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We consider a question related to the convergence analysis of the hybrid method used for
an inverse potential problem in a semi-in�nite region. The local convergence of this method
when the data error tends to zero is proved.

Ð. Õàïêî, Í. Âèíòîíÿê. Î ñõîäèìîñòè ãèáðèäíîãî ìåòîäà äëÿ îáðàòíîé çàäà÷è òåîðèè
ïîòåíöèàëà â ïîëóáåñêîíå÷íîé îáëàñòè // Ìàò. Ñòóäi¨. � 2009. � Ò.32, �1. � C.45�52.

Ðàññìàòðèâàþòñÿ âîïðîñû àíàëèçà ñõîäèìîñòè ãèáðèäíîãî ìåòîäà ÷èñëåííîãî ðåøå-
íèÿ îáðàòíîé ãðàíè÷íîé çàäà÷è òåîðèè ïîòåíöèàëîâ â ÷àñòè÷íî íåîãðàíè÷åííîé îáëàñòè.
Äîêàçàíà ëîêàëüíàÿ ñõîäèìîñòü ìåòîäà â ñëó÷àå ñòðåìëåíèÿ ê íóëþ îøèáêè âõîäíûõ
äàííûõ.

1. Introduction. The mathematical modeling of thermal or electrostatic imaging methods
in nondestructive testing and evaluation leads to models which are typically ill-posed in the
sense of the instability. In practical applications we have no exact data, but only some data
perturbed by noise, due to errors in the measurements, therefore algorithms developed for
well-posed problems are not suitable.

In this paper we consider an inverse boundary value problem that consists in the identi-
�cation of a some bounded inclusion in a semi-in�nite region by measurement of the Cauchy
data on the part of the boundary. We assume that D1 ⊂ R2 be a semi-in�nite region
with the boundary Γ1 and D0 ⊂ R2 be a simply connected bounded domain with the
boundary Γ0 ∈ C2 such that D0 ⊂ D1. Denote D := D1 \ D0. Let the bounded function
u ∈ C2(D) ∩ C(D) satisfy the Laplace equation

∆u = 0 in D (1)

and the boundary value conditions

u = 0 on Γ0, (2)

u = f on Γ1 (3)
with a given bounded function f . We assume also that there exists Green's function for the
domain D1 with the Dirichlet boundary value condition on Γ1.
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The inverse problem consists in the following: under the assumption f 6= 0, to determine
the boundary Γ0 from the knowledge of the normal derivative

∂u

∂ν
= ψ on Σ. (4)

Here ν is the outward unit normal on Γ1, Σ ⊂ Γ1 is a nonempty subset and ψ is a given
function. We assume also that the function f has enough smoothness to ensure the existence
of the normal derivative of the function u on Γ1.

The inverse problem (1)�(4) is nonlinear and ill-posed in the sense that the solution is
not continuously dependent on data perturbation. The results on the possibility to identify
the unknown curve Γ0 from the Cauchy data on Σ are analogous to the case of bounded
domains described in [9].

The speci�c features of the domain lead to additional di�culties: it requires some informa-
tion about approximate location of the bounded inclusion as we deal with semi-in�nite
regions. Thus, our inverse problem can be divided into the following parts: tracking the
position of the inclusion, estimating of its size and recovering the shape of the inclusion.
The �rst two problems can be interpreted as a problem of �nding an initial guess in order
to recover the shape of the boundary using some numerical methods. Some aspects of this
problem are considered in [4, 11].

For the third problem of recovering of the boundary shape the various iterative algorithms
with regularization technique can be used in order to obtain reliable reconstruction [9]. In
this paper we concentrate our attention on the questions related to the convergence analysis
of the method developed in [1, 10] that can be viewed as a hybrid of the decomposition
method [8] and Newton's method. Note that this method has been well described for the
inverse obstacle scattering problems in [13].

The investigation of the convergence for the hybrid method can be proved in two di-
�erent directions. One approach uses the relation of the hybrid method to the corresponding
minimization problem. Some steps in this context are developed in [1].

Other possible way consists in the interpretation of the hybrid method as some kind
of iterative Newton's method. The convergence of regularized Newton's schemes has been
investigated in [5, 6]. As pointed out in [12] all general results for the convergence of regulari-
zed Newton-type methods require a condition on the nonlinearity of corresponding operator
which could not be veri�ed for the considered problems. The purpose of our paper is to
prove the convergence of hybrid method without a need for the veri�cation of nonlinearity
condition using some ideas from [12].

