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In this sequel to [1] we study a special case BL(%, r), r > 1. Also the explicit representation
of a subharmonic extension for a subharmonic function u(x) near a removable point is obtained.
Moreover, the diverse Nevanlinna characteristics are compared.
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B sToM mpojiosizkennn K [1] Mbl n3ydaem ocobbIil caydait BL(%, r), r > 1. Tak:ke H0IyIeHO
[IpeJICTaBJICHIE B sIBHOI (bopMe CyOrapMOHMYECKOTO ITPOIOJIKEHUsT CyOrapMOHUYIECKOi (DyHK-
mun u(x) B OKPECTHOCTH ycTpaHuMoil Touku. Kpome toro cpaBHuBaiorcs passiudnbie Hepan-
JINHHOBCKUE XapaKTEePUCTUKU.

Introduction. Let D be an open set in the Euclidian space R™(m > 3) and F' a compact
subset of D. It is a classical result (see |2], Theorem 5.18, p. 255) that if u is subharmonic
in D\ F and bounded from above and moreover F' is polar, then u has a subharmonic
extension to the whole of D. Gardiner [3] has shown that, in the case of a compact exceptional
set the above boundedness condition can be relaxed by imposing certain smoothness and
Hausdorff measure conditions on the set. Riihentaus [4] has replaced the smoothness and
Hausdorff measure conditions with one sole condition on Minkowski upper content. It has
been established in [5] that if u is a subharmonic function in D\ F' and bounded from above,
where F'is a closed polar set, then the function

B u(z), (z € D\F),
u(r) = Hmwuw), (z € F),

is subharmonic in D. In this sequel to [1| we give an explicit representation of a subharmonic
extension of u near a removable point. The approach presented here appears to be new. It
allows us to give a comparison of T'(+0,r;u) and T'(r,u) for subharmonic functions in a ball.
In this paper we also investigate subharmonic functions on symmetric ball layers.

We use results of the first part [1].

4. Subharmonic functions on symmetric ball layers. Consider a subharmonic function
u on BL(%,7), non identical —oo, and define

No(r;u):=(m — 2) / n(t) dt — (m — 2) / n(t) dt,

tm—l Tm_2 tm_l
1
-
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where n(t) is the distribution function of the Riesz measure p of the function u (see Defini-
tion 1 from [1]).

Corollary 1. Let u be a subharmonic function, non identical —oo, in BL(%, r) and p be its
Riesz measure. Then

7a2—m

(7

/ uw(z)do(z), r>1 (1)

5(0,1)

1

No(ryu) = !
m

/ u(z)do(z) +

S(0,r)

/ u(z)do(x)—
0,3)
—(1+ 7"2_7”)i

Cm

where ¢, is the area of the unit sphere and do(x) is an element of the surface area.

Definition 1. Let u be a subharmonic function in BL(%7 T0), non identical —oo. The functi-

on
1 1 . p2om .
To(r, u):zT(—,r;u): - u(x)do(z) + ———— ut(z)do(x)—
T Cy T Cm (1)7”
S(0,r) " 5(0,1)
2—m 1 +
—(1+r )C— u (z)do(z), 1<r<mnrg (2)
" 0.1

is called the Nevanlinna characteristic of u, where u™ = max{u;0}.

Like to its counterpart for subharmonic functions in a ball (see [2], p. 146), the Nevanlinna
characteristic Ty(r,u) has elementary properties that have been collected in the following
theorem (see [6]):

Theorem 1. Let u,u,us be subharmonic functions in BL(%, T0), non identical —oo. Then

a) Ty(r,u) is nonnegative, nondereasing and convex with respect to r>~™ 1 < r < ry and
To(l, U) =0.

b) if u is constant then Ty(r,u), 1 < r < ry is identical zero;

c) To(r,uy +ug) < To(r,ur) + To(r,uz) + O(1), r — 1o.
To(r, Au) = NTy(r,u) for A >0, 1 <1 < rg.

