УДК 515.12

N. Mazurenko

UNCOUNTABLE ABSORBING SYSTEMS RELATED TO THE HAUSDORFF DIMENSION

N. Mazurenko. Uncountable absorbing systems related to the Hausdorff dimension, Mat. Stud. 31 (2009), 195–203.

Given any $n \in \mathbb{N}$, we describe the topology of the system $\{HD_{>\gamma}(\mathbb{I}^n)\}_{\gamma \in [0,n)}$ consisting of spaces of compact subsets of Hausdorff dimension $> \gamma$ in the *n*-dimensional cube \mathbb{I}^n .

Описана топология системы $\{HD_{>\alpha}(\mathbb{I}^n)\}_{\alpha\in[0,n)}$, где $n\in\mathbb{N}$ и $HD_{>\alpha}(\mathbb{I}^n)$ — гиперпространство компактных подмножеств n-мерного куба хаусдорфовой размерности $>\alpha$.

1. Introduction. The problem of topological characterization (identification) of topological objects is one of the classical problems of topology. A classical result of this sort is the Curtis-Schori Theorem [3] asserting that for each non-degenerate Peano continuum X the hyperspace $\exp(X)$ of non-empty compact subsets of X is homeomorphic to the Hilbert cube $Q = [-1, 1]^{\omega}$. Later, D. Curtis [4] characterized topological spaces X whose hyperspace $\exp(X)$ is homeomorphic to the pseudointerior $s = (-1, 1)^{\omega}$ of the Hilbert cube Q. In [7] T. Dobrowolski and L. Rubin indentified the topology of the subspace $D_{\leq n}(Q) \subset \exp(Q)$ consisting of compact subsets of Q having covering (or cohomological) dimension $\leq n$. They constructed a homeomorphism $h \colon \exp(Q) \to Q^{\omega}$ such that $h(D_{\leq n}(Q)) = Q^n \times s^{\omega \setminus n}$ for all $n = \{0, \ldots, n-1\} \in \omega$. In this case we say that the system $\{D_{\leq n}(Q)\}_{n \in \omega}$ is homeomorphic to the system $\{Q^n \times s^{\omega \setminus n}\}_{n \in \omega}$. This results was later generalized by H. Gladdines ([10]) to products of Peano continua. Finally, R. Cauty ([5]) has characterized spaces X for which the system $\{D_{\leq n}(X)\}_{n \in \omega}$ in $\exp(X)$ is homeomorphic to $\{Q^n \times s^{\omega \setminus n}\}_{n \in \omega}$ in Q^{ω} as Peano continua whose any non-empty open subset contains compact subsets of an arbitrary finite dimension.

In [11], [14] the author initiated the study of the subspace $HD_{\leq \gamma}(\mathbb{I}^n)$ of the hyperspace $\exp(\mathbb{I}^n)$ of a finite-dimensional cube $\mathbb{I}^n = [0,1]^n$, consisting of all compact subsets of \mathbb{I}^n with Hausdorff dimension $\leq \gamma$. Unlike the (integer-valued) topological dimension, the Hausdorff dimension of a metric compactum can take on any non-negative real value γ . So, the system $\{HD_{\leq \gamma}(\mathbb{I}^n)\}_{0\leq \gamma< n}$ that naturally appears in this situation is uncountable. In [14] it was proved that for each increasing sequence $\{\gamma_k\}_{k\in\omega}\subset [0,n)$ of real numbers the system $\{HD_{\leq \gamma_k}(\mathbb{I}^n)\}_{k\in\omega}$ in $\exp(\mathbb{I}^n)$ is homeomorphic to $\{Q^k\times s^{\omega\setminus k}\}_{k\in\omega}$ in Q^ω .

In this paper we shall recognize the topological structure of the whole uncountable system $\{HD_{\leq \gamma}(\mathbb{I}^n)\}_{0\leq \gamma< n}$. Observe that each real number γ determines a partition $\mathbb{Q}=\mathbb{Q}_{\leq \gamma}\cup\mathbb{Q}_{>\gamma}$

²⁰⁰⁰ Mathematics Subject Classification: 57N17.

This work was supported by State Fund of fundamental research of Ukraine, project F25.1/099.

of the set \mathbb{Q} of rational numbers into two rays $\mathbb{Q}_{\geq \gamma} = \{q \in \mathbb{Q} : q \geq \gamma\}$ and $\mathbb{Q}_{<\gamma} = \{q \in \mathbb{Q} : q < \gamma\}$.

Theorem 1. For every $n \in \mathbb{N}$ the system $\{HD_{\leq \gamma}(I^n)\}_{0 \leq \gamma < n}$ in the hyperspace $\exp(\mathbb{I}^n)$ is homeomorphic to the system $\{Q^{\mathbb{Q} \leq \gamma} \times s^{\mathbb{Q} > \gamma}\}_{0 \leq \gamma < n}$ in the Hilbert cube $Q^{\mathbb{Q}}$.

This theorem will be proved in Section 5. In Section 2, the basic definitions and the facts of the theory of absorbing sets in the Hilbert cube are considered. Section 3 is devoted to the construction of a model uncountable linearly ordered absorbing system in the Hilbert cube. In Section 4, the system of hyperspaces of compacta of given Hausdorff dimension in the finite-dimensional cube is considered in the case when the values of the dimension run over the set [0, n). The main result consists of a description of the topology of this system. (Theorem 3, Section 5).

2. Preliminaries. A typical metric will be denoted by d. By $\operatorname{diam}(A)$ we denote the diameter of a subset A in a metric space. Given a cover \mathcal{U} of a metric space, we define $\operatorname{mesh}(\mathcal{U})$ as $\sup\{\operatorname{diam}(U)\mid U\in\mathcal{U}\}$. For $x\in X$ and $\varepsilon>0$ the set $O_{\varepsilon}(x)=\{y\in X\mid d(x,y)<\varepsilon\}$ is the *open* ε -ball centered at x. Further, all spaces are separable metrizable, all maps are continuous.

As usual, by \mathbb{I} we denote the interval [0,1], by \mathbb{I}^k the k-dimensional cube and by $\partial \mathbb{I}^k$ its geometrical boundary. Further, by \mathbb{N} , \mathbb{Q} , \mathbb{R} we denote the spaces of natural, rational and real numbers respectively. We recall that $Q = [-1,1]^{\omega}$ is the Hilbert cube, $s = (-1,1)^{\omega}$ is its pseudointerior and $B(Q) = Q \setminus s$ stands for its pseudoboundary.

