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In this sequel to [1] we study a special case BL( 1r , r), r > 1. Also the explicit representation
of a subharmonic extension for a subharmonic function u(x) near a removable point is obtained.
Moreover, the diverse Nevanlinna characteristics are compared.
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В этом продолжении к [1] мы изучаем особый случай BL( 1r , r), r > 1. Также получено
представление в явной форме субгармонического продолжения субгармонической функ-
ции u(x) в окрестности устранимой точки. Кроме того сравниваются различные Неван-
линновские характеристики.

Introduction. Let D be an open set in the Euclidian space Rm(m ≥ 3) and F a compact
subset of D. It is a classical result (see [2], Theorem 5.18, p. 255) that if u is subharmonic
in D \ F and bounded from above and moreover F is polar, then u has a subharmonic
extension to the whole ofD. Gardiner [3] has shown that, in the case of a compact exceptional
set the above boundedness condition can be relaxed by imposing certain smoothness and
Hausdorff measure conditions on the set. Riihentaus [4] has replaced the smoothness and
Hausdorff measure conditions with one sole condition on Minkowski upper content. It has
been established in [5] that if u is a subharmonic function in D\F and bounded from above,
where F is a closed polar set, then the function

ũ(x) =

u(x), (x ∈ D\F ),
lim

y→x, y /∈F
u(y), (x ∈ F ),

is subharmonic in D. In this sequel to [1] we give an explicit representation of a subharmonic
extension of u near a removable point. The approach presented here appears to be new. It
allows us to give a comparison of T (+0, r;u) and T (r, u) for subharmonic functions in a ball.
In this paper we also investigate subharmonic functions on symmetric ball layers.

We use results of the first part [1].
4. Subharmonic functions on symmetric ball layers. Consider a subharmonic function
u on BL(1

r
, r), non identical −∞, and define

N0(r;u):=(m− 2)

r∫
1

n(t)

tm−1
dt− (m− 2)

rm−2

1∫
1
r

n(t)

tm−1
dt,
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where n(t) is the distribution function of the Riesz measure µ of the function u (see Defini-
tion 1 from [1]).

Corollary 1. Let u be a subharmonic function, non identical −∞, in BL(1
r
, r) and µ be its

Riesz measure. Then

N0(r, u) =
1

cmrm−1

∫
S(0,r)

u(x)dσ(x) +
r2−m

cm
(
1
r

)m−1 ∫
S(0, 1

r
)

u(x)dσ(x)−

−(1 + r2−m)
1

cm

∫
S(0,1)

u(x)dσ(x), r > 1 (1)

where cm is the area of the unit sphere and dσ(x) is an element of the surface area.

Definition 1. Let u be a subharmonic function in BL( 1
r0
, r0), non identical −∞. The functi-

on

T0(r, u):=T
(1
r
, r;u

)
=

1

cmrm−1

∫
S(0,r)

u+(x)dσ(x) +
r2−m

cm
(
1
r

)m−1 ∫
S(0, 1

r
)

u+(x)dσ(x)−

−(1 + r2−m)
1

cm

∫
S(0,1)

u+(x)dσ(x), 1 < r < r0 (2)

is called the Nevanlinna characteristic of u, where u+ = max{u; 0}.

Like to its counterpart for subharmonic functions in a ball (see [2], p. 146), the Nevanlinna
characteristic T0(r, u) has elementary properties that have been collected in the following
theorem (see [6]):

Theorem 1. Let u, u1, u2 be subharmonic functions in BL( 1
r0
, r0), non identical −∞. Then

a) T0(r, u) is nonnegative, nondereasing and convex with respect to r2−m, 1 < r < r0 and
T0(1, u) = 0.

b) if u is constant then T0(r, u), 1 < r < r0 is identical zero;

c) T0(r, u1 + u2) ≤ T0(r, u1) + T0(r, u2) +O(1), r → r0.
T0(r, λu) = λT0(r, u) for λ > 0, 1 < r < r0.

Proof. Since u+ is subharmonic and according to (1), we can rewrite (2) as follows T0(r;u) =
N0(r;u

+). The function N0(r;u
+) is nonnegative, nondecreasing and convex with respect to

r2−m [2]. Hence, T0(r, u) satisfies property a). The statement b) immediately follows from
Definition 1. Property c) follows from the inequality (u1 + u2)

+ ≤ u+1 + u+2 .