Proof. Since u™ is subharmonic and according to (1), we can rewrite (2) as follows Ty(r;u) =
No(r;u™). The function Ny(r;u™) is nonnegative, nondecreasing and convex with respect to
r?=™ |2|. Hence, Ty(r, u) satisfies property a). The statement b) immediately follows from

Definition 1. Property c) follows from the inequality (u; + u2)™ < uf + uy . O
Define
mo(r,u) = . T.lml / u (z)do(z) + %_)n;_l / u (z)do(z), 1 <r<r,
5(0,r) AT S(0,1)

where u~ = — min{u; 0}. Now we can rewrite (2) as follows
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Theorem 2. If u is a subharmonic function in BL(%, o) then

1
To(r,u) = mo(r,u) + No(r,u) — (1 +r*"™)— / u (z)do(x), 1<r<r.
c
" 501
This is a counterpart of the first fundamental theorem for subharmonic functions on
symmetric ball layers. Moreover, we give a comparison of Ty(r,u) with T'(r,u) for functi-
ons subharmonic in a ball. If a subharmonic function v in BL(%,TO) has a subharmonic
continuation into B(0,7) = {x: |x| < ro}, 719 > 1, then its classical Nevanlinna characteri-
stic T'(r,u) is also determined. By a subharmonic continuation we mean that there exi-
sts a subharmonic function w; in B(0,79) with Riesz measure p; such that w3 = w on
BL(%,TO) and the restriction of y; on BL(%,T’O) is equal to p, ie. py ({z: 3 < |z| < t}) =
p({z: 1 <|z] <t}), 1 <t <ry, where p is the Riesz measure of u. Then, using (1), we have

1
No(r,uy) = N(r,uy) + T2_mN(—, u1> —(1+7r*"™N(1L,uy), 1<r<rg, (3)
r
where N (r,u;) is defined in |2]. Moreover,
1
To(r,uy) =T(r,uy) + rzfmT(—, ul)—(l + 77T (L), 1<7r <. (4)
r

Equality (4) follows from the definitions of Ty(r,u;) and T'(r,u;) (see [2]) immediately.

Corollary 2. Let u(x) be a subharmonic function, non identical —oo, in BL(%,T’) and let
p be the Riesz measure of u(x). Then for £ € BL(%,r)

1
U(f) - ¢, rm—1 / (x>73r(€ l')do‘( )
5(0,r)
1
—i—c (l)m_l/ ()%gxda /gfxd,u)
TR s BL{Ly)

where

O +m—2/ 5 \ntm=2 <T‘€|>2n+m—2 ~1,

Pr(€,x) = ZO W(E) By PnlCos®),
—m . 2n+m—2/ r \nr¥tm2 _ |€|2n+m72 ,
P%(f,x) = (T|f|)2 nZ:O W(E> 2Cntm—2) _ 1 pY(cos @),

and

R e () B COD (GRS G

where G,(x,€) is the Green function in the ball of radius r centered at the origin. The
convergence Is uniform on compact subsets of BL(%, T).

Set Bo(r,u) = B(3,r;u), i.e, Bo(r,u) = max{M(%;u); M(r;u)}, r>1 where M(t;u) =
sup{u(z): |z| =t}, t > 1.
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Corollary 3. If u(z) is a subharmonic function in BL(%,r), then for 1 < p < r we have

1 r™=2(r + p)

14 r2m
—— To(p;u) < By(p;ut) < _—
1 +p27m O(p ) = 0([) ) — (T . p)m,1

Cm

(To(r; w) + / u+(:v)da(x)>. (5)

5(0,1)

Let S(r) be a real and nonnegative function increasing for ro < r < oo, where 9 > 0.
The the order A and the lower order u of the function S(r) are defined as

A = lim sup log S(T), @ = lim inf 1ogS(r),

r—00 lOg T r—00 10g T

Obviously, the order and the lower order of the function satisfy the relation 0 < p < A < o0.

Definition 2. If u(x) is a subharmonic function in R™\ {0}, then the order A and the lower
order p of u are called the order and the lower order of Ty(r,u).

