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We give a short survey on generalizations of Nevanlinna theorems on zero distribution

of bounded holomorphic functions and representation of meromorphic functions in multiply
connected domains. It is a part of our report on the conference on complex analysis dedicated
to the memory of Anatolii Asirovich Goldberg in Lviv, May 31-June 5, 2010.

Б. Н. Хабибуллин. Обобщения теорем Неванлинны // Мат. Студiї. – 2010. – Т.34, №2. –
C.197–206.

Мы даем краткий обзор обобщений теорем Неванлинны о распределении нулей огра-
ниченных голоморфных функций и представлении мероморфных функций в многосвяз-
ных областях. Это – часть нашего доклада на конференции по комплексному анализу,
посвященной памяти Анаnолия Асировича Гольдберга во Львове 31 мая–5 июня 2010 г.

1. Definitions, agreements, and basic notions. Let Ω be a domain in the complex plane
C or in the Riemann sphere C∞ 6= Ω. For S ⊂ Ω ⊂ C∞, we denote by S and ∂Ω the closure
and the boundary of S relative to C∞. We write S b Ω if S ⊂ Ω.

Denote by Hol(Ω), Mer(Ω), sbh(Ω), and harm(Ω) the classes of all holomorphic, meromor-
phic, subharmonic, and harmonic functions on Ω.

We are concerned with finite or infinite sequences Λ = {λk}, k = 1, 2, . . . of not necessarily
distinct points from the domain Ω, without limit points in Ω. Let nΛ be an integer-valued
counting measure of sequence Λ defined by

nΛ(S):=
∑
λk∈S

1, S ⊂ Ω.

Let S ⊂ Ω. Λ ⊂ S ⇐⇒ suppnΛ ⊂ S.
A sequence Λ coincides with a sequence Γ = {γn} (or is equal to Γ, or Λ = Γ) iff nΛ = nΓ.

Λ ⊂ Γ means nΛ ≤ nΓ. Λ∩Γ and Λ∪Γ are defined by nΛ∩Γ:= min{nΛ, nΓ} and nΛ∪Γ:=nΛ+nΓ.
Given f : A→ B and b ∈ B, we write f ≡ b on A′ if f is identically equal to b on A′ ⊂ A;

in the opposite case, f 6≡ b on A′.
Let A,B ⊂ [−∞,+∞]. A function f : A → B is increasing (decreasing resp.) if, for any

x1, x2 ∈ A, x1 ≤ x2 implies f(x1) ≤ f(x2) (f(x1) ≥ f(x2) resp.).
Given a ∈ R, and f : A→ [−∞,+∞], we set a+:= max{0, a}, f+:= max{0, f}.
The term “positive” (“negative” resp.) means “≥ 0” (“≤ 0” resp.).
Let f ∈ Hol(Ω) or f ∈ Mer(Ω), f 6≡ 0,∞ on Ω. Write Zerof for the zero set of f

(counting multiplicities). Evidently, Zerof is a sequence of not necessarily distinct points
from the domain Ω, without limit points in Ω.
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A sequence Λ is a zero sequence for a subspace H ⊂ Hol(Ω) (further we write Λ ∈
Zero(H)) if and only if there exists a function f ∈ H such that Λ = Zerof .

A function f ∈ Hol(Ω) vanishes on Λ if and only if Λ ⊂ Zerof (we write f(Λ) = 0).
A sequence Λ is a zero subsequence or a non-uniqueness sequence for the space H if there

exists a nonzero function f ∈ H such that f(Λ) = 0.

2. Problems. Let H be a subspace of Hol(Ω). We consider the following five problems.

1. What point sequences Λ can be zero sequences for H?

2. What point sequences Λ can be zero subsequences for H?

3. In what cases there is a zero subsequence for H which is simultaneously a zero sequence
for H or for some, preferably minimal, extension space Ĥ ⊃ H of holomorphic functions
on Ω?

