A. M. Brydun, P. A. Yatsulka

A VERSION OF CARLEMAN’S FORMULA AND SUMMATION OF THE Riemann ζ-FUNCTION LOGARITHM ON THE CRITICAL LINE

A version of Carleman’s formula for functions holomorphic in a rectangle is proved. It is applied to the evaluation of the integral of ζ-function logarithm with the summing factor $\exp(-t)$ along the critical line. This allowed to obtain a new statement equivalent to the Riemann hypothesis.

Для функцій, голоморфних в прямокутнику, доказан один варіант формулі Карлемана. Он призначений на нахождение інтеграла з логарифмі ζ-функції з сумируючим множителем $\exp(-t)$ вдоль критичної прямой. Це призвело установити нове утвер- ждение, еквівалентнє гіпотезі Рімана.

1. Introduction. A Carleman type formula for functions meromorphic in a rectangle with the remainder term in an explicit form was obtained in [1]. Here we prove its modification for the functions which are real on a side of a rectangle, and apply it to the study of the Riemann ζ-function.

The integrals of the Riemann ζ-function logarithm along the vertical lines with diverse summing factors were studied by many authors [2]–[6]. These results generate new statements equivalent to the well known Riemann hypothesis (RH) for ζ-function. In particular, due to a theorem of Balazard-Saias-Your [4], the RH is true if and only if

$$\int_{\Re s = \frac{1}{2}} \log \left| \frac{\zeta(s)}{|\zeta|^2} \right| ds = 0.$$

In this paper applying the modified Carleman formula we evaluate the integral

$$I = \int_0^\infty e^{-t} \log \left| \zeta \left(\frac{1}{2} + it \right) \right| dt$$

in terms of non-trivial ζ-function zeros and obtain a new statement equivalent to the RH. Namely, the RH is true if and only if $I = C$ where C is indicated below.

2. A version of Carleman formula. Let f be a meromorphic function on the closure of the rectangle $R_z = \{ z = t + iy : x_0 < t < x, 0 < y < \pi \}$. Denote by $\{a_q\}$, $a_q = \alpha_q + i\delta_q$, and

2010 Mathematics Subject Classification: 11M26, 11M41.
\{\omega_q, \omega_q = \xi_q + i\eta_q,\} its zeros and poles in R_x, respectively. Choosing some $z^* \in R^*_x$ and some value $\log f(z^*)$, we define the function $\log f(z)$ in the domain

$$R^*_x = R_x \setminus \bigcup_j \{\{t\beta_j + i\gamma_j : t \geq 1\} \cup \{t\xi_j + i\eta_j : t \geq 1\}\}$$

and on the boundary ∂R_x except the zeros and the poles that lie on the ∂R_x by the relation

$$\log f(z) = \log f(z^*) + \int_{z^*}^z \frac{f'(\zeta)}{f(\zeta)} d\zeta.$$ \hspace{1cm} (1)

The integral is taking along a path in R^*_x with the ends at z^* and z.

We recall the following version of Carleman’s formula for a rectangle with the explicit remainder from term in the form Theorem 1 will be received.

\textbf{Theorem A (11).} Let $f, f \neq 0$, be a meromorphic function on the closure of the rectangle $R_x = \{z = t + iy : x_0 < t < x, 0 < y < \pi\}$. Let $\log f(z)$ be defined on

$$R^*_x = R_x \setminus \bigcup_j \{\{t\beta_j + i\gamma_j : t \geq 1\} \cup \{t\xi_j + i\eta_j : t \geq 1\}\}$$

and on ∂R_x except the zeros and the poles, that lie on ∂R_x, by relation (1). Put also $\arg f(z) = \text{Im} \log f(z)$. Then

$$\sum_{\alpha_q \in R_x} \left(\frac{1}{e^{\alpha_q} - e^{2\pi}} \sin \delta_q - \sum_{\omega_p \in R_x} \left(\frac{1}{e^{\omega_p} - e^{2\pi}} \sin \eta_p = \frac{1}{2\pi} \int_{x_0}^x (\log |f(t)| + \log |f(t + i\pi)|) \times \right. \right.$$

$$\times \left(\frac{1}{e^t} - \frac{e^t}{e^{2\pi}} \right) dt + \frac{1}{\pi e^x} \int_0^\pi \log |f(x + iy)| \sin ydy + Q(x; x_0, f),$$ \hspace{1cm} (2)

where

$$Q(x; x_0, f) = \frac{\text{sh}(x - x_0)}{\pi e^x} \int_0^\pi \arg f(x_0 + iy) \cos ydy - \frac{\text{ch}(x - x_0)}{\pi e^x} \int_0^\pi \log |f(x_0 + iy)| \sin ydy.$$ \hspace{1cm} (3)

The main result of this section follows from Theorem A.