Theorem 3. If u(x) is a subharmonic function in R™\ {0}, the order A and the lower order
w of the functions Ty(r;u) and By(r;u) are the same, i.e., AMu] = Ao[u], p[u] = polu], where

log T} log B
Alu] = lim sup 08 Lo\ W) (7 u)’ Ao[u] = lim sup -08 Dol 4) o(r, )
r—00 log’r' r—00 log’r
log T} log B
plu] = lim inf 208 foir) 0<T), polu] = lim inf 208 Do) O(T).
7—00 log r r—00 log r

Proof. The conclusion follows from Corollary 3. Indeed, setting in (5) r = vp, v > 1, provided
u' is positive in |z| = p for the certain p, we get

1Ti(;;2—21 < Bo(p;u) < W(To(w; u) + % / u+<x>da($)>' ©)
5(0,1)

From (6) we deduce at once that A[u] = A\g[u| and pfu] = polul, since the order and the lower
order of Ty(r;wu) is not greater than that of By(r;u) and also that the order and the lower
order of By(r;u) is not greater than that of To(r; u), completing the proof. ]

Corollary 4. If u(x) is a subharmonic function of finite lower order p in R™ \ {0}, then

By(r;
lim infM < K(u,m),

where

2exp(p—1)\""" 2mexp\ "
K(u,m)§3(%) , > m, K(u,m)é( Mp> , 0<p<m

and K(0,m) = 1.

The proof is similar to that of Theorem 4.3 in ([2], p.166).

5. Representation of a subharmonic extension of a subharmonic function near
a removable point. Let BL(s,1) be the annular region {x € R™: s < |z| <1}, 0 < s < 1.
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Definition 3. Let D be an open subset of R™. If xq € D and u is a subharmonic function
in D\{zo} then u is said to have an isolated singularity at the point x.

Definition 4. The singular point z( of a subharmonic function u is remowvable if there exists
a subharmonic function v in D that coincides with u for all z € D\{z}. We say that v is a
subharmonic extension of u.

Theorem 4. Subharmonic function uw in D has a removable singularity at xq € D if and
only if there exists a subset {z: 0 < |r — x¢| < r} C D on which u is bounded from
above. Furthermore, the extension v of u can be represented near the removable point in the
following way

o(z) = - / w(E)Py (2, €)do (&) — /'Gm@mma—vwﬁ“t4> (7)

Cm
S(wo,1) 0<l¢l<1

where P (x,€) and G(x, ) are Poisson’s kernel and Green’s function for the unit ball respecti-
vely,
1
—vy = lim s™ ?I(s;u), 0<vy<oo, I(s;u)=

s—xo Cmsmfl

/'MQMQy (8)

S(zo,s)
Recall that B(xg,r) = {z: |z — zo| < 7r}.

Proof. By Definition 4 and the property of a subharmonic function, the extension v of u
is bounded from above on some compact subset of B(zg,r). Since u coincides with v on
{z: 0 < |x —z9| <}, uis bounded from above there.

Using linear transformation that preserves subharmonicity,

r
X — Ty + §x
one can get a subharmonic function u in BL(0, 2). Since u is bounded from above, there exists
a constant C' such that u < C. Without loss of generality, we can consider the function u—C'
instead of w.
Let p be the Riesz measure of uw on BL(0,2). We extend p to B(0,1) in such a way

V@D:{ME> (0¢ E) o)

p+pe (0€ E),

where 111 = p(E\{0}) and py = 76(0), §(0) is the Dirac delta-function, and E' is a Borel set.
In the case 0 ¢ F the measure p(F) is finite as the Riesz measure. In the case 0 € E we

have the sum of two measures. Since v < oo, the second measure is finite . Indeed, if we have

a convex function f(¢) on such an interval (a,+00), then there exists such a limit (see [2],

p.31) t
—00 < lim M < +00.
t—oo

Using the substitution ¢ = s>~ we obtain (8). Note that I(s;u) is a convex function with
respect to s>~™ ([2], Theorem 2.12, p.81).