4. When a meromorphic function on Ω can be represented as a ratio of holomorphic
functions from H?

5. When a meromorphic function on Ω can be represented as a ratio of holomorphic
functions from H without common zeros?

3. Green’s function. Denote by g
Ω
(·, z) : C∞ \{z} → [0,+∞) the extended Green function

for Ω with a pole at z ∈ Ω, i. e., g
Ω
(ζ, z) ≡ 0 for points ζ ∈ C∞ \Ω, g

Ω
(·, z) ∈ sbh(C∞ \ {z}),

g
Ω
(·, z) ∈ harm(Ω \ {z}), and also

g
Ω
(ζ, z) = − log |ζ − z|+O(1), ζ → z.

Given a continuous function φ : ∂Ω→ R, by H
Ω
φ we denote the solution of the Dirichlet

problem for Ω with boundary function φ or the associated Perron function

H
Ω
φ:= sup{u ∈ sbh(Ω): lim sup

z→ζ
u(z) ≤ φ(ζ), ∀ζ ∈ ∂Ω}.

4. Harmonic measure. Denote by B(∂Ω) the σ-algebra of Borel subset of ∂Ω.
Denote by ω

Ω
(z, ·) the harmonic measure for Ω at the point z ∈ Ω, i. e.,

ω
Ω
(·, ·) : Ω× B(∂Ω)→ [0, 1]

such that

a) the map B 7→ ω
Ω
(z,B) is a Borel probability measure on ∂Ω;

b) if φ : ∂Ω→ R is continuous function, then

H
Ω
φ(z) =

∫
∂Ω

φ(ζ) dω
Ω
(z, ζ).

5. The unit disk. Starting points of our research are Nevalinna’s theorems (1929).
Denote by Hol∞(D) ⊂ Hol(D) the space of holomorphic bounded functions on D.
Denote by fΛ a holomorphic function 6≡ 0 on D with zero sequence ZerofΛ

= Λ ⊂ Ω.

Theorem 1. (Nevanlinna)The following statements are equivalent.

1) Λ is a zero sequence for Hol∞(D);

2) Λ is a zero subsequence for Hol∞(D);
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3) for each or some function fΛ ∈ Hol(D)

sup
r<1

(
H

rD log |fΛ|
)
(0) = sup

r<1

∫
r∂D

log
∣∣fΛ(z)

∣∣dω
rD(0, z) = sup

r<1

1

2π

∫ 2π

0

log
∣∣fΛ(reiθ)

∣∣ dθ < +∞;

4)
∑
k

gD(λk, 0) =
∑
k

log
1

|λk|
< +∞ ⇐⇒

∑
k

(1− |λk|) < +∞.

Let z ∈ Ω, p, q ∈ Hol(Ω), and let

f =
p

q
∈ Mer(Ω), p(z) = q(z) = 1. (1)

We set
uf := max{log |p|, log |q|} ∈ sbh(Ω) (2)

or uf := log
√
|p|2 + |q|2 ∈ sbh(Ω). (3)

Let D be a subdomain of Ω, z ∈ D b Ω. The integral

T
D

(f ; z):=

∫
∂D

uf dω
D

(z, ·) (4)

is Nevanlinna’s characteristic of f on D (in the form of Ahlfors–Shimizu for (3)) at the point
z relative to representation (1).

If Polf = {γk}∞k=1 ⊂ Ω is the pole sequence of f in Ω, i. e., zero sequence of 1/f in Ω, and
Zerop ∩Zeroq = ∅, then, by (2),

T
D

(f ; z) =
∑
k

g
D

(γk, z) +

∫
∂D

log+ |f | dω
D

(z, ·).

If z = 0 ∈ D, then T
D

(f):=T
D

(f ; 0).

6. Multiply connected domains. There are generalizations of Nevanlinna’s theorems to
classes of holomorphic and meromorphic functions on special finitely connected domains Ω.

Given z ∈ C and 0 < t < +∞, we write

D(z, t):={w ∈ C : |w − z| < t}, D(z, t):=D(z, t).