\textbf{Theorem 1.} Let $f, f(z) \not\equiv 0$, be a holomorphic function on the closure of the rectangle $R_x = \{z = t + iy : x_0 < t < x, 0 < y < \pi\}$ and real-valued on the segment $I_0 = \{z : z = x_0 + iy, 0 \leq y \leq \pi\}$. Then

$$\sum_{\alpha_q \in R_x} \left(\frac{1}{e^{\alpha_q} - e^{2\pi}} \sin \delta_q + \frac{1}{2} \sum_{\Re \alpha_q = x_0} \left(\frac{1}{e^{x_0} - e^{2\pi}} \sin \delta_q = \right. \right.$$

$$= \frac{1}{2\pi} \int_{x_0}^x (\log |f(t)| + \log |f(t + i\pi)|) \left(\frac{1}{e^t} - \frac{e^t}{e^{2\pi}} \right) dt + \frac{1}{\pi e^x} \int_0^\pi \log |f(x + iy)| \sin ydy.$$ \hspace{1cm} (4)

$$+ \frac{1}{\pi e^x} \int_0^\pi \log |f(x + iy)| \sin ydy - \frac{\text{ch}(x - x_0)}{\pi e^x} \int_0^\pi \log |f(x + iy)| \sin ydy.$$
Proof. Let us calculate the integral \(\frac{1}{\pi} \int_0^\pi \arg f(x_0 + iy) \cos ydy \). For this purpose consider the function

\[
g(z) = \frac{f(z)}{\prod_{q=1}^m (z - z_q)},
\]

(5)

where \(z_q = x_0 + i\delta_q \) are zeros of the function \(f \), \(0 \leq \delta_q \leq \pi \). In the case of absence of such zeros, we suppose that the product (5) is equal to unity.

The function \(g \) does not have zeros on \(I_0 \) and

\[
g(x_0 + iy) = \frac{f(x_0 + iy)}{\prod_{q=1}^m i(y - \delta_q)}.
\]

If \(m \) is an even number, then \(g \) is real on \(I_0 \) and does not change the sign, since \(f \) is real, the denominator is real and \(g(z) \neq 0 \). If \(m \) is an odd number, then the function \(g \) obtains imaginary values without changing of the sign. So, \(\arg g(x_0 + iy) = C = \text{const} \), \(0 \leq y \leq \pi \).

Hence, from previous equality and (5) we deduce

\[
\arg f(x_0 + iy) = \sum_{q=1}^m \arg (i(y - \delta_q)) + C.
\]

Consequently,

\[
\frac{1}{\pi} \int_0^\pi \arg f(x_0 + iy) \cos ydy = \frac{1}{\pi} \sum_{q=1}^m \int_0^\pi \arg (i(y - \delta_q)) \cos ydy.
\]

For \(y < \delta_q \) the following equality holds

\[
\arg (i(y - \delta_q)) = \arg(z^* - z_p) + \text{Im} \int_{z^*}^{x_q} \frac{dz}{z - z_q} = \arg(-i\delta_q).
\]

We fix \(\arg(-i\delta_q) = -\pi/2 \). Then for \(y > \delta_q \) we get \(\arg (i(y - \delta_q)) = \pi/2 \). Thus,

\[
\frac{1}{\pi} \int_0^\pi \arg (i(y - \delta_q)) \cos ydy = \frac{1}{\pi} \left(\int_0^{\delta_q} \left(-\frac{\pi}{2} \right) \cos ydy + \int_{\delta_q}^\pi \left(\frac{\pi}{2} \right) \cos ydy \right) = -\sin \delta_q
\]

and

\[
\frac{1}{\pi} \int_0^\pi \arg f(x_0 + iy) \cos ydy = -\sum_{q=1}^m \sin \delta_q.
\]

(6)

Taking into account (6) and (3) we obtain (4).