The class of absolute neighborhood retracts is denoted by ANR. A closed subset A of $X \in ANR$ is called a Z-set in X if for every continuous function $\varepsilon \colon X \to (0, \infty)$ there exists a map $f \colon X \to X \setminus A$ which is ε -close to the identity in the sense that $d(x, f(x)) < \varepsilon(x)$ for every $x \in X$. A subset of X is called a σZ -set in X if A can be written as the countable union of Z-sets in X. An embedding $g \colon Y \to X$ is called a Z-embedding if its image g(Y) is a Z-set in X.

2.1. Hyperspaces. Let X be a metric space. The *hyperspace* of X is the space $\exp X$ of nonempty compact subsets of X endowed with the Vietoris topology. A base of this topology consists of the sets

$$\langle V_1, ..., V_n \rangle = \Big\{ A \in \exp X \mid A \subset \bigcup_{i=1}^n V_i \text{ and for every } i \in \{1, 2, ..., n\} \ A \cap V_i \neq \emptyset \Big\},$$

where $V_1, ..., V_n$ run over the topology of X. If the topology of X is generated by a metric d then the Vietoris topology on $\exp(X)$ is generated by the Hausdorff metric $d_H(A, B) = \inf\{\varepsilon > 0 | A \subset O_{\varepsilon}(B), B \subset O_{\varepsilon}(A)\}$.

For $n \in \mathbb{N}$ by $\exp_n X$ we denote the subspace of $\exp X$ consisting of the sets of cardinality $\leq n$. Let $\exp_{\omega} X = \bigcup \{\exp_n X \mid n \in \mathbb{N}\}.$

2.2. Hausdorff dimension. Given a compact metric space X and two non-negative real numbers s, ε , consider the number

$$\mathcal{H}^s_{\varepsilon}(X) = \inf_{\mathcal{B}} \sum_{B \in \mathcal{B}} (\operatorname{diam} B)^s,$$

where the infimum is taken over all covers \mathcal{B} of X with $\operatorname{mesh}(\mathcal{B}) < \varepsilon$.

The limit $\mathcal{H}^s(X) = \lim_{\varepsilon \to 0} \mathcal{H}^s_{\varepsilon}(X)$ is called the s-dimensional Hausforff measure of X. It is knowns that there is a unique finite or infinite number $\dim_H(X)$ called the $\operatorname{Hausdorff}$ dimension of X and denoted by $\dim_H(X)$ such that $\mathcal{H}^s(X) = \infty$ for all $s < \dim_H(X)$ and $\mathcal{H}^s(X) = 0$ for all $s > \dim_H(X)$, see [9], [8].

Proposition 1 (see [11]). Let X be a complete separable metric space. For every $\alpha \geq 0$ the set $HD_{\leq \alpha}(X) = \{A \in \exp(X) \mid \dim_H(A) \leq \alpha\}$ is a G_{δ} -subset of $\exp(X)$.

2.3. Absorbing systems. We briefly recall some definitions of the theory of absorbing systems; see [13], [10], [1], [2] for details.

Let Γ be an ordered set and let \mathcal{M}_{γ} be a class of metric spaces for $\gamma \in \Gamma$. Put $\mathcal{M}_{\Gamma} = \{M_{\gamma}\}_{\gamma \in \Gamma}$. An \mathcal{M}_{Γ} -system in the space X is an order preserving indexed collection $\{\mathcal{A}_{\gamma}\}_{\gamma \in \Gamma}$ of subset of X such that $\mathcal{A}_{\gamma} \in \mathcal{M}_{\gamma}$ for every γ .

An \mathcal{M}_{Γ} -system $\mathfrak{X} = \{\mathcal{X}_{\gamma}\}_{{\gamma}\in\Gamma}$ in $X \in ANR$ is called *strongly* \mathcal{M}_{Γ} -universal in X if for every \mathcal{M}_{Γ} -system $\{\mathcal{A}_{\gamma}\}_{{\gamma}\in\Gamma}$ in Q every map $f \colon Q \to X$ that restricts to a Z-embedding on some compact subset K of Q can be approximated by a Z-embedding $g \colon Q \to X$ such that g|K = f|K and for every $\gamma \in \Gamma$ we have $g^{-1}(\mathcal{X}_{\gamma}) \backslash K = \mathcal{A}_{\gamma} \backslash K$.

An \mathcal{M}_{Γ} -system \mathfrak{X} is called \mathcal{M}_{Γ} -absorbing in X if the set $\bigcup_{\gamma \in \Gamma} \mathcal{X}_{\gamma}$ is contained in a σ -compact σZ -set of X and \mathfrak{X} is strongly \mathcal{M}_{Γ} -universal in X.

By \mathcal{F}_{σ} we denote the class of σ -compact spaces.

We shall now consider a special case when the system \mathfrak{X} is a decreasing system of absorbers (so Γ is linearly ordered by the relation \geq) and we assume that all the classes \mathcal{M}_{γ} are equal to the class \mathcal{F}_{σ} . In this situation, we shall use the term \mathcal{F}_{σ} -absorbing system.

3. Uncountable absorbing systems in the Hilbert cube. In this section we consider the special case of decreasing \mathcal{F}_{σ} -absorbing systems in the Hilbert cube, namely systems $\{\mathcal{X}_{\gamma}\}_{{\gamma}\in\Gamma}$ indexed by a linearly ordered set Γ and catisfying the condition:

(*) for every
$$\gamma \in \Gamma$$
, $\mathcal{X}_{\gamma} = \bigcup_{\gamma' > \gamma, \gamma' \in \Gamma} \mathcal{X}_{\gamma'}$.

Observe that for any countable set A the pseudoboundary $B(Q^A) = Q^A \setminus s^A$ can be written as the union

$$B(Q^{A}) = \bigcup_{\alpha \in A} \Big(\prod_{\alpha' \neq \alpha, \alpha' \in A} Q_{\alpha'} \times B(Q)_{\alpha} \Big).$$

For every real number γ consider the subset

$$\mathcal{X}_{\gamma} = Q^{\mathbb{Q}_{\leq \gamma}} \times B(Q^{\mathbb{Q}_{>\gamma}}),$$

in the Hilbert cube $Q^{\mathbb{Q}}$. Here $\mathbb{Q}_{\leq \gamma} = \{q \in \mathbb{Q} : q \leq \gamma\}$ and $\mathbb{Q}_{>\gamma} = \{q \in \mathbb{Q} : q > \gamma\}$.