Define

m0(r, u) =
1

cmrm−1

∫
S(0,r)

u−(x)dσ(x) +
r2−m

cm
(
1
r

)m−1 ∫
S(0, 1

r
)

u−(x)dσ(x), 1 < r < r0,

where u− = −min{u; 0}. Now we can rewrite (2) as follows
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Theorem 2. If u is a subharmonic function in BL( 1
r0
, r0) then

T0(r, u) = m0(r, u) +N0(r, u)− (1 + r2−m)
1

cm

∫
S(0,1)

u−(x)dσ(x), 1 < r < r0.

This is a counterpart of the first fundamental theorem for subharmonic functions on
symmetric ball layers. Moreover, we give a comparison of T0(r, u) with T (r, u) for functi-
ons subharmonic in a ball. If a subharmonic function u in BL( 1

r0
, r0) has a subharmonic

continuation into B(0, r0) = {x : |x| ≤ r0}, r0 > 1, then its classical Nevanlinna characteri-
stic T (r, u) is also determined. By a subharmonic continuation we mean that there exi-
sts a subharmonic function u1 in B(0, r0) with Riesz measure µ1 such that u1 = u on
BL( 1

r0
, r0) and the restriction of µ1 on BL( 1

r0
, r0) is equal to µ, i.e. µ1

(
{x : 1

t
< |x| ≤ t}

)
=

µ
(
{x : 1

t
< |x| ≤ t}

)
, 1 < t < r0, where µ is the Riesz measure of u. Then, using (1), we have

N0(r, u1) = N(r, u1) + r2−mN
(1
r
, u1

)
−(1 + r2−m)N(1, u1), 1 < r < r0, (3)

where N(r, u1) is defined in [2]. Moreover,

T0(r, u1) = T (r, u1) + r2−mT
(1
r
, u1

)
−(1 + r2−m)T (1, u1), 1 < r < r0. (4)

Equality (4) follows from the definitions of T0(r, u1) and T (r, u1) (see [2]) immediately.

Corollary 2. Let u(x) be a subharmonic function, non identical −∞, in BL(1
r
, r) and let

µ be the Riesz measure of u(x). Then for ξ ∈ BL(1
r
, r)

u(ξ) =
1

cmrm−1

∫
S(0,r)

u(x)Pr(ξ, x)dσ(x)+

+
1

cm
(
1
r

)m−1 ∫
S(0, 1

r
)

u(x)P 1
r
(ξ, x)dσ(x)−

∫
BL( 1

r
,r)

G(ξ, x)dµ(x),

where

Pr(ξ, x) =
∞∑
n=0

2n+m− 2

m− 2

( r
|ξ|

)n+m−2 (r|ξ|)2n+m−2 − 1

r2(2n+m−2) − 1
pνn(cosφ),

P 1
r
(ξ, x) = (r|ξ|)2−m

∞∑
n=0

2n+m− 2

m− 2

( r
|ξ|

)n r2n+m−2 − |ξ|2n+m−2
r2(2n+m−2) − 1

pνn(cosφ),

and

G(ξ, x) = Gr(ξ, x)−
∞∑
n=0

1

r2(2n+m−2) − 1

(( r

|x|

)n+m−2
−
( |x|
r

)n)(( r
|ξ|

)n+m−2
−
( |ξ|
r

)n)
where Gr(x, ξ) is the Green function in the ball of radius r centered at the origin. The
convergence is uniform on compact subsets of BL(1

r
, r).

Set B0(r, u) = B(1
r
, r;u), i.e, B0(r, u) = max{M(1

r
;u);M(r;u)}, r > 1 where M(t;u) =

sup{u(x) : |x| = t}, t ≥ 1.
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Corollary 3. If u(x) is a subharmonic function in BL(1
r
, r), then for 1 < ρ < r we have

1

1 + ρ2−m
T0(ρ;u) ≤ B0(ρ;u

+) ≤ rm−2(r + ρ)

(r − ρ)m−1
(
T0(r;u) +

1 + r2−m

cm

∫
S(0,1)

u+(x)dσ(x)
)
. (5)

Let S(r) be a real and nonnegative function increasing for r0 < r < ∞,where r0 > 0.
The the order λ and the lower order µ of the function S(r) are defined as

λ = lim
r→∞

sup
logS(r)

log r
, µ = lim

r→∞
inf

logS(r)

log r
,

Obviously, the order and the lower order of the function satisfy the relation 0 ≤ µ ≤ λ ≤ ∞.