We consider now results from [1] (Andriy Kondratyuk and Ilpo Laine, 2006). The authors
developed the Nevalinna theory and combined topics for meromorphic and holomorphic
functions to (m+ 1)-connected domains Ω, m ∈ N, for following cases.

1) An (m+1)-connected domain Ω = C\
⋃m
j=1{cj}, cj ∈ C,m ∈ N, is called a m-punctured

plane. For example, such a 2-connected domain is a punctured plane C \ {0}.
2) A bounded1 (m+ 1)-connected domain

Ω = D(0, R) \
( m⋃
j=1

D(zj, rj)
)
, m ∈ N, D(zj, tj) b D(0, R),

D(zj, tj)∩D(zj′ , tj′) = ∅ for all j 6= j′, is called a strictly circular domain. 2-connected
annuli AR = D(0, R) \D(0, 1/R), 1 < R < +∞, are examples of such domains.

always bounded relative to C
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3) Let Ω ⊂ C be a bounded (m+ 1)-connected domain, m ∈ N,

Ω =
m⋃
j=0

Gj,

where Gj are simply connected domains (relative to C∞), ∂Gj are simple (Jordan)
closed paths, G0 is bounded, and ∞ ∈ Gj for j = 1, . . . ,m, C \Gj b G0,

(C \Gj) ∩ (C \Gj′) = ∅, j 6= j′, j, j′ ≥ 1.

Such domains Ω are called in [1] admissible.
Let ϕj be conformal mappings of D onto Gj realizing a conformal equivalence of D and
Gj with ϕ0(0) = 0, and ϕj(0) =∞ as j = 1, . . . ,m. Then every ϕj can be extended to
a homeomorphism of D onto Gj (the Carathéodory theorem). For a simple closed path
Γ, int Γ denote the bounded domain with the boundary Γ (the Jordan theorem).
Let Γjr(s):=ϕj(e

is), 0 ≤ s ≤ 2π, j = 0, . . . ,m, Γ∗jr:=Γjr
(
[0, 2π)

)
, j = 0, . . . ,m, and

Ωr:=
(
int Γ∗0r

)
\

k⋃
j=1

int Γ∗jr, r0 ≤ r < 1.

Let Λ = {λk} be a sequence in Ω, and let

N0(r,Λ):=

∫ r

r0

nΛ(Ωt)

t
dt, r0 ≤ r < 1,

where r0 < 1 is a constant sufficiently close to 1.
For a meromorphic function f on an admissible bounded domain Ω denote

m0(r, f):=
1

2π

m∑
j=1

(∫ 2π

0

log+
∣∣f(ϕj(reis))∣∣ ds− ∫ 2π

0

log+
∣∣f(ϕj(r0e

is)
)∣∣ ds),

r0 ≤ r < 1. The function T0(r, f):=N0(r,Polf ) +m0(r, f), r0 ≤ r < 1, is the Nevalinna
characteristic of f (in the sense of A. Kondratyuk and I. Laine).

Theorem 2 (1, Theorem 43.2). Let f ∈ Mer(Ω), where Ω ⊂ C is a finitely connected
bounded admissible domain. If T0(r, f) = O(1), r → 1, then there are bounded functions
h1, h2 ∈ Hol(Ω) such that f = h1/h2.

Let fΛ ∈ Hol(Ω) be a function with a zero sequence Λ ⊂ Ω. If we apply this theorem to
the function fΛ ∈ Hol(Ω), then we get

Theorem 3. Let Ω ⊂ C be a finitely connected admissible bounded domain. If

sup
r0≤r<1

m0(r, fΛ) < +∞,

then there is a bounded holomorphic on Ω function f such that f(Λ) = 0.
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We consider Problems 1–5 in a general form in [2], [3].
A function (weight) M : Ω→ R define a weighted space

Hol(Ω;M):=

{
f ∈ Hol(Ω): sup

z∈Ω

|f(z)|
expM(z)

< +∞
}
.