For every $n \in \mathbb{N}$ the \mathcal{F}_{σ} -system $\{\mathcal{X}_{\gamma}\}_{{\gamma}\in[0,n)}$ in $Q^{\mathbb{Q}}$ defined in this way is decreasing uncountable and ordered by the order induced from \mathbb{R} and satisfies condition (*).

Proposition 2. For every $n \in \mathbb{N}$ the system $\{\mathcal{X}_{\gamma}\}_{{\gamma} \in [0,n)}$ is \mathcal{F}_{σ} -absorbing in $Q^{\mathbb{Q}}$.

Proof. Since $\bigcup_{\gamma \in [0,n)} X_{\gamma}$ is a σZ -set in $Q^{\mathbb{Q}}$, it suffices to check that the system $\{\mathcal{X}_{\gamma}\}_{\gamma \in [0,n)}$ is strongly \mathcal{F}_{σ} -universal in $Q^{\mathbb{Q}}$.

Let $\delta \colon \mathbb{Q} \to \mathbb{N}$ be a bijection. For every $\gamma \in \mathbb{Q}$ let ρ_{γ} be an admissible metric on Q, bounded by the number $2^{-\delta(\gamma)}$. Define, for any $x, y \in Q^{\mathbb{Q}}$,

$$d(x,y) = \sup \{ \rho_{\gamma}(x_{\gamma},y_{\gamma}) | \gamma \in \mathbb{Q} \}.$$

It is easy to verify that the function $d: Q^{\mathbb{Q}} \times Q^{\mathbb{Q}} \to [0, \infty)$ defined in this way is a metric. Observe that d is continuous, since we consider $Q^{\mathbb{Q}}$ endowed with the product topology and the functions ρ_{γ} are continuous on $Q_{\mathbb{Q}} \times Q_{\mathbb{Q}}$. Then the metric d is an admissible metric on $Q^{\mathbb{Q}}$.

Consider a map $f: Q \to Q^{\mathbb{Q}}$ that restricts to a Z-embedding on some compact set $K \subseteq Q$ and a decreasing system $\{A_{\gamma}\}_{{\gamma} \in [0,n)}$ of σ -compact subsets of Q for which the condition

(0)
$$\mathcal{A}_{\gamma} = \bigcup_{\gamma' \in (\gamma, n)} \mathcal{A}_{\gamma'}$$
 for every $\gamma \in [0, n)$

holds. We may assume that f is a Z-embedding. Write $Q \setminus K$ as a union of sequence $\{F_i\}_{i=1}^{\infty}$ of compacta with $F_i \subseteq \operatorname{int}(F_{i+1})$ for every i and $F_0 = \emptyset$. Let $\varepsilon > 0$ and put $\varepsilon_i = \min\{\frac{\varepsilon}{2^i}, \frac{1}{2}d(f[K], f[F_i])\}$ for every i. For any $\gamma \in \mathbb{Q}$, consider now the corresponding component $f_{\gamma} \colon Q \to Q$ of f. We shall construct a sequence $\alpha_i \colon Q \to Q$, $i = 0, 1, 2, \ldots$ of continuous functions such that for every i:

- $(1) \hat{\rho}_{\gamma}(\alpha_i, \alpha_{i-1}) < \varepsilon_i, \alpha_i \mid F_{i-1} = \alpha_{i-1} \mid F_{i-1};$
- (2) $\alpha_i \mid Q \setminus F_{i+1} = f_\gamma \mid Q \setminus F_{i+1}$ and $\alpha_i \mid F_i$ is a Z-embedding;
- (3) if $\gamma \in [0, n)$, then $\alpha_i^{-1}[B(Q)] = \mathcal{A}_{\gamma} \cap F_i$.

Put $\alpha_0 = f_{\gamma}$ and assume that α_i has been constructed. Using the strong universality of Q, we can find a Z-embedding β : $F_{i+1} \to Q$, close to $\alpha_i \mid F_{i+1}$, with $\beta \mid F_i = \alpha_i \mid F_i$. If $\gamma \in [0, n)$, then we additionally assume that $\beta^{-1}[B(Q)] = \mathcal{A}_{\gamma} \cap F_{i+1}$ (because of the \mathcal{F}_{σ} -absorbing property of B(Q) in Q). Using the fact that $Q \in AR$, extend β to a map $\alpha_{i+1}: Q \to Q$ such that $\alpha_{i+1} \mid \overline{Q \setminus F_{i+2}} = f_{\gamma} \mid \overline{Q \setminus F_{i+2}}$ and α_{i+1} is sufficiently close to α_i .

The sequence $\{\alpha_i\}_{i\in\mathbb{N}}$ is obviously a Cauchy sequence and therefore the function $g_{\gamma} = \lim_{i\to\infty} \alpha_i$ is continuous. It is easy to verify that g_{γ} has the following properties:

- (4) $\hat{\rho}_{\gamma}(g_{\gamma}, f_{\gamma}) < \varepsilon$;
- (5) if $x \in F_{i+1} \setminus F_i$ then $\rho_{\gamma}(g_{\gamma}(x), f_{\gamma}(x)) < d(f[K], f[F_{i+1}]);$
- (6) $g_{\gamma} \mid K = f_{\gamma} \mid K, g_{\gamma} \mid F_i \text{ is a } Z\text{-embedding for every } i;$
- (7) $g_{\gamma}^{-1}[B(Q)]\backslash K = \mathcal{A}_{\gamma}\backslash K \text{ if } \gamma \in [0, n).$

Define $g = (g_{\gamma})_{{\gamma} \in \mathbb{Q}} \colon Q \to Q^{\mathbb{Q}}$. Note that g is one-to-one, and hence is an embedding. The set g[Q] is contained in the σZ -set

$$f[K] \cup \bigcup_{i=0}^{\infty} \left(\prod_{\gamma \neq \gamma'} Q_{\gamma} \times g_{\gamma'}[F_i] \right)$$

and is therefore a Z-set. The maps f and g are ε -close and $f \mid K = g \mid K$.

Let $x \in Q \setminus K$. If $x \in \mathcal{A}_{\gamma}$ for some $\gamma \in [0, n)$ then by construction and by condition (0), $g_{\gamma'}(x) \in B(Q)$ for all rational $\gamma' \in [0, \gamma + \delta)$ for some $\delta > 0$, that is, $(g(x))_{\gamma'} \in B(Q)$ for some $\gamma' > \gamma$ and therefore, $g(x) \in \mathcal{X}_{\gamma}$. On the other hand, if $g(x) \in \mathcal{X}_{\gamma}$ for some $\gamma \in [0, n)$ then $g_{\gamma'}(x) \in B(Q)$ for some $\gamma' \in (\gamma, n)$ and therefore, $x \in \mathcal{A}_{\gamma'} \subset \mathcal{A}_{\gamma}$.