Definition 2. If u(x) is a subharmonic function in Rm \{0}, then the order λ and the lower
order µ of u are called the order and the lower order of T0(r, u).

Theorem 3. If u(x) is a subharmonic function in Rm \ {0}, the order λ and the lower order
µ of the functions T0(r;u) and B0(r;u) are the same, i.e., λ[u] = λ0[u], µ[u] = µ0[u], where

λ[u] = lim
r→∞

sup
log T0(r, u)

log r
, λ0[u] = lim

r→∞
sup

logB0(r, u)

log r
,

µ[u] = lim
r→∞

inf
log T0(r)

log r
, µ0[u] = lim

r→∞
inf

logB0(r)

log r
.

Proof. The conclusion follows from Corollary 3. Indeed, setting in (5) r = γρ, γ > 1, provided
u+ is positive in |x| = ρ for the certain ρ, we get

T0(r;u)

1 + ρ2−m
≤ B0(ρ;u) ≤

γm−2(1 + γ)

(γ − 1)m−1

(
T0(γρ;u) +

1 + (γρ)2−m

cm

∫
S(0,1)

u+(x)dσ(x)
)
. (6)

From (6) we deduce at once that λ[u] = λ0[u] and µ[u] = µ0[u], since the order and the lower
order of T0(r;u) is not greater than that of B0(r;u) and also that the order and the lower
order of B0(r;u) is not greater than that of T0(r;u), completing the proof.

Corollary 4. If u(x) is a subharmonic function of finite lower order µ in Rm \ {0}, then

lim
r→∞

inf
B0(r;u)

T0(r;u)
≤ K(µ,m),

where

K(µ,m) ≤ 3

(
2 exp(µ− 1)

m− 1

)m−1
, µ ≥ m, K(µ,m) ≤

(
2m exp

µ

)µ
, 0 < µ < m

and K(0,m) = 1.

The proof is similar to that of Theorem 4.3 in ([2], p.166).

5. Representation of a subharmonic extension of a subharmonic function near
a removable point. Let BL(s, 1) be the annular region {x ∈ Rm : s < |x| < 1}, 0 < s < 1.
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Definition 3. Let D be an open subset of Rm. If x0 ∈ D and u is a subharmonic function
in D\{x0} then u is said to have an isolated singularity at the point x0.

Definition 4. The singular point x0 of a subharmonic function u is removable if there exists
a subharmonic function v in D that coincides with u for all x ∈ D\{x0}. We say that v is a
subharmonic extension of u.

Theorem 4. Subharmonic function u in D has a removable singularity at x0 ∈ D if and
only if there exists a subset {x : 0 < |x − x0| < r} ⊂ D on which u is bounded from
above. Furthermore, the extension v of u can be represented near the removable point in the
following way

v(x) =
1

cm

∫
S(x0,1)

u(ξ)P1(x, ξ)dσ(ξ)−
∫

0<|ξ|<1

G(x, ξ)dµ(ξ)− γ(|x|2−m − 1) (7)

where P1(x, ξ) and G(x, ξ) are Poisson’s kernel and Green’s function for the unit ball respecti-
vely,

−γ = lim
s→x0

sm−2I(s;u), 0 ≤ γ <∞, I(s;u) =
1

cmsm−1

∫
S(x0,s)

u(ξ)dσ(ξ). (8)

Recall that B(x0, r) = {x : |x− x0| < r}.

Proof. By Definition 4 and the property of a subharmonic function, the extension v of u
is bounded from above on some compact subset of B(x0, r). Since u coincides with v on
{x : 0 < |x− x0| < r}, u is bounded from above there.

Using linear transformation that preserves subharmonicity,

x 7→ x0 +
r

2
x

one can get a subharmonic function u in BL(0, 2). Since u is bounded from above, there exists
a constant C such that u ≤ C. Without loss of generality, we can consider the function u−C
instead of u.