If M ≡ 0 on Ω, then Hol(Ω; 0) = Hol∞(Ω).
Let Ω be a domain in C∞.
We use the following classification of domains Ω such that 0 ∈ Ω 63 ∞.
I. This domain Ω is

a) simply connected (for example, Ω = C or Ω = D) or
b) finitely connected and Ω 6= C∞ (for example, each bounded finitely connected do-

main Ω).
II. This domain Ω is (m+ 1)-connected with m ∈ N and Ω = C∞.
III. This domain Ω is

a) bounded or
b) unbounded.

Let Exh Ω = {D} be an exhaustion of Ω, i. e.,
⋃
D∈Exh ΩD = Ω, where 0 ∈ D and every

D ∈ Exh Ω is a regular domain for the Dirichlet problem. Such an exhaustion always exists
(countable increasing and such that all D have smooth boundary).

Theorem 4. Let Λ ⊂ Ω, and let Ω be a domain of type I. Then the following statements
are equivalent.

1) Λ is a zero sequence for Hol∞(Ω);
2) Λ is a zero subsequence for Hol∞(Ω);
3) for each or some function fΛ ∈ Hol(Ω) with ZerofΛ

= Λ

sup
D∈Exh Ω

(
H

D
log |fΛ|

)
(0):= sup

D∈Exh Ω

∫
D

log
∣∣fΛ(z)

∣∣dω
D

(0, z) < +∞ ;

4) sup
D∈Exh Ω

∑
k

g
D

(λk, 0) < +∞.

If Ω possesses the Green function, then we can remove sup
D∈Exh Ω

everywhere and replace D

with Ω.

Theorem 5. Let Ω be a domain of type I. Let (see (1))

f =
p

q
∈ Mer(Ω), p, q ∈ Hol(Ω), p(0) = q(0) = 1,

and (see (4), (2), (3) resp.)

T
D

(f):=

∫
∂D

uf dω
D

(0, ·), D ∈ Exh(Ω),

where
uf := max{log |p|, log |q|} ∈ sbh(Ω) or uf := log

√
|p|2 + |q|2 ∈ sbh(Ω).

Assume that one of the following two conditions holds.
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1) sup
D∈Exh Ω

T
D

(f) < +∞;

2) p, q ∈ Hol∞(Ω).

Then there are p0, q0 ∈ Hol∞(Ω) without common zeros such that f = p0/q0.

Remark 1. If the domain Ω is regular for the Dirichlet problem, then we can remove sup
D∈Exh Ω

in 1) and replace D with G.

Theorem 6. Assume Λ ⊂ Ω, and let Ω be a domain of type II. If Λ is a zero sequence for
Hol∞(Ω), then

2) Λ is a zero subsequence for Hol∞(Ω);

3) for each (for some) function fΛ ∈ Hol(Ω) with ZerofΛ
= Λ

sup
D∈Exh Ω

(
H

D
log |fΛ|

)
(0):= sup

D∈Exh Ω

∫
D

log
∣∣fΛ(z)

∣∣dω
D

(0, z) < +∞ ;

4) sup
D∈Exh Ω

∑
k

g
D

(λk, 0) < +∞.

Conversely, assume that one of the conditions 2)–4) holds. Then there is a constant b < m
such that Λ is a zero sequence for every space Hol(Ω,M) with

M : z 7→ c+
0 log+ |z|+

m∑
k=1

c+
k log+ 1

|z − ak|
, (5)

where
∑m

k=0 ck = b, ak ∈ C \ Ω.

Theorem 7. Let Ω be a domain of type II. Suppose (see (1))

f =
p

q
∈ Mer(Ω), p, q ∈ Hol(Ω), p(0) = q(0) = 1.

Assume that one of the following two conditions holds.

1) sup
D∈Exh Ω

T
D

(f) < +∞;

2) p, q ∈ Hol∞(Ω).

Then there are constant b < m such that, for every functionM from (5), there exist functions
p0, q0 ∈ Hol(Ω;M) without common zeros representing f = p0/q0.