Now we prove that u(E\{0}) < co. It will be enough to prove that u(BL(0,1)) < oo,
because F\{0} C BL(0,1).
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Using Definition 1 from [1], we can set n(1) = 0. Hence, we have pu(BL(0,1) = n(1) —

n(0) = —n(0). Fixing 7 = 7o in Theorem 3 from [1] and considering the limit as s tends to 0,
we get
1
: m—2 n(t) C
N s T
il_r)r(l)s /tm_ldt z - (10)

for some constant C' that does not depend on s.
Suppose that n(0) — —oo; then there exists a sequence {s;} of k& € N. In view of this
and integrating by parts, we obtain

1 Sk 1
m—2 n(t) m—2 n(t) m—2 / dt k k Sm—2
—=dt < —dt < — k = — )
5 / gm—1- = 5 / gm—1— = s gm—1 m— 2 + m— 2 32‘_2

As s | 0, we get

tm=1 = m -2

1

s

That contradicts (10). Hence, n(0) > —o0, i.e., u(BL(0,1)) < occ.
Next we consider the function

U:U*Pl—/Gdl/,

B1

that is subharmonic in B(0, 1) and u P; is the convolution of u with the Poisson kernel on
0B(0,1).
Using (9) for all z € B(0,1), we have

vw) == [ WP o)~ [ Gl du(e) ~(laP " - 1)

Cm
S(z0,1) 0<|él<1

It remains to show that u = v for all x € BL(0,1). Let us choose s such that 0 < s < 1

and fix z. Applying Poisson-Jensen’s Theorem 2 from [1] to a subharmonic function u in
BL(s,1), we obtain

Sm72

ule) == [ WP dole) = 1y (P - 1) [ u@dote)-

Cm
5(0,1) 5(0,1)

_ 1 u o (204 m = 2)strm |27 — |z ") pY(cos ¢)do

oz | O [ e i T s

s? + |z|? — 2s|z| cos ¢ s?|x|? + 1 — 2s|z| cos ¢

_5(5”1—12—1) (Ja>™ —1) Ci / u(§)do(€)+

m

S5(0,s)
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1 o0 n—1+ 3n+m—3 Cen n Y
o | 0L gy ey (e = ) pleos o))
5(0,s) n=
m—2 1
- [ G d©+ s (P =) [P - ) du+
s<|¢l<1 ms<|§|<1
- S2n+m—2 2—m—n n 2—m—n n v
" / S (e — () (JE T — (€ pcos d)dp(). (1)
<Jgl<1 ™=t (1=s )

Let us calculate the limit of the right-hand side of (11) as s tends to 0. The first summand
does not depend on s. The next one

m—2
2-m _ 1\ S 1
(l] lim =
5(0,1)

u(§)do(§) =0,

because w is bounded from above.
Let us estimate the third term. Since u < 0 and

5 " (n+m — 3)!
max{py(r): —1<x<1}=Ch, ;= Sl(m = 3)
we get
1 e (271 +m 2)82n+m—2 -
i m—-n __ n\ v <
- u(§) Z (m — 2)(1 — s 2) (|x| || )pn(cos ¢)do (&)<
5(0,1) n=1
5\ M2 (2n+m — 2)s™ S\ 1
< (= S e do(€) <
- <|x|> Z (m —2)(1 — s?ntm=2) <|x]) C”erfgcm / w(§)do(§) <
n=1 S(0,1)
choosing s < ‘;U—l, we obtain
8\ 2= (20 +m —2)! f1\2-1 1
< (2 el L/ (e do(€).
= <|:17|> 2 nl(m — 2)! <2> o, | W&
n=1 S(0,1)

The last series converges uniformly. Thus, the third term is vanishing as s | 0. Let us estimate
the first summand of the forth term

-

5(0,s)

<

s 1 |x| + s

(m—2)sm_20msm—1 / u(€)
5(0,s)

Since 7 is finite, the limit of the summand is 0. The analogous reasonings deal with the other

summand of the forth term. Consider the limit of the next addend
1 1 sm2
2—m . - — 2—-m : . —
(o = 1)t s [ (€)= (o = 1)ty o (s)
S5(0,s)

= (|ac|2*m — 1) .
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It can be proved in the same manner as it was done for the third term that the limit of the
fifth one is 0.
Now we prove that

iy [ G 9du© = [ Glagaue) (12)

s—0
s<|gl<1 0<[¢|<1

As we know, Green’s function has a singularity at the point x = £, that is why we set
s < so < || < 1, and by the additivity property of Lebesgue’s integrals, we have

[ cwowme - [ Gwoame+ [ Gwode)
s<|€]<1 s<|€l<so so<|€|<1
By Proposition from ([7], p. 20),
| G = e s <1 < )
s<|€|<so

and by the property of measure continuity (see [7], p. 16), there exists a sequence {s, } with
n € N such that

n—00
sn<|€|<so 0<|€]<s0

in [ G@om© - [ Gaduo).