Let now $x \in \mathcal{A}_{\gamma}$ for some irrational $\gamma \in [0, n)$. Taking into account condition (0) and the fact that the system $\{\mathcal{A}_{\gamma}\}_{\gamma \in [0,n)}$ is decreasing we may assert that there exists a rational γ' , $\gamma < \gamma' < n$ for which $x \in \mathcal{A}_{\gamma''}$ for all rational $\gamma'' \leq \gamma'$. We see that $g_{\gamma'}(x) \in B(Q)$ and it follows that $g(x) \in \mathcal{X}_{\gamma'} \subset \mathcal{X}_{\gamma}$. On the other hand, if $g(x) \in \mathcal{X}_{\gamma}$ for some irrational $\gamma \in [0, n)$ then $g_{\gamma'}(x) \in B(Q)$ for some rational $\gamma' > \gamma$, $\gamma' \in \Gamma$ and therefore $x \in \mathcal{A}_{\gamma'} \subset \mathcal{A}_{\gamma}$.

4. Main result. Let $n \in \mathbb{N}$ and $\gamma \in [0, n)$. We recall that

$$HD_{>\gamma}(\mathbb{I}^n) = \{ A \in \exp(\mathbb{I}^n) \mid \dim_H(A) > \gamma \}$$

stands for the set of all non-empty compacta in \mathbb{I}^n with the Hausdorff dimension $> \gamma$. It is clear that $HD_{>\gamma}(\mathbb{I}^n) = \bigcup_{\alpha>\gamma} HD_{>\alpha}(\mathbb{I}^n)$. By Proposition 1, $HD_{>\gamma}(\mathbb{I}^n)$ is an F_{σ} -set in $\exp(\mathbb{I}^n)$. Thus, we obtain a decreasing uncountable \mathcal{F}_{σ} -system of hyperspaces related to the Hausdorff dimension $\{HD_{>\gamma}(\mathbb{I}^n)\}_{\gamma\in[0,n)}$ in the hyperspace $\exp(\mathbb{I}^n)$ of finite-dimensional cube \mathbb{I}^n .

Theorem 2. For every $n \in \mathbb{N}$ the system $\{HD_{>\gamma}(\mathbb{I}^n)\}_{\gamma \in [0,n)}$ is \mathcal{F}_{σ} -absorbing in $\exp(\mathbb{I}^n)$.

By using basic facts from the theory of absorbing systems in the Hilbert cube, for the proof of this theorem we need to verify the following conditions:

- (I) the set $HD_{>\gamma}(\mathbb{I}^n)$ is an \mathcal{F}_{σ} -set in $\exp(\mathbb{I}^n)$ for every $\gamma \in [0, n)$;
- (II) the set $\bigcup_{\gamma \in [0,n)} HD_{>\gamma}(\mathbb{I}^n)$ is contained in some σ -compact σZ -subset of $\exp(\mathbb{I}^n)$;
- (III) the system $\{HD_{>\gamma}(\mathbb{I}^n)\}_{\gamma\in[0,n)}$ is strongly \mathcal{F}_{σ} -universal in $\exp(\mathbb{I}^n)$.

Proof of Theorem 2. Let us verify conditions (I)-(III).

Condition (I), as mentioned above, follows from Proposition 1.

Condition (II). It is enough to verify that $HD_{>0}(\mathbb{I}^n)$ is a σZ -set in $\exp(\mathbb{I}^n)$. By Condition (I) we conclude that $HD_{>0}(\mathbb{I}^n)$ is an \mathcal{F}_{σ} -set in $\exp(\mathbb{I}^n)$. By using properties of the Hausdorff dimension (see [9], [8]) we obtain the inclusion $HD_{>0}(\mathbb{I}^n) \subseteq \exp(\mathbb{I}^n) \setminus \exp_{\omega}(\mathbb{I}^n)$. The set $\exp(\mathbb{I}^n) \setminus \exp_{\omega}(\mathbb{I}^n)$ is homotopy negligible in $\exp(\mathbb{I}^n)$ (see [1]) therefore we can conclude that $HD_{>0}(\mathbb{I}^n)$ is a σZ -set in $\exp(\mathbb{I}^n)$.

Now prove Condition (III). We shall use the vector addition and scalar multiplication operations that \mathbb{I}^n inherits from \mathbb{R}^n .

Consider the sequence of compact subsets $\{B_i\}_{i=1}^{\infty}$ in \mathbb{I}^n defined as follows:

$$B_{1} = \frac{1}{2} \cdot \mathbb{I}^{n} ,$$

$$B_{2} = \frac{1}{2^{2}} \cdot \mathbb{I}^{n} + \frac{1}{2} \cdot y_{0} ,$$

$$...$$

$$B_{k} = \frac{1}{2^{k}} \cdot \mathbb{I}^{n} + \left(\frac{1}{2} + \dots + \frac{1}{2^{k-1}}\right) \cdot y_{0} ,$$

$$...$$

where $y_0 = (1, 1, ..., 1)$. It is easy to see that the sets B_i are reduced copies of cube \mathbb{I}^n which are located on its diagonal and the sequence $\{B_i\}_{i=1}^{\infty}$ converges to the vertex $y_0 = (1, 1, ..., 1)$.

Let α_i be some embedding of the segment [-1,1] in B_i . For every $x \in Q$, $x = (x_i)_{i=1}^{\infty}$ define an element $\hat{x} \in Q$ as

$$\hat{x} = (\underbrace{x_1}, \underbrace{x_1, x_2}, \underbrace{x_1, x_2, x_3}, \underbrace{x_1, x_2, x_3, x_4}, \ldots).$$

Define the map ξ by the formula

$$\xi(x) = \bigcup_{i=1}^{\infty} \alpha_i(\hat{x}_i) \cup \{y_0\}.$$

Continuity of ξ follows from the continuity of the used maps.

Obviously, for every $x \in Q$, $\xi(x)$ is a compact subset in \mathbb{I}^n . On the other hand, $\xi(x)$ is a countable subset in \mathbb{I}^n therefore, from properties of Hausdorff dimension (see [9],[8]), $\dim_H(\xi(x)) = 0$.