3. Summation of the Riemann \(\zeta \)-function logarithm on the critical line. Denote by \(\rho_q = \beta_q + i\gamma_q \) zeros of the Riemann \(\zeta \)-function on the strip \(R_\infty = \{ s : 1/2 < \text{Re } s < 1 \} \).
Theorem 2. The following equality holds

$$\frac{1}{2} \int_{0}^{+\infty} e^{-t} \log \left| \zeta \left(\frac{1}{2} + it \right) \right| \, dt = - \sum_{\rho \in R_{\infty}} \frac{\cos(\pi \beta)}{e^{\pi \gamma}} + C,$$

(7)

where $C = -(c_{1} + c_{2} + c_{3})/2$,

$$c_{1} = \int_{1/2}^{3/2} \log |(\sigma - 1)\zeta(\sigma)| \cos \pi \sigma d\sigma, \quad c_{2} = \int_{0}^{+\infty} \log \left(\frac{1}{4} + t^{2} \right) \frac{dt}{e^{t}}, \quad c_{3} = \frac{1}{2} \int_{0}^{+\infty} \log \left| \zeta \left(\frac{3}{2} + it \right) \right| \frac{dt}{e^{t}}.$$

The Riemann hypothesis holds if and only if

$$\frac{1}{2} \int_{0}^{+\infty} e^{-t} \log \left| \zeta \left(\frac{1}{2} + it \right) \right| \, dt = C.$$

(8)

Proof. In the complex plane of the variable $s = \sigma + it$ consider the rectangle $R_{T} = \{s : 1/2 < \sigma < 3/2, 0 < t < T\}$.

The function $(s - 1)\zeta(s)$ is holomorphic in R_{T} and the transformation $z = i\pi(3/2 - s)$ maps R_{T} to R_{x} with $x_{0} = 0$. The inverse mapping is $s = iz/\pi + 3/2$.

The function

$$f(z) = \left(\frac{i}{\pi} + \frac{1}{2} \right) \zeta \left(\frac{iz}{\pi} + \frac{3}{2} \right), \quad z \in R_{x}$$

is holomorphic in R_{x}, where $x_{0} = 0$ and satisfy the conditions of Theorem 1.

Taking into account that f has no zeros on I_{0}, we obtain (4) in the form

$$\sum_{\alpha \in R_{x}} \left(\frac{1}{e^{\alpha^{2}}} - \frac{e^{\alpha^{2}}}{2e^{2x}} \right) \sin \delta_{q} = \frac{1}{2\pi} \int_{0}^{x} \left(\log |f(t)| + \log |f(t + i\pi)| \right) \left(\frac{1}{e^{t}} - \frac{e^{t}}{e^{2x}} \right) \, dt +$$

$$+ \frac{1}{\pi e^{x}} \int_{0}^{\pi} \log |f(x + iy)| \sin ydy - \frac{c x}{\pi e^{x}} \int_{0}^{\pi} \log |f(iy)| \sin ydy = I_{1} + I_{2} + I_{3} + I_{4}.$$

(9)

We have

$$I_{4} = -\frac{c x}{\pi e^{x}} \int_{0}^{\pi} \log |f(iy)| \sin ydy = \frac{e^{\pi T} + e^{-\pi T}}{2e^{\pi T}} \int_{1/2}^{3/2} \log |(\sigma - 1)\zeta(\sigma)| \cos \pi \sigma d\sigma =$$

$$= \frac{1}{2} \int_{1/2}^{3/2} \log |(\sigma - 1)\zeta(\sigma)| \cos \pi \sigma d\sigma + \frac{1}{2e^{2\pi T}} \int_{1/2}^{3/2} \log |(\sigma - 1)\zeta(\sigma)| \cos \pi \sigma d\sigma.$$

Both integrals are convergent. The last addend vanishes as $T \to +\infty$. Hence,

$$\lim_{T \to +\infty} I_{4} = \frac{1}{2} \int_{1/2}^{3/2} \log |(\sigma - 1)\zeta(\sigma)| \cos \pi \sigma d\sigma = \frac{1}{2} c_{1}.$$
Further,

\[I_1 = \frac{1}{2\pi} \int_0^x \log |f(u)| \left(\frac{1}{e^u} - \frac{e^u}{e^{2x}} \right) du = \frac{1}{2} \int_0^T \log \left| \frac{1}{2} + it \right| \frac{dt}{e^t} + \frac{1}{2} \int_0^T \log \left| \frac{3}{2} + it \right| \frac{dt}{e^t}. \]