Theorem 8 (on zeros). Let Ω ⊂ C be a domain, and let Λ ⊂ Ω be a sequence. If Λ is a
zero (sub)sequence for Hol∞(Ω), then

3) for each or some function fΛ ∈ Hol(Ω) with ZerofΛ
= Λ

sup
D∈Exh Ω

(
H

D
log |fΛ|

)
(0):= sup

D∈Exh Ω

∫
D

log
∣∣fΛ(z)

∣∣dω
D

(0, z) < +∞ ;

4) sup
D∈Exh Ω

∑
k

g
D

(λk, 0) < +∞.



NEVANLINNA THEOREMS 203

Conversely, let one of the conditions 3), 4) be fulfilled. Then Λ is a zero subsequence for
the space Hol(Ω,M) with

M : z 7→ log
1

dist(z, ∂Ω)
, z ∈ Ω,

where dist(z, ∂Ω) is the Euclidean distance from z up to ∂Ω, if Ω is bounded,
and with any

M : z 7→ log
1

dist(z, ∂Ω)
+ c0 log+ |z|+ c1 log+ 1

|z − a|
, z ∈ Ω,

where c0 + c1 = 9, a ∈ C \ Ω, if Ω is unbounded.

Theorem 9. Let Ω be a subdomain of C. Let (see (1))

f =
p

q
∈ Mer(Ω), p, q ∈ Hol(Ω), p(0) = q(0) = 1.

Let us choose a function M as in Theorem 3 (on zeros). Suppose that

sup
D∈Exh Ω

T
D

(f) < +∞.

Then there exist functions p0, q0 ∈ Hol(Ω;M) representing f = p0/q0.

Remark 2. If Ω possesses the Green function then we can remove sup
D∈Exh Ω

everywhere in

Theorems 3 and replace D with Ω.

7. General results. If M ∈ sbh(Ω) with the Riesz measure νM := 1
2π

∆M ≥ 0, then there is
a global Riesz representation (decomposition)

M(z) =

∫
Ω

k(ζ, z) dνM(ζ) +H(z), z ∈ Ω, (6)

where H ∈ harm(Ω),
k(ζ, z) = log |ζ − z|+ hM(ζ, z) (7)

is a special subharmonic kernel with harmonic component h(ζ, z) of z ∈ Ω for each ζ ∈ Ω.
Let Q : Ω→ R be an upper semicontinuous function such that∫

Ω

(
k(ζ, 0)− k(ζ, z)

)+
dνM(ζ) ≤ Q(z) (8)

for almost all z ∈ Ω with respect to the Lebesgue measure on Ω.
Denote by Ud0 (Ω) the class of all connected unions D 3 0 of finitely many open disks

from Ω whose complement has no one-point connected components.

Theorem 10. Let M ∈ sbh(Ω) ∩ C(Ω) with the Riesz measure νM .
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[Z] If Λ = {λk} ⊂ Ω is a zero (sub)set for Hol(Ω;M), then

sup
0∈DbΩ

(∑
k

g
D

(λk, 0)−
∫
g
D

(ζ, 0) dνM(ζ)
)
< +∞. (9)

Conversely, if we have (9) where domains D run through the class Ud0 (Ω) only, then Λ

is a zero subsequence (non-uniqueness sequence) for Hol(Ω; M̂) where M̂(z):=

inf
0<t<dist(z,∂Ω)

( 1

2π

∫ 2π

0

M
(
z + teiθ

)
dθ + log

(
1 + 1/t

))
+ 9 log+ |z|,

and a zero sequence for Hol(Ω;M +Q).
Thus, every zero subsequence for Hol(Ω;M) is a zero sequence for Hol(Ω;M +Q).