Choose any two points $x, x' \in Q$, $x = (x_i)_{i=1}^{\infty}$, $x' = (x'_i)_{i=1}^{\infty}$. If $x \neq x'$ then there exists $i \in \mathbb{N}$ such that $x_i \neq x'_i$. The way we have constructed the point \hat{x} guarantees that there is $j \in \mathbb{N}$ such that $\alpha_j(\hat{x}_j) \neq \alpha_j(\hat{x}'_j)$. Consequently, $\xi(x) \neq \xi(x')$. This implies that ξ is an embedding.

Let $\varepsilon > 0$ and $f: Q \to \exp(\mathbb{I}^n)$ be maps that restricts to a Z-embedding on some compact subset K of Q. Without loss of generality we may assume that f is a Z-embedding because $\exp(\mathbb{I}^n)$ is homeomorphic to the Hilbert cube Q. Define a map $\mu: Q \to [0,1]$ by the formula

$$\mu(x) = \frac{1}{3} \cdot \min\{\varepsilon, d_H(f(x), f[K])\}.$$

Since, as mentioned above, the set $\exp(\mathbb{I}^n) \setminus \exp_{\omega}(\mathbb{I}^n)$ is homotopy negligible in $\exp(\mathbb{I}^n)$, there exists a homotopy $H : \exp(\mathbb{I}^n) \times \mathbb{I} \to \exp(\mathbb{I}^n)$ such that:

- (1) $H_0 = 1_{\exp(\mathbb{I}^n)};$
- (2) for every $t \in (0,1]$, $H_t(\exp(\mathbb{I}^n)) \subseteq \exp_{\omega}(\mathbb{I}^n)$.

It is clear that we may additionally assume that (for details see [13])

- (3) for every $t \in [0, 1], \hat{d}_H(H_t, 1_{\exp(\mathbb{I}^n)}) \le 2t;$
- (4) for every $t \in (0,1]$, $H_t(\exp(\mathbb{I}^n)) \subseteq \exp_{\omega}([0,1-3t/4]^n)$.

For every $x \in Q$ let $F(x) = H(f(x), \mu(x))$. Hence if $\mu(x) > 0$ then F(x) is a finite approximation of the set f(x).

Let $\beta_i \colon \mathbb{I}^n \to B_i$ be similitude homeomorphisms. For some $\lambda \in [0,1]$ and $y \in \mathbb{I}^n$, define the map $(\beta_i)_y^{\lambda} = \lambda \beta_i + y + \lambda y_0$, where $y_0 = (1,1,...,1)$. Observe that for $\lambda \in (0,1]$ the map $(\beta_i)_y^{\lambda}$ is a similitude homeomorphism and for $\lambda = 0$, $(\beta_i)_y^0$ is a constant map.

Let $\Gamma = [0, n) \cap \mathbb{Q}$, $\alpha \colon \Gamma \times \mathbb{N} \to \mathbb{N}$ be a bijection. Denote $N_{\gamma} = \{\alpha(\gamma, j) \mid j \in \mathbb{N}\}$ for every $\gamma \in \Gamma$. Then $\alpha(\gamma, p)$ is pth element in N_{γ} . Choose a decreasing system of σ -compact subsets $\{\mathcal{A}_{\gamma}\}_{\gamma \in [0,n)}$ in Q such that for every $\gamma \in [0,n)$ the following holds: $\mathcal{A}_{\gamma} = \bigcup_{\gamma' \in (\gamma,n)} \mathcal{A}_{\gamma'}$.

For every $\gamma \in \Gamma$ write $\mathcal{A}_{\gamma} = \bigcup_{p=1}^{\infty} A_{\gamma}^{p}$, where $A_{\gamma}^{1} \subseteq A_{\gamma}^{2} \subseteq \ldots$ and A_{γ}^{p} is a compact subset in Q.

For every $\gamma \in (0, n]$ there exists a set $C \in \exp(\mathbb{I}^n)$ such that $\dim_H(C) = \gamma$. For $\gamma \in \Gamma$ and $p \in \mathbb{N}$ let a set $C_{\alpha(\gamma,p)} \in \exp(\mathbb{I}^n)$ be such that $\dim_H(C_{\alpha(\gamma,p)}) = \gamma$. For an arbitrary natural i define the map $\varphi_i \colon \mathbb{I} \to \exp(\mathbb{I}^n)$ by the formula $\varphi_i(t) = H(C_i, t)$. Then for the map φ_i the following holds: $\varphi_i(0) = C_i$ and $\varphi_i((0, 1]) \subseteq \exp_{\omega}(\mathbb{I}^n)$.