The plan of the paper is as follows. In Section 2 we describe a scheme of the hybrid
method. Section 3 is devoted to the convergence analysis for this method, where we establish
local convergence results for the hybrid method both for exact and noisy data following the
technique suggested in [12].

2. Hybrid method. Assume that the boundary curve Γ0 is starlike and has the parametriza-
tion

Γ0 = {x(t) = (r(t) cos t + d1, r(t) sin t + d2) : 0 ≤ t ≤ 2π}
with the center (d1, d2) and unknown radial function r ∈ C2[0, 2π]. The questions related
to �nding of parameters d1 and d2 are considered in [4]. The inverse problem (1)�(4) de�nes
the nonlinear operator A that maps the boundary Γ0 to the Dirichlet data u on Γ0 for �xed
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Γ1 and given Cauchy data f and φ. Thus, the inverse problem can be written in the form of
the nonlinear equation

A(r) = 0. (5)

For the linearization of the mapping A we �rst note that the Fr�echet derivative of the operator
A exists and has the following representation [2].

Theorem 1. The operator A : C2[0, 2π] → C[0, 2π] is Fr�echet di�erentiable and its deriva-
tive is given by

A′(r)q =
∂u

∂θ
q

with the derivative in the radial direction ∂u/∂θ and some small perturbation q ∈ C2[0, π].

Newton linearization used for (5) gives the linear equation

A′(r)q + A(r) = 0 (6)

with a correction q.
The numerical scheme consists in the iteration procedure

rn+1 = rn −
(
u|Γ0,n

) /(
∂u

∂θ

∣∣∣
Γ0,n

)
. (7)

Here the operator / denotes the quotient of the corresponding functions, and Γ0,n denotes
current approximation of Γ0 on the n-th iteration with the radial function rn. Note that
u is the exact solution of the corresponding direct Dirichlet problem. We assume that the
condition

∂u

∂θ

∣∣∣
Γ0

≥ α > 0

is satis�ed. Due to the continuity of the solution of the direct boundary value problem (1)�
(3) with respect to variations of the domain we conclude that the radial derivatives do not
vanish in a small neighborhood U of Γ0, that is

∂u

∂θ

∣∣∣
Γ
≥ 4ε > 0, (8)

where the trace of the curve Γ belongs to U .
For the numerical calculation of the function u and the radial derivative ∂u/∂θ on Γ0,n

we use the potential approach with Green's function technique. Firstly we introduce the
integral operators

(Nϕ)(x) =

∫

Γ0,n

ϕ(y)
∂G(x, y)

∂ν(x)
ds(y), x ∈ Γ1, (Sϕ)(x) =

∫

Γ0,n

ϕ(y)G(x, y)ds(y), x ∈ Γ0,n,

(Kϕ)(x) =

∫

Γ0,n

ϕ(y)
∂G(x, y)

∂ν(x)
ds(y), x ∈ Γ0,n

and the function
w(x) = −

∫

Γ1

f(y)
∂G(x, y)

∂ν(y)
ds(y), x ∈ D. (9)
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Here G is Green's function of the Dirichlet boundary value problem for Laplace's equation
in the domain D1. Due to the given �ux ψ on Γ1 we can �nd the unknown density ϕ from
the integral equation of the �rst kind

(Nϕ)(x) = ψ(x)− ∂w(x)

∂ν(x)
, x ∈ Σ, (10)

where w is de�ned in (9). Now we can calculate the track of the solution u on Γ0,n by the
representation

u(x) = (Sϕ)(x) + w(x), x ∈ Γ0,n. (11)
For the radial derivative the following relation holds

∂u

∂θ
= 〈θ, ν〉∂u

∂ν
+ 〈θ, ϑ〉∂u

∂ϑ
, on Γ0,n,

where ϑ is the unit tangential vector on Γ0,n, and by 〈·, ·〉 we denote the scalar product in
R2.

