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We prove that the minimal left ideals of the superextension λ(X) of a discrete group X
are singletons if and only if X is odd in the sense that each element of X has odd order. On
the other hand, the minimal left ideals of the superextension λ(Z) of the discrete group Z of
integers are metrizable topological semigroups, topologically isomorphic to minimal left ideals
of the superextension λ(Z2) of the compact group Z2 of integer 2-adic numbers.

Ò. Î. Áàíàõ, Â. Ãàâðûëêèâ. Àëãåáðà â ñóïåððàñøèðåíèÿõ ãðóïï, III: ìèíèìàëüíûå ëåâûå
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Äîêàçàíî, ÷òî ìèíèìàëüíûå ëåâûå èäåàëû ñóïåððàñøèðåíèÿ λ(X) ãðóïïû X îäíî-
òî÷å÷íû òîãäà è òîëüêî òîãäà, êîãäà êàæäûé ýëåìåíò ãðóïïûX èìååò íå÷åòíóþ ñòåïåíü. Ñ
äðóãîé ñòîðîíû, ìèíèìàëüíûå ëåâûå èäåàëû ñóïåððàñøèðåíèÿ λ(Z) ãðóïïû öåëûõ ÷èñåë
ÿâëÿþòñÿ ìåòðèçóåìûìè òîðîëîãè÷åñêèìè ïîëóãðóïïàìè, èçîìîðôíûìè ìèíèìàëüíûì
ëåâûì èäåàëàì ñóïåððàñøèðåíèÿ λ(Z2) ãðóïïû Z2 öåëûõ 2-àäè÷åñêèõ ÷èñåë.

Introduction. After the topological proof (see [10, p.102], [9]) of Hindman theorem [8],
topological methods become a standard tool in the modern combinatorics of numbers, see
[10], [12]. The crucial point is that any semigroup operation ∗ de�ned on any discrete space
X can be extended to a right-topological semigroup operation on β(X), the Stone-�Cech
compacti�cation of X. The extension of the operation from X to β(X) can be de�ned by
the simple formula:

U ∗ V = {A ⊂ X : ∃U ∈ U ∃{Vx}x∈U ⊂ V
⋃
x∈U

x ∗ Vx ⊂ A}, (1)

where U ,V are ultra�lters on X. Endowed with the so-extended operation, the Stone-
�Cech compacti�cation β(X) becomes a compact right-topological semigroup. The algebraic
properties of this semigroup (for example, the existence of idempotents or minimal left ideals)
have important consequences in combinatorics of numbers, see [10], [12].

The Stone-�Cech compacti�cation β(X) of X is the subspace of the double power-set
P(P(X)), which is a complete lattice with respect to the operations of union and intersection.
In [7] it was observed that the semigroup operation extends not only to β(X) but also to the
complete sublattice G(X) of P(P(X)), generated by β(X). This complete sublattice consists
of all inclusion hyperspaces over X.
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By de�nition, a family F of non-empty subsets of a discrete space X is called an inclusion

hyperspace if F is monotone in the sense that a subset A ⊂ X belongs to F provided A
contains some set B ∈ F . Besides the operations of union and intersection, the set G(X)
possesses an important transversality operation assigning to each inclusion hyperspace F ∈
G(X) the inclusion hyperspace

F⊥ = {A ⊂ X : ∀F ∈ F (A ∩ F 6= ∅)}.
This operation is involutive in the sense that (F⊥)⊥ = F .

It is known that the family G(X) of inclusion hyperspaces on X is closed in the double
power-set P(P(X)) = {0, 1}P(X) endowed with the natural product topology. The induced
topology on G(X) can be described directly: it is generated by the sub-base consisting of
the sets

U+ = {F ∈ G(X) : U ∈ F} and U− = {F ∈ G(X) : U ∈ F⊥}
where U runs over subsets of X. Endowed with this topology, G(X) becomes a Hausdor�
supercompact space. The latter means that each cover of G(X) by the sub-basic sets has a
2-element subcover.