Thus,

\[\lim_{T \to +\infty} I_1 = \frac{1}{4} \int_0^\infty \log \left(\frac{1}{4} + t^2 \right) \frac{dt}{e^t} + \frac{1}{2} \int_0^\infty \log \left| \zeta \left(\frac{3}{2} + it \right) \right| \frac{dt}{e^t} = \frac{1}{4} c_2 + \frac{1}{2} c_3. \]

Similarly,

\[I_2 = \frac{1}{2\pi} \int_0^x \log |f(u + i\pi)| \left(\frac{1}{e^u} - \frac{e^u}{e^{2x}} \right) du = \frac{1}{2} \int_0^T \log \left| (s - 1)\zeta(s) \right| \left(\frac{1}{e^t} - \frac{e^t}{e^{2T}} \right) dt, \]

\[\lim_{T \to +\infty} I_2 = \frac{1}{2} \int_0^\infty \log \left(\frac{1}{4} + t^2 \right) \frac{dt}{e^t} + \frac{1}{2} \int_0^\infty \log \left| \zeta \left(\frac{3}{2} + it \right) \right| \frac{dt}{e^t} = \frac{1}{4} c_2 + \frac{1}{2} \int_0^\infty \log \left| \zeta \left(\frac{1}{2} + it \right) \right| \frac{dt}{e^t}. \]

Further, we have

\[I_3 = \frac{1}{\pi e^x} \int_0^\pi \log |f(x + iy)| \sin y dy = -\frac{1}{e^{\pi T}} \int_{1/2}^{3/2} \log \left| (s - 1)\zeta(s) \right| \cos \pi s ds = \frac{1}{e^{\pi T}} \int_{1/2}^{3/2} \log |s - 1| \cos \pi s ds - \frac{1}{e^{\pi T}} \int_{1/2}^{3/2} \log |\zeta(s)| \cos \pi s ds \]

and \(\lim_{T \to +\infty} I_3 = 0. \) The left-hand side of (9) can be written as follows

\[-\sum_{\rho_q \in R_T} \frac{\cos \pi \beta_q}{e^{\pi \gamma_q}} + \sum_{\rho_q \in R_T} \frac{e^{\pi \gamma_q} \cos \pi \beta_q}{e^{2\pi T}}. \]

The limit value of the first sum is

\[\lim_{T \to +\infty} \sum_{\rho_q \in R_T} \frac{\cos \pi \beta_q}{e^{\pi \gamma_q}} = \sum_{\rho_q \in R_{\infty}} \frac{\cos \pi \beta_q}{e^{\pi \gamma_q}}. \]
Taking into account that the number \(N(T) \) of zeros of \(\zeta(s) \) in \(\mathbb{R}_T \) has the property \([7]\)
\[N(T) \sim T \log T, \]
we obtain
\[
\lim_{T \to +\infty} \left| \sum_{\rho_q \in \mathbb{R}_T} e^{\pi \gamma_q} \cos \pi \beta_q \frac{e^{2 \pi T}}{e^{2 \pi T}} \right| \leq \lim_{T \to +\infty} \frac{1}{e^{2 \pi T}} \sum_{\rho_q \in \mathbb{R}_T} | \cos \pi \beta_q | \leq \lim_{T \to +\infty} \frac{T \log T}{e^{2 \pi T}} = 0.
\]

Therefore,
\[
- \sum_{\rho_q \in \mathbb{R}_T} \frac{\cos \pi \beta_q}{e^{2 \pi T}} = \frac{1}{2} \int_0^{+\infty} e^{-t} \log |\zeta(1/2 + it)| dt - C,
\]
where \(C = -(c_1 + c_2 + c_3)/2 \), i.e. \((7)\).

Let us prove the second statement of Theorem 1.

If the Riemann hypothesis holds then \(\beta_q = 1/2 \) for each \(q \), the sum at the right-hand side of \((7)\) vanishes and we have \((8)\).

Conversely, if \((8)\) fulfils then the sum in \((7)\) equals zero. But each its addend is nonpositive because \(1/2 \leq \beta < 3/2 \). Thus, \(\beta_q = 1/2 \) for all \(q \) and the Riemann hypothesis holds.

Acknowledgement. The authors are grateful to Prof. A. Kondratyuk for useful suggestions.

REFERENCES

Chair of KGM,
Institute of Geodesy,
Lviv Polytechnic National University,
a_brydun@yahoo.com

Chair of Mathematical and Functional Analysis,
Faculty of Mechanics and Mathematics,
Lviv National University,
petroandr@rambler.ru

Received 12.06.2010