Therefore we have

∂u

∂θ
= Lϕ + 〈θ, ν〉∂w

∂ν
+ 〈θ, ϑ〉∂w

∂ϑ
, on Γ0,n, (12)

where Lϕ := 〈θ, ν〉
(

1

2
ϕ + Kϕ

)
+ 〈θ, ϑ〉 ∂

∂ϑ
(Sϕ) on Γ0,n.

The kernel of the operator N : L2(Γ0,n) → L2(Σ) is continuous. As a result it is compact and
some kind of regularization for solving (10) is needed.

Theorem 2. The operator N : L2(Γ0,n) → L2(Γ1) is injective and has dense range.

Proof. The injectivity follows from the following arguments. Let ϕ ∈ L2(Γ0,n) satisfy Nϕ =
0. We seek the solution of the direct boundary value problem in the form of logarithmic single-
layer potential. Since the Cauchy data u = 0 and ∂u/∂ν = 0 on Σ, by Holmgren's theorem
we have that u = 0 in D. From the maximum-minimum principle for harmonic functions
we conclude that u = 0 in D0,n, where D0,n is the bounded domain with the boundary Γ0,n.
Then the jump relations for the normal derivative of the single-layer potential in the L2 sense
imply that ϕ = 0.

To establish the dense range for N we show that the adjoint operator N∗ : L2(Γ1) →
L2(Γ0,n) is injective. Let ψ ∈ L2(Γ1) satisfy N∗ψ = 0. Then we consider the function

v(x) =

∫

Γ1

ψ(y)
∂G(x, y)

∂ν(y)
ds(y).

Clearly, v is harmonic in D0,n and v|Γ0,n = 0. Then again from the maximum-minimum
principle v = 0 in D0,n. Thus, v = 0 in D1, hence v|Γ1 = 0. Since G is Green's function, we
have ψ = 0.

Thus, as follows from [9] we can apply Tikhonov regularization method for (10). For given
�ux ψδ with noise level δ > 0 we have

ϕα = Rα

[
ψδ − ∂w

∂ν

]
,
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where Rα is a regularization scheme for the inverse operator N−1 with a regularization
parameter α > 0,

Rα = (αI + N∗N)−1 N∗.

We can �nd the regularized approximations of functions u and of ∂u/∂θ:

uα|Γ0,n = SRα

[
ψδ − ∂w

∂ν

]
+ w|Γ0,n , (13)

∂uα

∂θ
|Γ0,n = LRα

[
ψδ − ∂w

∂ν

]
+ 〈θ, ν〉∂w

∂ν

∣∣∣
Γ0,n

+〈θ, ϑ〉∂w

∂ϑ

∣∣∣
Γ0,n

. (14)

Thus, the iterative method (7) is replaced by

rn+1 = rn −
(
uα|Γ0,n

)
/

(
∂uα

∂θ

∣∣∣
Γ0,n

)
. (15)

Note that due to ill-posedness of our inverse problem the linearized operator equations on
every Newton's iteration are still ill-posed. Therefore, it is necessary to apply some regulari-
zation techniques in (15). It can be, for example, minimum norm solution, Tikhonov regulari-
zation, quasi solution concept and others. The full discretization variant of this method with
various numerical experiments is presented in [2].
3. Convergence analysis. Let u∗ be the solution of the direct problem (1)�(3) with exact
Γ0 and u the solution of the direct problem problem (1)�(3) with current approximation of
Γ0,n.

We consider the linear operator T : u∗|Γ0,n → u|Γ0,n and the nonlinear operator B : Γ0,n →
u∗|Γ0,n . Clearly we have A = TB.

Equation (6) can be rewritten in the equivalent form

T (B′(r) + B(r))q = 0.

Since T ′ = T, the iteration procedure in contrast with (7) is given by

rn+1 = rn −
(
u∗|Γ0,n

)
/

(
∂u∗

∂θ
|Γ0,n

)
. (16)

Note that for a given analytical initial guess r0, on each iteration step the updated
approximation rn obtained by (16) is an analytic function. Since, u∗|Γ0 = 0 we obtaine the
estimate

‖u∗|Γ0 − u∗|Γ0,n −
∂u∗

∂θ

∣∣∣
Γ0,n

(r∗ − rn)‖C([0,2π]) = O(‖rn − r∗‖2
C([0,2π])).