Now define the map $g: Q \to \exp(\mathbb{I}^n)$ by the formula

$$g(x) = F(x) \cup \bigcup_{y \in F(x)} [(\mu(x)/4 \cdot \xi(x) + y) \cup$$

$$\bigcup_{\gamma \in \Gamma} \bigcup_{p=1}^{\infty} (\beta_{\alpha(\gamma,p)})_{y}^{\mu(x)/4} (\varphi_{\alpha(\gamma,p)}(d(x,A_{\gamma}^{p}))) \cup \{y + \mu(x)/2 \cdot y_{0}\} \cup \bigcup_{\gamma \in \Gamma} \bigcup_{p=1}^{\infty} (\beta_{\alpha(\gamma,p)})_{y}^{\mu(x)/4} (\varphi_{\alpha(\gamma,p)}(d(x,A_{\gamma}^{p}))) \cup \{y + \mu(x)/2 \cdot y_{0}\} \cup \bigcup_{\gamma \in \Gamma} \bigcup_{p=1}^{\infty} (\beta_{\alpha(\gamma,p)})_{y}^{\mu(x)/4} (\varphi_{\alpha(\gamma,p)}(d(x,A_{\gamma}^{p}))) \cup \{y + \mu(x)/2 \cdot y_{0}\} \cup \bigcup_{\gamma \in \Gamma} \bigcup_{p=1}^{\infty} (\beta_{\alpha(\gamma,p)})_{y}^{\mu(x)/4} (\varphi_{\alpha(\gamma,p)}(d(x,A_{\gamma}^{p}))) \cup \{y + \mu(x)/2 \cdot y_{0}\} \cup \bigcup_{\gamma \in \Gamma} \bigcup_{p=1}^{\infty} (\beta_{\alpha(\gamma,p)})_{y}^{\mu(x)/4} (\varphi_{\alpha(\gamma,p)}(d(x,A_{\gamma}^{p}))) \cup \{y + \mu(x)/2 \cdot y_{0}\} \cup \bigcup_{\gamma \in \Gamma} \bigcup_{p=1}^{\infty} (\beta_{\alpha(\gamma,p)})_{y}^{\mu(x)/4} (\varphi_{\alpha(\gamma,p)}(d(x,A_{\gamma}^{p}))) \cup \{y + \mu(x)/2 \cdot y_{0}\} \cup \bigcup_{\gamma \in \Gamma} (\beta_{\alpha(\gamma,p)})_{y}^{\mu(x)/4} (\varphi_{\alpha(\gamma,p)}(d(x,A_{\gamma}^{p}))) \cup \{y + \mu(x)/2 \cdot y_{0}\} \cup \bigcup_{\gamma \in \Gamma} (\beta_{\alpha(\gamma,p)})_{y}^{\mu(x)/4} (\varphi_{\alpha(\gamma,p)}(d(x,A_{\gamma}^{p}))) \cup \{y + \mu(x)/2 \cdot y_{0}\} \cup \bigcup_{\gamma \in \Gamma} (\beta_{\alpha(\gamma,p)})_{y}^{\mu(x)/4} (\varphi_{\alpha(\gamma,p)}(d(x,A_{\gamma}^{p}))) \cup \{y + \mu(x)/2 \cdot y_{0}\} \cup \bigcup_{\gamma \in \Gamma} (\beta_{\alpha(\gamma,p)})_{y}^{\mu(x)/4} (\varphi_{\alpha(\gamma,p)}(d(x,A_{\gamma}^{p}))) \cup \{y + \mu(x)/2 \cdot y_{0}\} \cup \bigcup_{\gamma \in \Gamma} (\beta_{\alpha(\gamma,p)})_{y}^{\mu(x)/4} (\varphi_{\alpha(\gamma,p)}(d(x,A_{\gamma}^{p}))) \cup \{y + \mu(x)/2 \cdot y_{0}\} \cup \bigcup_{\gamma \in \Gamma} (\beta_{\alpha(\gamma,p)})_{y}^{\mu(x)/4} (\varphi_{\alpha(\gamma,p)}(d(x,A_{\gamma}^{p}))) \cup \{y + \mu(x)/2 \cdot y_{0}\} \cup \bigcup_{\gamma \in \Gamma} (\beta_{\alpha(\gamma,p)})_{y}^{\mu(x)/4} (\varphi_{\alpha(\gamma,p)}(d(x,A_{\gamma}^{p}))) \cup \{y + \mu(x)/2 \cdot y_{0}\} \cup \bigcup_{\gamma \in \Gamma} (\beta_{\alpha(\gamma,p)})_{y}^{\mu(x)/4} (\varphi_{\alpha(\gamma,p)}(d(x,A_{\gamma}^{p}))) \cup \{y + \mu(x)/2 \cdot y_{0}\} \cup \bigcup_{\gamma \in \Gamma} (\beta_{\alpha(\gamma,p)})_{y}^{\mu(x)/4} (\varphi_{\alpha(\gamma,p)}(d(x,A_{\gamma}^{p}))) \cup \{y + \mu(x)/2 \cdot y_{0}\} \cup \bigcup_{\gamma \in \Gamma} (\beta_{\alpha(\gamma,p)})_{y}^{\mu(x)/4} (\varphi_{\alpha(\gamma,p)}(d(x,A_{\gamma}^{p}))) \cup \{y + \mu(x)/2 \cdot y_{0}\} \cup \bigcup_{\gamma \in \Gamma} (\beta_{\alpha(\gamma,p)})_{y}^{\mu(x)/4} (\varphi_{\alpha(\gamma,p)}(d(x,A_{\gamma}^{p}))) \cup \{y + \mu(x)/2 \cdot y_{0}\} \cup \bigcup_{\gamma \in \Gamma} (\beta_{\alpha(\gamma,p)})_{y}^{\mu(x)/4} (\varphi_{\alpha(\gamma,p)}(d(x,A_{\gamma}^{p}))) \cup \{y + \mu(x)/2 \cdot y_{0}\} \cup \bigcup_{\gamma \in \Gamma} (\beta_{\alpha(\gamma,p)})_{y}^{\mu(x)/4} (\varphi_{\alpha(\gamma,p)}(d(x,A_{\gamma}^{p}))) \cup \{y + \mu(x)/2 \cdot y_{0}\} \cup \bigcup_{\gamma \in \Gamma} (\beta_{\alpha(\gamma,p)})_{y}^{\mu(x)/4} (\varphi_{\alpha(\gamma,p)}(d(x,A_{\gamma}^{p}))) \cup \{y + \mu(x)/2 \cdot y_{0}\} \cup \bigcup_{\gamma \in \Gamma} (\beta_{\alpha(\gamma,p)})_{y}^{\mu(x)/4} (\varphi_{\alpha(\gamma,p)}(d(x,A_{\gamma}^{p}))) \cup \{y + \mu(x)/2 \cdot y_{0}\} \cup \bigcup_{\gamma \in \Gamma} (\beta_{\alpha(\gamma,p)}(d(x,A_{\gamma}^{p})) \cup \bigcup_{\gamma \in \Gamma} (\beta_{\alpha(\gamma,p)}(d(x,A_{\gamma}^{p})) \cup \bigcup_$$

$$\cup \left(\mu(x)/4 \cdot \xi(x) + y + \mu(x)/2 \cdot y_0 \right)].$$

We claim that g is as required, i. e., g is an approximation of f with the properties stated in the definition of strong \mathcal{F}_{σ} -universality.

CLAIM 1: The map g is well-defined, is continuous and satisfies $g \mid K = f \mid K$. Moreover, for every $x \in Q$,

$$d_H(f(x), g(x)) \le \frac{11}{12} \min\{\varepsilon, d(f(x), f[K])\}.$$

(a) Let $x \in Q$. Then by (4), $F(x) \subseteq [0, 1 - 3\mu(x)/4]^n$. For every $y \in F(x)$, the set $\mu(x)/4 \cdot \xi(x) + y$ is contained in the cube $[0, \mu(x)/4]^n + y$; the set

$$\bigcup_{\gamma \in \Gamma} \bigcup_{p=1}^{\infty} (\beta_{\alpha(\gamma,p)})_y^{\mu(x)/4} (\varphi_{\alpha(\gamma,p)}(d(x,A_{\gamma}^p))) \cup \{y + \mu(x)/2 \cdot y_0\}$$

is contained in the cube $[0, \mu(x)/4]^n + y + \mu(x)/4 \cdot y_0$; and the set $\mu(x)/4 \cdot \xi(x) + y + \mu(x)/2 \cdot y_0$ in the cube $[0, \mu(x)/4]^n + y + \mu(x)/2 \cdot y_0$. Therefore, the set attached to y is contained in the cube $[0, 3\mu(x)/4]^n + y$, that implies $g(x) \subseteq \mathbb{I}^n$.