[M] Let f = g/q be a meromorpic function and g, q ∈ Hol(Ω;M). Then

sup
0∈DbΩ

(∫
Ω

log max{|g|, |q|}(z) dω
D

(0, z)−
∫
M(z) dω

D
(0, z)

)
< +∞. (10)

Conversely, if, under the assumptions of (6) and (8), we have (10) where domains
D run through the class Ud0 (Ω) only, then there are functions g, q ∈ Hol(Ω; M̂) and
g0, q0 ∈ Hol(Ω;M +Q) such that f = g/q = g0/q0 and g0, q0 have no common zeros.
Thus, if f = g/q with g, q ∈ Hol(Ω;M), then there exist functions
g0, q0 ∈ Hol(Ω;M +Q) without common zeros such that f = g0/q0.

8. Nevanlinna’s theorems wit nonradial and nonpositive weight. In [4, Theorem 1],
we investigate also an slowly counterpart Nevanlinna theorems.

Let M : D → R, and let M ∈ sbh(D) with the Riesz measure νM . Given z = reiθ,
0 ≤ r < 1, θ ∈ R, and a > 0 we consider a polar rectangle

�(z; a):={ ζ = teiψ :
(
r − a

√
1− r2

)+ ≤ t < 1, | sin(ψ − θ)| < a
√

1− r2 } (11)

of relative size a and the function

q
[a]
M (z):=

1

1− |z|

∫
�(z;a)

(1− |ζ|) dνM(ζ). (12)

We set

A
[ε]
M(z):=

1

2π

∫ 2π

0

M
(
z + ε(1− |z|)eiθ

)
dθ, 0 < ε < 1. (13)

Theorem 11. Let M be a subharmonic function D, M(0) > −∞ and

sup
r<1

∫ 2π

0

M(reiθ) dθ < +∞, (14)

that is equivalent to the Blaschke condition∫ 1

0

(1− t) dνM(t) < +∞. (15)

For a function fΛ with ZerofΛ
= Λ,
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(Z) if it is fulfilled, at least, one condition

sup
D∈Ud

0 (D)

(∫
D

log
∣∣fΛ(z)

∣∣ dωD(0, z)−
∫
D
M(z) dωD(0, z)

)
< +∞, (16)

sup
D∈Ud

0 (D)

(∑
k

gD(λk, 0)−
∫
D\{0}

gD(ζ, 0) dνM(ζ)
)
< +∞, (17)

sup
D∈Ud

0 (D)

(∑
k

gD(λk, 0)−
∫
D
M(z) dωD(0, z)

)
< +∞, (18)

then for any ε ∈ (0, 1) and 1 < a < 2 the sequence Λ ⊂ D is a zero sequence for the
space

Hol
(
D; A

[ε]
M +

Cε
2− a

q
[a]
M

)
, (19)

where a constant Cε dependent only on ε;

(U) if Λ is a zero subsequence for Hol(D;M), then Λ is a zero sequence for (19);

(M) if a meromorphic function f = g/q in D is represented as a ratio of functions g, q ∈
Hol(D), max

{
|g(0)|, |q(0)|

}
6= 0, and, at least one of the following conditions holds

sup
D∈Ud

0 (D)

(∫
D

log max
{
|g(z)|, |q(z)|

}
dωD(0, z)−

∫
D
M(z) dωD(0, z)

)
< +∞, (20)

g, q ∈ Hol(D;M), (21)

then there are functions g0 and q0 from class (19) without a common zero, such that
f = g0/q0 in D.

A function M : z = reiθ → [−∞,+∞] is called radial in a sector

](α, β):={z = reiθ : 0 ≤ r < 1, α < θ < β} (22)

from D, if for each 0 ≤ r < 1 the function M(reiθ) is independent of θ ∈ ](α, β).

Corollary 1. If there is a sector ](α′, β′) c ](α, β) such that α′ < α < β < β′, and the
weight M from Theorem 11 is radial and differentiable in r, then, for some number a from
a small neighborhood of 1, for all assertions (Z), (U) and (M) of this theorem at points
z ∈ ](α, β) the summand Cε

2−a q
[a]
M (z) in (19) can be changed to a summand

aCε
2(2− a)

1√
1− |z|

∫ 1(
|z|−a
√

1−|z|2
)+

(1− t) d(tM ′(t)). (23)

for small a > 1.
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