The extension of a binary operation ∗ from X to G(X) can be de�ned in the same
way as for ultra�lters, i.e., by the formula (1) applied to any two inclusion hyperspaces
U ,V ∈ G(X). In [7] it was shown that for an associative binary operation ∗ on X the space
G(X) endowed with the extended operation becomes a compact right-topological semigroup.
Besides the Stone-�Cech extension, the semigroup G(X) contains many important spaces as
closed subsemigroups. In particular, the space

λ(X) = {F ∈ G(X) : F = F⊥}
of maximal linked systems on X is a closed subsemigroup of G(X). The space λ(X) is
well-known in General and Categorial Topology as the superextension of X, see [13], [11].
Endowed with the extended binary operation, the superextension λ(X) of a semigroup X is
a supercompact right-topological semigroup containing β(X) as a subsemigroup.

The thorough study of algebraic properties of the superextensions λ(X) of groups X was
started in [3] and continued in [4]. In this paper we concentrate at describing the minimal
(left) ideals of λ(X).

Understanding the structure of minimal left ideals of the semigroup β(X) had important
combinatorial consequences. For example, properties of ultra�lters from a minimal left ideal
of β(X) were exploited in the topological proof of the classical Van der Waerden Theorem
[10, 14.3] due to Fustenberg and Katznelson [5]. Minimal left ideals of the semigroup β(Z)
play also an important role in Topological Dynamics, see [1], [2], [10, Ch.19]. We believe that
studying the structure of minimal (left) ideals of the semigroups λ(X) also will have some
combinatorial or dynamical consequences.

The main result of this paper is Theorem 3 asserting that the minimal left ideals of the
semigroup λ(Z) are compact metrizable topological semigroups topologically isomorphic to
minimal left ideals of the superextension λ(Z2) of the (compact metrizable) group Z2 of
integer 2-adic numbers.

1. Right-topological semigroups. In this section we recall some information from [10]
related to right-topological semigroups. By de�nition, a right-topological semigroup is a
topological space S endowed with a semigroup operation ∗ : S × S → S such that for every
a ∈ S the right shift ra : S → S, ra : x 7→ x ∗ a, is continuous. If the semigroup operation
∗ : S × S → S is continuous, then (S, ∗) is a topological semigroup.

A non-empty subset I of a semigroup S is called a left (resp. right) ideal if SI ⊂ I (resp.
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IS ⊂ I). If I is both a left and right ideal in S, then I is called an ideal in S. Observe that
for every x ∈ S the set Sx = {sx : s ∈ S} (resp. xS = {xs : s ∈ S}) is a left (resp. right)
ideal in S. Such an ideal is called principal. An ideal I ⊂ S is called minimal if any ideal of
S that lies in I coincides with I. By analogy we de�ne minimal left and right ideals of S.
It is easy to see that each minimal left (resp. right) ideal I is principal. Moreover, I = Sx
(resp. I = xS) for each x ∈ I.

If S is a compact Hausdor� right-topological semigroup, then each minimal left ideal in
S, being principal, is closed in S. By [10, 2.6], each left ideal in S contains a minimal left
ideal. The union of all minimal left ideals of S coincides with the minimal ideal K(S) of S,
[10, 2.8]. By [10, 2.11], all the minimal left ideals of S are mutually homeomorphic.

An element z of a semigroup S is called a right zero in S if xz = z for all x ∈ S. It is
clear that z ∈ S is a right zero in S if and only if the singleton {z} is a (minimal) left ideal
in S.

In the sequel we shall often use the following

Lemma 1. Let X, Y be compact right-topological semigroups. If a semigroup homomor-

phism h : X → Y is injective on some minimal left ideal of X, then h is injective on each

minimal left ideal of X.

Proof. Assume that h is injective on a minimal left idealXa ofX and take any other minimal
left ideal Xb of X. By [10, 2.11], the right shift ra : X → X, ra : x 7→ xa, is injective on Xb.
Next, consider the right shift rh(a) : Y → Y , rh(a) : y 7→ y · h(a). It follows from the equality
h ◦ ra = rh(a) ◦ h and the injectivity of the maps ra|Xb and h|Xa that the map h|Xb is
injective.

2. Inclusion hyperspaces and superextensions. A family L of subsets of a setX is called
a linked system on X if A ∩ B 6= ∅ for all A,B ∈ L. Such a linked system L is maximal

linked if L coincides with any linked system L′ on X that contains L. Each (ultra)�lter on
X is a (maximal) linked system. A linked system L on X is maximal linked if and only if
for any partition X = A ∪B either A or B belongs to L.