From
rn+1 − r∗ = rn −

(
u∗|Γ0,n

)
/

(
∂u∗

∂θ

∣∣∣
Γ0,n

)
− r∗ =

(
(rn − r∗)

∂u∗

∂θ

∣∣∣
Γ0,n

−u∗|Γ0,n

)
/

(
∂u∗

∂θ

∣∣∣
Γ0,n

)

we obtaine the convergence rate
‖rn+1 − r∗‖C([0,2π]) = O(‖rn − r∗‖2

C([0,2π])).

Here r∗ is the radial function of the exact boundary Γ0.
Thus, we have the following lemma:

Lemma 1. There is a neighborhood of Γ0 such that the Newton scheme for the solution (5)
is given by (16) and it converges quadratically.
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We have remarked that the perfect Newton scheme (16) is ill-posed and does not converge
without regularization. On the other hand we can observe that the smoothness of the derivati-
ve ∂u/∂θ is, in general, one order less than the smoothness of the boundary. Thus, according
to (16) we have lost one order of smoothness on each Newton step. It means that when
the initial guess is su�ciently smooth, the C2-norm may become very large. Therefore, we
consider the regularized version of the scheme (16) to control the C2-norm of the boundary.
We use the conception of the quasi-solution introduced in [7] for it.

De�nition 1. Let X, Y be normed spaces, A : X → Y be a bounded injective linear
operator and ρ > 0. For a given f ∈ Y an element ϕ0 ∈ X is called a quasi-solution of
operator equation Aϕ = f with constraint ρ if ϕ0 ≤ ρ and

‖Aϕ0 − f‖ = inf{‖Aϕ− f‖ : ‖ϕ‖ ≤ ρ}.

Note that ϕ0 is a quasi-solution of Aϕ = f with constraint ρ if and only if Aϕ0 is the
best approximation for f (see [9]).

The regularized Newton scheme has the form

r̃n+1 = rn −
(
u∗|Γ0,n

)
/

(
∂u∗

∂θ

∣∣∣
Γ0,n

)
, rn+1 = Q(r̃n+1), (17)

where the operator Q : C([0, 2π]) → C3([0, 2π]) maps the function r̃n+1 onto the quasi-
solution rn+1 with constraint C0, i.e.

‖r̃n+1 − rn+1‖C([0,2π]) ≤ ‖r̃n+1 − r‖C([0,2π]) (18)

for all r ∈ C3([0, 2π]) with ‖r‖C3([0,2π]) < C0. We choose the constant C0 by some a priori
information about the boundary Γ0 such that ‖r∗‖C([0,2π]) ≤ C0.

Lemma 2. There is a neighborhood of Γ0 such that the regularized Newton scheme (17) for
the solution (5) converges quadratically.

Proof. Using results of Lemma 1 and a property of quasi-solution (18) we have the estimate
‖rn+1 − r∗‖C([0,2π]) ≤ ‖rn+1 − r̃n+1‖C([0,2π]) + ‖r̃n+1 − r∗‖C([0,2π]) ≤ 2‖r̃n+1 − r∗‖C([0,2π]) =

= O(‖rn − r∗‖2
C([0,2π])).

Let us consider the case where the given �ux ψδ includes noise with the level δ > 0 and
use the regularization of the equation (10). The full regularized scheme can be de�ned by

r̃n+1 = rn −
(
uα|Γ0,n

)
/

(
∂uα

∂θ

∣∣∣
Γ0,n

)
, rn+1 = Q(r̃n+1). (19)

The regularized scheme is locally convergent if there exists a neighbourhood U of the
true solution r∗ such that the regularized solution rδ → r∗ when the data error δ → 0. The
next lemma is related to the Tikhonov regularization of the integral equation (10).

Lemma 3. For the regularized solution uα and radial derivative ∂uα/∂θ obtained by Tikho-
nov regularization with choosing the regularization parameter α = α(δ) such that

δ2

α(δ)
→ 0 as δ → 0,



INVERSE BOUNDARY VALUE POTENTIAL PROBLEM IN A SEMI-INFINITE DOMAIN 51

the following estimates hold
‖uα − u∗‖C(Γ0,n) ≤ ε1(δ) and

∥∥∥∂uα

∂θ
− ∂u∗

∂θ

∥∥∥
C(Γ0,n)

≤ ε2(δ),

where ε`, ` ∈ {1, 2}, are monotonously decreasing and ε`(δ) → 0 as δ → 0.