(b) If $\mu(x) > 0$ then g(x) is compact and non-empty, being a finite union of compact non-empty sets. Namely, with every $y \in F(x)$ we unite the sets $\mu(x)/4 \cdot \xi(x) + y$ and $\mu(x)/4 \cdot \xi(x) + y + \mu(x)/2 \cdot y_0$ that are compact and non-empty by the construction of ξ ; and the set

$$\bigcup_{\gamma \in \Gamma} \bigcup_{p=1}^{\infty} (\beta_{\alpha(\gamma,p)})_y^{\mu(x)/4} (\varphi_{\alpha(\gamma,p)}(d(x,A_{\gamma}^p))) \cup \{y + \mu(x)/2 \cdot y_0\},$$

which is the union of infinitely many compacta (by the construction of the maps φ_i and β_i) that converge to the point $y + \mu(x)/2 \cdot y_0$.

If $\mu(x) = 0$ then g(x) = f(x) which is also compact and non-empty. Thus, $g(x) \in \exp(\mathbb{I}^n)$ for every $x \in Q$.

- (c) Continuity of g follows from the continuity of used maps.
- (d) Fix an arbitrary $x \in Q$. By (3) we have

$$d_H(f(x), g(x)) \le 2 \cdot \mu(x) + \mu(x)/4 + \mu(x)/4 + \mu(x)/4 = 11 \cdot \mu(x)/4,$$

therefore,

$$d_H(f(x), g(x)) \le 11/12 \cdot \min\{\varepsilon, d_H(f(x), f[K])\}.$$

Last inequality implies that $g \mid K = f \mid K$.

CLAIM 2: The map g is injective.

Let us first observe that from Claim 1 and the fact that f is an embedding it follows that

$$g[Q\backslash K] \cap g[K] = \varnothing. \tag{*}$$

Now fix arbitrary $x, x' \in Q$. If both x and x' belong to K, then since $g \mid K = f \mid K$ and since f is an embedding, it is trivial that the equality g(x) = g(x') implies the equality x = x'. If $x \notin K$ and $x' \in K$, then from (*) it follows that $g(x) \neq g(x')$. Therefore, without loss of generality we may assume that $x, x' \in Q \setminus K$.

Let g(x) = g(x'). Our aim is to show that x = x'. We will first prove that $\mu(x) = \mu(x')$. Assume the contrary, that is, $\mu(x) < \mu(x')$. For certain $y \in F(x)$ consider in \mathbb{I}^n the set $B_y = (\mu(x)/4) \cdot \mathbb{I}^n + y$. There exists a point $m \in g(x)$ such that $|m| \leq |p|$ for all $p \in g(x)$ (here $|\cdot|$ stands for the distance from origin in \mathbb{I}^n). Moreover, this point m is an element of $F(x) \cap F(x')$ (taking into account the construction of g and the equality g(x) = g(x')). For this point m, it is easy to see that the set $B_m \cap g(x)$ contains a copy of $\xi(x)$ and therefore is infinite, at that time when $B_m \cap g(x')$ is finite as finite union of finite sets. This contradiction establishes that $\mu(x) = \mu(x')$.

Now we consider the point $\hat{m} = (m_1, \dots, m_n) \in g(x)$ such that $|p| \leq |\hat{m}|$ for all $p \in g(x)$. Since $\mu(x) = \mu(x')$, we have

$$m^* = (m_1 - 3\mu(x)/4, \dots, m_n - 3\mu(x)/4) \in F(x) \cap F(x').$$

Since F(x) and F(x') are finite, \hat{m} is maximal, and we have that there are a neighborhood U of \hat{m} and $\delta \in (0,1]$ such that

$$U \cap g(x) = m^* + \mu(x)/2 \cdot y_0 + \mu(x)/4(\xi(x) \cap O_{\delta}(y_0)) =$$

= $m^* + \mu(x')/2 \cdot y_0 + \mu(x')/4(\xi(x') \cap O_{\delta}(y_0)).$

Since the coordinates of x appear infinitely often in the coordinates of \hat{x} (at pregiven places), and the same is true for x', it now easily follows that x = x'.

CLAIM 3: For every $\gamma \in [0, n)$ we have

$$g^{-1}[HD_{>\gamma}(\mathbb{I}^n)]\backslash K = \mathcal{A}_{\gamma}\backslash K.$$

First, observe that if $\mu(x) > 0$ then

$$F(x) \cup \bigcup_{y \in F(x)} (\mu(x)/4 \cdot \xi(x) + y)$$

is a finite union of countable sets. Therefore, for every $x \in Q \setminus K$ the Hausdorff dimension of this set is equal to zero.

Choose $x \in Q \setminus K$. If $x \notin A_{\gamma}$ for every $\gamma \in [0, n)$ then by construction g(x) is a countable set and therefore, $\dim_H(g(x)) = 0$.

Let for some $\gamma \in [0, n), x \in \mathcal{A}_{\gamma}$. Since the system $\{\mathcal{A}_{\gamma}\}_{{\gamma \in [0, n)}}$ is decreasing, it is obvious that $x \in \mathcal{A}_{\gamma'}$ for all $\gamma' < \gamma$. Since

$$\mathcal{A}_{\gamma} = \bigcup_{\gamma' \in (\gamma, n)} \mathcal{A}_{\gamma'},$$

 $\mathcal{A}_{\gamma} = \bigcup_{\gamma' \in (\gamma, n)} \mathcal{A}_{\gamma'},$ there exists $\delta > 0$ such that $x \in \mathcal{A}_{\gamma'}$ for all $\gamma' \in [\gamma, \gamma + \delta)$. For this x, we put $O(x) = [0, \gamma + \delta)$, the set of all γ' that $x \in \mathcal{A}_{\gamma'}$. For every $\gamma' \in O(x) \cap \mathbb{Q}$ the set

$$\bigcup_{p=1}^{\infty} (\beta_{\alpha(\gamma',p)})_y^{\mu(x)/4} (\varphi_{\alpha(\gamma',p)}(d(x,A_{\gamma'}^p)))$$

is a finite union of finite sets and a countable union of sets of Hausdorff dimension = γ' . In this case, by properties of the Hausdorff dimension (see [9], [8]), the Hausdorff dimension of the set

$$\bigcup_{\gamma' \in O(x) \cap \mathbb{Q}} \bigcup_{p=1}^{\infty} (\beta_{\alpha(\gamma',p)})_y^{\mu(x)/4} (\varphi_{\alpha(\gamma',p)}(d(x,A_{\gamma'}^p)))$$