Let µ be the Riesz measure of u on BL(0, 2). We extend µ to B(0, 1) in such a way

ν(E) =

{
µ(E) (0 /∈ E)
µ1 + µ2 (0 ∈ E),

(9)

where µ1 = µ(E\{0}) and µ2 = γδ(0), δ(0) is the Dirac delta-function, and E is a Borel set.
In the case 0 /∈ E the measure µ(E) is finite as the Riesz measure. In the case 0 ∈ E we

have the sum of two measures. Since γ <∞, the second measure is finite . Indeed, if we have
a convex function f(t) on such an interval (a,+∞), then there exists such a limit (see [2],
p.31)

−∞ < lim
t→∞

f(t)

t
≤ +∞.

Using the substitution t = s2−m, we obtain (8). Note that I(s;u) is a convex function with
respect to s2−m ([2], Theorem 2.12, p.81).

Now we prove that µ(E\{0}) < ∞. It will be enough to prove that µ(BL(0, 1)) < ∞,
because E\{0} ⊂ BL(0, 1).
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Using Definition 1 from [1], we can set n(1) = 0. Hence, we have µ(BL(0, 1) = n(1) −
n(0) = −n(0). Fixing r = r0 in Theorem 3 from [1] and considering the limit as s tends to 0,
we get

lim
s→0

sm−2
1∫
s

n(t)

tm−1
dt ≥ − C

m− 2
(10)

for some constant C that does not depend on s.
Suppose that n(0) → −∞; then there exists a sequence {sk} of k ∈ N. In view of this

and integrating by parts, we obtain

sm−2
1∫
s

n(t)

tm−1
dt ≤ sm−2

sk∫
s

n(t)

tm−1
dt ≤ −sm−2k

1∫
s

dt

tm−1
= − k

m− 2
+

k

m− 2

sm−2

sm−2k

.

As s ↓ 0, we get

lim
s→0

sm−2
1∫
s

n(t)

tm−1
≤ − k

m− 2
.

That contradicts (10). Hence, n(0) > −∞, i.e., µ(BL(0, 1)) <∞.
Next we consider the function

v = u ? P1 −
∫
B1

Gdν,

that is subharmonic in B(0, 1) and u ? P1 is the convolution of u with the Poisson kernel on
∂B(0, 1).

Using (9) for all x ∈ B(0, 1), we have

v(x) =
1

cm

∫
S(x0,1)

u(ξ)P1(x, ξ)dσ(ξ)−
∫

0<|ξ|<1

G(x, ξ)dµ(ξ)− γ(|x|2−m − 1).

It remains to show that u = v for all x ∈ BL(0, 1). Let us choose s such that 0 < s < 1
and fix x. Applying Poisson-Jensen’s Theorem 2 from [1] to a subharmonic function u in
BL(s, 1), we obtain

u(x) =
1

cm

∫
S(0,1)

u(ξ)P1(x, ξ)dσ(ξ)−
sm−2

1− sm−2
(
|x|2−m − 1

) 1

cm

∫
S(0,1)

u(ξ)dσ(ξ)−

− 1

cm

∫
S(0,1)

u(ξ)
∞∑
n=1

(2n+m− 2)s2n+m−2

(m− 2)(1− s2n+m−2)
(
|x|2−m−n − |x|n

)
pνn(cosφ)dσ(ξ)+

+
1

(m− 2)cm

∫
S(0,s)

u(ξ)

[
|x| cosφ− s

(s2 + |x|2 − 2s|x| cosφ)m
2

− |x| cosφ− s|x|
(s2|x|2 + 1− 2s|x| cosφ)m

2

]
dσ

− 1

s(sm−2 − 1)

(
|x|2−m − 1

) 1

cm

∫
S(0,s)

u(ξ)dσ(ξ)+
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+
1

cm

∫
S(0,s)

u(ξ)
∞∑
n=1

sn−1 + ns3n+m−3

(m− 2)(1− s2n+m−2)
(
|x|2−m−n − |x|n

)
pνn(cosφ)dσ(ξ)−

−
∫

s<|ξ|<1

G(x, ξ)dµ(ξ) +
sm−2

1− sm−2
(
|x|2−m − 1

) 1

cm

∫
s<|ξ|<1

(
|ξ|2−m − 1

)
dµ(ξ)+

+

∫
s<|ξ|<1

∞∑
n=1

s2n+m−2

(1− s2n+m−2)
(
|x|2−m−n − |x|n

) (
|ξ|2−m−n − |ξ|n

)
pνn(cosφ)dµ(ξ). (11)