Hence, we have proved (12).
Now we consider the limit of the eighth addend

m—2

(o = D tim s [ (i = 1) dut) =

s—01 — gm—2
s<|gl<1

m—2 d m—2
S s [ e [ )]

s<lel<1 s<lel<1

Since the measure p(BL(0,1)) is finite, the last summand is vanishing.

Consider
1

st [ feprante) = s [0, (13

s<|g|<1 s

Integrating the right-hand side of (13) by parts, we obtain

U8 4 (i 9) /1 ;@1 dt). (14)

sm 2 (n(l) —

S

The limit of (14) as s | 0 is

dt. (15)

—n(0) + (m — 2) lim 5™ / !

s—0
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Since
0 7 (e [ ()
e n(t m— n(t — n(t
(m — 2)8 2 / lmdt = (m — 2)8 2 / zmdt + (m — 2)8 2 / tmfl dt S
s S \/g
) t?—m Vs ) 252—m 1
< (m —2)s™" 2)s™ n(1 = :
< (m—2)s""*n(y/s) 2=, + (m —2)s™ *n(1) 2 n(0)

We conclude that (15) is 0.
Now we estimate the last term of (11)

S2n+m72

Z e (| P = J2|) (1€ = [€]") pr(cos @) dp(€) |<
(1—s )

<t [ S S () () <

0<lé|<1 n=1

S 1y2n—1 du(§)
8 |x|m-2;o”+m‘3sl<2> =

0<(¢l<1

s<|g]<1

The last series converges uniformly and the last term is vanishing. The proof is completed. [J

6. Comparison of 7'(+0,7;u) and T'(r,u) for subharmonic functions extended into
a ball. We consider bounded from above subharmonic functions in BL(0, 7). According to
Theorem 3, such functions are extended to B(0, 7).

Using Theorem 3 from [1] and (8), we get

th(sru) 1_ (cmrlm—l / u(a:)da(:c)—i / u(:c)da(x))—

s—0 1 —yp2—m

Crm
S(0,r) S5(0,1)
Sm72 1 SmfZ 1
_ E—I}é = e u(z)do(z) + £1_I>I(l) [ onZc gl / u(z)do(x) =
5(0,1) 5(0,s)
(o [ u@io) - = [ (i)
= u(x)do(x) — — u(z)do(x) ) —.
1 —r2=m\¢,rm-1 Cm 7
S(0,r) S(0,1)
Hence,
2—m 1 1
(1 =r"""™)(N(+0,7;u) +v) = e u(z)do(z) — - u(z)do(x).
" S(0,r) mS(O,l)

Suppose u(0) # —oo. According to [2], we have
(1 o r27m>(N<+07 T U) + 7) = N<T7 U) - N(17u)

Moreover (see, definition 2 from [1]),

lim T(s riu) = ! — ! — / ut(z)do(z) + lim s L / ut(x)do(z)—

5—0 1 —r2=mc,rm-1 s—=0 1 — sm=2 ¢, sm1
S(0,r) S(0,s)
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1 1 m=2 ]

1—r2-m¢,

S

/ (oo (o) ~ i / ot (@) do(z). (16)

5(0,1) 5(0,1)

Since u™ is a subharmonic and bounded from above function, we apply Theorem 3 to u™.

Denote
5 1

= / wH(@)do(x) = —.

Cm
S(0,s)

lim s™~
s—0

As far as 0 < 3 < oo and u™ = max{u; 0}, we have that 3 = 0. Thus,
(1 —r*"™T(+0,7;u) = T(r,u) — T(1,u). (17)

Equality (17) follows from (16) and from the definition of T'(r, u) (see [2]) immediately.
Note that (17) is true in both cases u(0) = —oo and u(0) # —oo.
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