Proof. According to (11) and (13) we have

‖uα − u∗‖C(Γ0,n) = ‖SRα

[
ψδ − ∂w

∂ν

]
− Sϕ‖C(Γ0,n) ≤ ‖S‖‖Rα

[
ψδ − ∂w

∂ν

]
− ϕ‖C(Γ0,n) ≤

≤ C
(‖Rα‖δ + ‖RαNϕ− ϕ‖C(Γ0,n)

)

and analogously from (12) and (14)
∥∥∥∥
∂uα

∂θ
− ∂u∗

∂θ

∥∥∥∥
C(Γ0,n)

≤ C̃
(‖Rα‖δ + ‖RαNϕ− ϕ‖C(Γ0,n)

)
.

Here C > 0, C̃ > 0. We have used the boundedness of the operators S and L in C(Γ0,n) [9].
Now the statement of the theorem follows from the result about convergence of the classical
Tikhonov regularization (see [5]).

Note that if (8) holds than for su�ciently small neighborhood U of Γ0 and su�ciently
small δ we have ∣∣∣∣

∂uα

∂θ

∣∣∣
Γ

∣∣∣∣ > 2ε > 0. (20)

De�nition 2. For the reconstruction of the unknown boundary Γ0 by a regularized iterative
scheme (19) we stop the iteration if for two successive approximations we observe

‖rn+1 − rn‖C([0,2π]) ≤ C1(δ), where C1(δ) :=
2ε1(δ)

ε− 2ε2(δ)
. (21)

Theorem 3. Assume that Γ0 ∈ C∞ and that (20) holds. Then the completely regularized
iterative scheme (19) with the stopping rule (21) is locally convergent, i.e.

‖rδ − r∗‖C([0,2π]) → 0 for δ → 0.

Proof. The elementary calculations give us

r̃n+1 − r∗ =
(
− u∗|Γ0,n − (r∗ − rn)

∂u∗

∂θ

∣∣∣
Γ0,n

+(u∗ − uα)|Γ0,n+

+(rn − r∗)
(∂uα

∂θ

∣∣∣
Γ0,n

−∂u∗

∂θ

∣∣∣
Γ0,n

))
/
(∂uα

∂θ

∣∣∣
Γ0,n

)
.

Therefore, we have the estimate

‖rn+1 − r∗‖C([0,2π]) ≤ C

ε
‖rn − r∗‖2

C([0,2π]) +
ε2(δ)

ε
‖rn − r∗‖C([0,2π]) +

ε1(δ)

ε
.

Here C > 0 is depended on uα. Thus, we need to �nd the conditions when
C

ε
‖rn − r∗‖2

C([0,2π]) +
ε2(δ)

ε
‖rn − r∗‖C([0,2π]) +

ε1(δ)

ε
<
‖rn − r∗‖C([0,2π])

2
.

We obtain
−ε2(δ)+ ε

2
−ε
√

D

2C
< ‖rn − r∗‖C[0,2π] <

−ε2(δ)+ ε
2
+ε
√

D

2C
with D =

(
ε2(δ)

ε
− 1

2

)2

− 4C ε1(δ)
ε2

.
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From these estimates for a su�ciently small �xed δ we obtain

‖rn+1 − r∗‖C([0,2π]) ≤
‖rn − r∗‖C([0,2π])

2
(22)

if
C1(δ) =

4ε1(δ)

ε− 2ε2(δ)
< ‖rn − r∗‖C([0,2π]) <

ε

2C
. (23)

Assume that conditions (23) are satis�ed. Using (22) we have

‖rn+1 − rn‖C([0,2π]) ≥ ‖rn − r∗‖C([0,2π]) − ‖rn+1 − r∗‖C([0,2π]) ≥ 1

2
‖rn − r∗‖C([0,2π]).

Thus, for ‖rn+1−rn‖C([0,2π]) ≤ C1(δ) we obtain ‖rn+1−r∗‖C([0,2π]) ≤ C1(δ). Then we establish
rδ := rn+1 and, therefore, we get ‖rδ − r∗‖C([0,2π]) ≤ C1(δ) → 0 for δ → 0.

The given proof of the local convergence can be modi�ed for a general-shaped and su�-
ciently smooth boundary Γ0.
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