By λ(X) we denote the family of all maximal linked systems on X. Since each ultra�lter
on X is a maximal linked system, λ(X) contain the Stone-�Cech extension β(X) of X. It
is easy to see that each maximal linked system on X is an inclusion hyperspace on X and
hence λ(X) ⊂ G(X). Moreover, it can be shown that λ(X) = {A ∈ G(X) : A = A⊥}. Let
also N2(X) = {A ∈ G(X) : A ⊂ A⊥} denote the family of all linked inclusion hyperspaces
on X. By [6] both the subspaces λ(X) and N2(X) are closed in the compact Hausdor� space
G(X).

Each function f : X → Y between sets X, Y induces a continuous map Gf : G(X) →
G(Y ) assigning to an inclusion hyperspace A ∈ G(X) the inclusion hyperspace

Gf(A) = {B ⊂ Y : f−1(B) ∈ A} ∈ G(Y ).
The function Gf maps λ(X) into λ(Y ), so we can put λf = Gf |λ(X).

Given any semigroup operation ∗ : X ×X → X on a set X we can extend this operation
to G(X) letting

U ∗ V = {A ⊂ X : ∃U ∈ U ∃{Vx}x∈U ⊂ V
⋃
x∈U

x ∗ Vx ⊂ A}

for inclusion hyperspaces U ,V ∈ G(X). Equivalently, the product U ∗ V can be de�ned as

U ∗ V = {A ⊂ X : {x ∈ X : x−1A ∈ V} ∈ U}



ALGEBRA IN SUPEREXTENSIONS OF GROUPS 145

where x−1A = {z ∈ X : x ∗ z ∈ A}. By [7] the so-extended operation turns G(X) into a
right-topological semigroup. The structure of this semigroup was studied in details in [7]. In
particular, it was shown that for each group X the minimal left ideals of G(X) are singletons
containing invariant inclusion hyperspaces.

We call an inclusion hyperspace A ∈ G(X) invariant if xA = A for all x ∈ X. More
generally, given a subgroup H ⊂ X we de�ne A to be H-invariant if xA = A for all x ∈ H.

It follows from the de�nition of the topology on G(X) that the set
↔
G(X) of invariant

inclusion hyperspaces is closed in G(X) and coincides with the minimal idealK(G(X)) of the
semigroup G(X). Consequently, K(G(X)) is a closed subsemigroup of right zeros in G(X).

3. The minimal ideal of λ(G) for odd groups. In this section we characterize groups G
whose superextension λ(G) has one-point minimal left ideals.

Following [3], we de�ne a group G to be odd if the order of each element x of G is odd.
If G is a �nite odd group, then the maximal linked system

L = {A ⊂ G : |A| > |G|/2}
is invariant. In fact, a group G possesses an invariant maximal linked system if and only if G
is odd, see Theorem 3.2 of [3]. By Proposition 3.1 of [3], a maximal linked system Z ∈ λ(G)
on a group G is invariant if and only if Z is a right zero of the semigroup λ(G) if and only
if the singleton {Z} is a minimal left ideal in λ(G). Taking into account that the invariant
maximal linked systems form a closed subsemigroup of right zeros in λ(G), we obtain the
main result of this section.

Theorem 1. A group G is odd if and only if all the minimal left ideals of λ(G) are singletons.
In this case the minimal idealK(λ(G)) of λ(G) is a closed semigroup of right zeros, consisting

of invariant maximal linked systems.

Given a subgroup H of a group G let G/H = {xH : x ∈ G} and π : G→ G/H denote the
quotient map. It induces a continuous map λπ : λ(G)→ λ(G/H) between the corresponding
superextensions.

Lemma 2. For any H-invariant maximal linked system A ∈ λ(H) ⊂ λ(G) the restriction

of λπ : λ(G)→ λ(G/H) to the principal left ideal λ(G) ∗ A is injective.

