Dlrac functlon can be written by the formula

O [ (R T) v

O 5(G), =

9"8(G)
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