 $\bigcup_{\gamma' \in O(x) \cap \mathbb{Q}} \bigcup_{p=1}^{\infty} (\beta_{\alpha(\gamma',p)})_y^{\mu(x)/4} (\varphi_{\alpha(\gamma',p)}(d(x,A_{\gamma'}^p)))$ is equal to $\sup\{\gamma' \mid \gamma' \in O(x) \cap \mathbb{Q}\} = \gamma + \delta$. On the other hand, for every $\gamma' \in \Gamma \backslash O(x)$, $x \not\in \mathcal{A}_{\gamma'}$, therefore, the set

$$\bigcup_{\gamma' \in \Gamma \setminus O(x)} \bigcup_{p=1}^{\infty} (\beta_{\alpha(\gamma',p)})_y^{\mu(x)/4} (\varphi_{\alpha(\gamma',p)}(d(x,A_{\gamma'}^p)))$$

is countable and its Hausdorff dimension is equal to zero. Therefore, if $x \in \mathcal{A}_{\gamma}$, then $g(x) \in$ $HD_{>\gamma}(\mathbb{I}^n).$

On the other hand, if $x \notin \mathcal{A}_{\gamma}$ for some $\gamma \in [0, n)$ then $x \notin \mathcal{A}_{\gamma'}$ for all $\gamma' \geq \gamma$, that is, the set

$$\bigcup_{\gamma' \geq \gamma, \gamma' \in \Gamma} \bigcup_{p=1}^{\infty} (\beta_{\alpha(\gamma',p)})_y^{\mu(x)/4} (\varphi_{\alpha(\gamma',p)}(d(x,A_{\gamma'}^p)))$$
 is countable and its Hausdorff dimension is equal to zero at that time when the set

$$\bigcup_{\gamma'<\gamma,\gamma'\in\Gamma}\bigcup_{p=1}^{\infty}(\beta_{\alpha(\gamma',p)})_{y}^{\mu(x)/4}(\varphi_{\alpha(\gamma',p)}(d(x,A_{\gamma'}^{p})))$$

by similar to the mentioned above, is of Hausdorff dimension $\leq \gamma$. This implies that $g(x) \notin$ $HD_{>\gamma}(\mathbb{I}^n).$

Equality (*) finishes the proof of CLAIM 3.

CLAIM 4: The map q is a Z-embedding.

Since g[K] = f[K] is a Z-set, it suffices to show that g[Y] is a Z-set if $Y \subseteq Q \setminus K$ is compact. But this is clear because a map $g': Q \to \exp(\mathbb{I}^n)$, defined as

$$g'(x) = \overline{O_{\delta}(g(x))},$$

maps Q into the complement of g[Y] for every positive δ and is δ -close to g.

5. Conclusions. By the West-Curtis-Shori theorem (see [13]), the hyperspace of finitedimensional cube $\exp(\mathbb{I}^n)$ is homeomorphic to the Hilbert cube Q. Now combining the Uniqueness Theorem for absorbing systems in the Hilbert cube (see [13], [10]) with Proposition 2 and Theorem 2, we obtain the following result implying Theorem 1 announced in the Introduction.

Theorem 3. For every $n \in \mathbb{N}$ there exists a homeomorphism $h : \exp(\mathbb{I}^n) \to Q^{\mathbb{Q}}$ such that $h(HD_{>\gamma}(\mathbb{I}^n)) = Q^{\mathbb{Q}_{\leq \gamma}} \times B(Q^{\mathbb{Q}_{>\gamma}})$ and $h(HD_{\leq \gamma}(\mathbb{I}^n)) = Q^{\mathbb{Q}_{\leq \gamma}} \times s^{\mathbb{Q}_{>\gamma}}$ for every $\gamma \in [0, n)$.

REFERENCES

- 1. T. Banakh, T. Radul, M. Zarichnyi, Absorbing Sets in Infinite-Dimensional Manifolds. Lviv: VNTL Publishers, 1996. Vol. 1. 231 p.
- 2. C. Bessaga, A. Pełczyński, Selected topics in infinite-dimensional topology. Warszawa, 2001. 352 p.
- D.W. Curtis, R.M. Schori, Hyperspaces of Peano continua are Hilbert cubes, Fund. Math. 101 (1978) №1, 19–38.
- D.W. Curtis, Hyperspaces homeomorphic to Hilbert space, Proc. Amer. Math. Soc. 75 (1979) №1, 126– 130
- 5. R. Cauty R, Suites \mathcal{F}_{σ} -absorbantes en theorie de la dimension, Fund. Math. 159 (1999) N2, 115–126.
- 6. J.J. Dijkstra, J. van Mill, J. Mogilski, The space of infinite-dimensional compacta and other topological copies of $(l_f^2)^{\omega}$, Pacif. J. Math. **152** (1992) 255–273.
- 7. T. Dobrowolski, L.R. Rubin, The hyperspace of infinite-dimensional compacta for covering and cohomological dimension are homeomorphic, Pacific J. Math. 164 (1994) №1, 15–39.
- 8. G.A. Edgar, Measure, Topology and Fractal Geometry. New York: Springer-Verlag, 1995. 221 p.
- 9. K.J. Falconer K, The Geometry of Fractal Sets. Cambridge University Press, 1985. 162 p.
- 10. H. Gladdines, Absorbing systems in infinite-dimensional manifolds and applications. Amsterdam: Vrije Universiteit, 1994. 117p.
- 11. N. Mazurenko, Absorbing sets related to Hausdorff dimension, Visnyk Lviv Univ., Ser. Mech-Math. 61 (2003) 121–128.
- 12. J. van Mill, Infinite-Dimensional Topology. Amsterdam: Vrije Universiteit, 1989. 401 p.
- 13. J. van Mill, *The Infinite-Dimensional Topology of Function Spaces.* Amsterdam: Elsevier, 2001. Volume 64. 630p.
- 14. Н. Мазуренко, *Топологія гіперпросторів континуумів заданого виміру Гаусдорфа в скінченновимірному кубі*, Наук. Вісник Чернівецького унів. Математика. **228** (2004) 60–65.

Precarpatian National University Ivano-Frankivsk, Ukraine mnatali@ukr.net

> Received 21.09.2009 Revised 25.02.2009