Let us calculate the limit of the right-hand side of (11) as s tends to 0. The first summand
does not depend on s. The next one(

|x|2−m − 1
)
lim
s→0

sm−2

1− sm−2
1

cm

∫
S(0,1)

u(ξ)dσ(ξ) = 0,

because u is bounded from above.
Let us estimate the third term. Since u ≤ 0 and

max{pνn(x) : − 1 ≤ x ≤ 1} = Cm
n+m−3 =

(n+m− 3)!

n!(m− 3)!
,

we get ∣∣∣∣∣ 1cm
∫

S(0,1)

u(ξ)
∞∑
n=1

(2n+m− 2)s2n+m−2

(m− 2)(1− s2n+m−2)
(
|x|2−m−n − |x|n

)
pνn(cosφ)dσ(ξ)

∣∣∣∣∣≤
≤ −

( s

|x|

)m−2 ∞∑
n=1

(2n+m− 2)sn

(m− 2)(1− s2n+m−2)

( s

|x|

)n
Cn
n+m−3

1

cm

∫
S(0,1)

u(ξ)dσ(ξ) ≤

choosing s < |x|
2
, we obtain

≤ −
( s

|x|

)m−2 ∞∑
n=1

(2n+m− 2)!

n!(m− 2)!

(1
2

)2n−1 1

cm

∫
S(0,1)

u(ξ)dσ(ξ).

The last series converges uniformly. Thus, the third term is vanishing as s ↓ 0. Let us estimate
the first summand of the forth term∣∣∣∣∣ 1

(m− 2)cm

∫
S(0,s)

u(ξ)

[
|x| cosφ− s

(s2 + |x|2 − 2s|x| cosφ)m
2

]
dσ

∣∣∣∣∣≤
≤ − s

(m− 2)
sm−2

1

cmsm−1

∫
S(0,s)

u(ξ)
|x|+ s

(|x| − s)m
dσ(ξ).

Since γ is finite, the limit of the summand is 0. The analogous reasonings deal with the other
summand of the forth term. Consider the limit of the next addend(
|x|2−m − 1

)
lim
s→0

1

s(sm−2 − 1)

1

cm

∫
S(0,s)

u(ξ)dσ(ξ) =
(
|x|2−m − 1

)
lim
s→0

sm−2

(sm−2 − 1)
I(s;u) =

= γ
(
|x|2−m − 1

)
.
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It can be proved in the same manner as it was done for the third term that the limit of the
fifth one is 0.

Now we prove that

lim
s→0

∫
s<|ξ|<1

G(x, ξ)dµ(ξ) =

∫
0<|ξ|<1

G(x, ξ)dµ(ξ). (12)

As we know, Green’s function has a singularity at the point x = ξ, that is why we set
s < s0 < |x| < 1, and by the additivity property of Lebesgue’s integrals, we have∫

s<|ξ|<1

G(x, ξ)dµ(ξ) =

∫
s<|ξ|<s0

G(x, ξ)dµ(ξ) +

∫
s0<|ξ|<1

G(x, ξ)dµ(ξ).

By Proposition from ([7], p. 20),∫
s<|ξ|<s0

G(x, ξ)dµ(ξ) = µ{ξ : s < |ξ| < s0}

and by the property of measure continuity (see [7], p. 16), there exists a sequence {sn} with
n ∈ N such that

lim
n→∞

∫
sn<|ξ|<s0

G(x, ξ)dµ(ξ) =

∫
0<|ξ|<s0

G(x, ξ)dµ(ξ).

Hence, we have proved (12).
Now we consider the limit of the eighth addend(

|x|2−m − 1
)
lim
s→0

sm−2

1− sm−2

∫
s<|ξ|<1

(
|ξ|2−m − 1

)
dµ(ξ) =

=
(
|x|2−m − 1

) [
lim
s→0

sm−2

1− sm−2

∫
s<|ξ|<1

dµ(ξ)

|ξ|m−2
− lim

s→0

sm−2

1− sm−2

∫
s<|ξ|<1

dµ(ξ)

]
.

Since the measure µ(BL(0, 1)) is finite, the last summand is vanishing.
Consider

sm−2
∫

s<|ξ|<1

|ξ|2−mdµ(ξ) = sm−2
1∫
s

dn(t)

tm−2
. (13)

Integrating the right-hand side of (13) by parts, we obtain

sm−2
(
n(1)− n(s)

sm−2
+ (m− 2)

1∫
s

n(t)

tm−1
dt
)
. (14)

The limit of (14) as s ↓ 0 is

−n(0) + (m− 2) lim
s→0

sm−2
1∫
s

n(t)

tm−1
dt. (15)
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Since

(m− 2)sm−2
1∫
s

n(t)

tm−1
dt = (m− 2)sm−2

√
s∫

s

n(t)

tm−1
dt+ (m− 2)sm−2

1∫
√
s

n(t)

tm−1
dt ≤

≤ (m− 2)sm−2n(
√
s)

t2−m

2−m

∣∣∣∣
√
s

s

+ (m− 2)sm−2n(1)
t2−m

2−m

∣∣∣∣1√
s

= n(0).

We conclude that (15) is 0.
Now we estimate the last term of (11)∣∣∣∣∣

∫
s<|ξ|<1

∞∑
n=1

s2n+m−2

(1− s2n+m−2)
(
|x|2−m−n − |x|n

) (
|ξ|2−m−n − |ξ|n

)
pνn(cosφ)dµ(ξ)

∣∣∣∣∣≤
≤ s

|x|m−2

∫
0<|ξ|<1

∞∑
n=1

Cn
n+m−3

1− s2n+m−2
( s

|x|

)n( s
|ξ|

)n dµ(ξ)
|ξ|m−2

≤

≤ s

|x|m−2
∞∑
n=1

Cn
n+m−3s

n
1

(1
2

)2n−1 ∫
0<|ξ|<1

dµ(ξ)

|ξ|m−2
, s1 < 1.

The last series converges uniformly and the last term is vanishing. The proof is completed.

6. Comparison of T (+0, r;u) and T (r, u) for subharmonic functions extended into
a ball. We consider bounded from above subharmonic functions in BL(0, r). According to
Theorem 3, such functions are extended to B(0, r).

Using Theorem 3 from [1] and (8), we get

lim
s→0

N(s, r;u) =
1

1− r2−m
( 1

cmrm−1

∫
S(0,r)

u(x)dσ(x)− 1

cm

∫
S(0,1)

u(x)dσ(x)
)
−

− lim
s→0

sm−2

1− sm−2
1

cm

∫
S(0,1)

u(x)dσ(x) + lim
s→0

sm−2

1− sm−2
1

cmsm−1

∫
S(0,s)

u(x)dσ(x) =

=
1

1− r2−m
( 1

cmrm−1

∫
S(0,r)

u(x)dσ(x)− 1

cm

∫
S(0,1)

u(x)dσ(x)
)
−γ.

Hence,

(1− r2−m)(N(+0, r;u) + γ) =
1

cmrm−1

∫
S(0,r)

u(x)dσ(x)− 1

cm

∫
S(0,1)

u(x)dσ(x).

Suppose u(0) 6= −∞. According to [2], we have

(1− r2−m)(N(+0, r;u) + γ) = N(r, u)−N(1, u).

Moreover (see, definition 2 from [1]),

lim
s→0

T (s, r;u) =
1

1− r2−m
1

cmrm−1

∫
S(0,r)

u+(x)dσ(x) + lim
s→0

sm−2

1− sm−2
1

cmsm−1

∫
S(0,s)

u+(x)dσ(x)−
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− 1

1− r2−m
1

cm

∫
S(0,1)

u+(x)dσ(x)− lim
s→0

sm−2

1− sm−2
1

cm

∫
S(0,1)

u+(x)dσ(x). (16)

Since u+ is a subharmonic and bounded from above function, we apply Theorem 3 to u+.
Denote

lim
s→0

sm−2
1

cmsm−1

∫
S(0,s)

u+(x)dσ(x) = −γ1.

As far as 0 ≤ γ1 <∞ and u+ = max{u; 0}, we have that γ1 = 0. Thus,

(1− r2−m)T (+0, r;u) = T (r, u)− T (1, u). (17)

Equality (17) follows from (16) and from the definition of T (r, u) (see [2]) immediately.
Note that (17) is true in both cases u(0) = −∞ and u(0) 6= −∞.
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