Proof. Fix a section s : G/H → G of π. For every L ∈ λ(G) let L̃ = λπ(L) ∈ λ(G/H) be

the projection of L onto G/H andM = λs(L̃) ∈ λ(G) be the lift of L̃ by the section s.
We claim that L ∗ A = M ∗ A. Since L ∗ A and M ∗ A are maximal linked systems,

it su�ces to check that L ∗ A ⊂ M ∗ A. Take any set
⋃

x∈L x ∗ Ax ∈ L ∗ A where L ∈ L
and {Ax}x∈L ⊂ A. Consider the set M = s ◦ π(L) ∈ M. For every point y ∈ M �nd a
point xy ∈ L with y = s ◦ π(xy) and observe that yH = π(y) = π(xy) = xyH, which implies
y−1xy ∈ H and hence y−1xyAxy ∈ A by the H-invariantness of A. Since

M∗A 3
⋃

y∈M

y(y−1xy ∗ Axy) =
⋃

y∈M

xy ∗ Axy ⊂
⋃
x∈L

x ∗ Ax

we conclude that
⋃

x∈L x ∗ Ax ∈M ∗A.
Now we are able to prove that λπ : λ(G)∗A → λ(G/H) is injective. Take any two distinct

elements L1 ∗ A 6= L2 ∗ A of λ(G) ∗ A. For every i ∈ {1, 2} consider the maximal linked

systems L̃i = λπ(Li) = λπ(Li ∗ A) andMi = λs(L̃i). It follows fromM1 ∗ A = L1 ∗ A 6=
L2 ∗ A =M2 ∗ A thatM1 6=M2 and hence

λπ(L1 ∗ A) = L̃1 6= L̃2 = λπ(L2 ∗ A).
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Corollary 1. For a normal odd subgroup H of a group G the map λπ : λ(G)→ λ(G/H) is

injective on each minimal left ideal of λ(G). Consequently, every minimal left ideal of λ(G)
is topologically isomorphic to a minimal left ideal of λ(G/H).

Proof. By Lemma 1, it su�ces to show that λπ is injective on some minimal left ideal. The
group H, being odd, admits an H-invariant maximal linked system A ∈ λ(H) ⊂ λ(G). By
Lemma 2 the homomorphism λπ is injective on the left ideal λ(G) ∗A and hence is injective
on any minimal left ideal contained in λ(G) ∗ A (it exists because λ(G) is a compact right-
topological semigroup).

4. Maximal invariant linked systems on groups. As we have seen in the preceding
section, the property of a maximal system L ∈ λ(G) to be invariant is very strong and forces
L to be a right zero of λ(G). Such maximal linked systems exist only on odd groups.

On the other hand, maximal invariant linked systems exist on each group. An invariant

linked inclusion hyperspace L ∈
↔
N2(G) is called a maximal invariant linked system if L = L′

for any invariant linked inclusion hyperspace L′ ∈
↔
N2(G) enlarging L. By the Zorn Lemma,

each invariant linked inclusion hyperspace can be enlarged to a maximal invariant linked
system.

Proposition 1. For any maximal invariant linked system L0 on a group G the set

↑L0 = {L ∈ λ(G) : L ⊃ L0}
is a left ideal in λ(G).

Proof. Let A,B ∈ λ(G) be maximal linked systems with L0 ⊂ B. Then for every subset
L ∈ L0 we get

L =
⋃
x∈G

x(x−1L) ∈ A ∗ L0 ⊂ A ∗ B

which means that L0 ⊂ A ∗ B.

Observe that L0 ⊂ L ⊂ L⊥0 for every L ∈ ↑L0. The following theorem shows that the
di�erence L⊥0 \ L0 (and consequently, L \ L0) is relatively small (for the group G = Z it is
countable!).

Theorem 2. If L0 is an invariant linked system on an Abelian group G, then for any subset

A ∈ L⊥0 \ L0 there is a point x ∈ G such that xA = G \ A and consequently, A = x2A.

Proof. Fix a subset A ∈ L⊥0 \ L0. We claim that

aA ∩ A = ∅ (2)

for some a ∈ G. Assuming the converse, we would conclude that the family {xA : x ∈ G}
is linked and then the invariant linked system L0 ∪ {xA : x ∈ G} is strictly larger than L0,
which impossible because of the maximality of L0.

Next, we �nd b ∈ G with
A ∪ bA = G. (3)

Assuming that no such a point b exist, we conclude that for any x, y ∈ G the union xA∪yA 6=
G. Then (G\xA)∩(G\yA) = G\(xA∪yA) 6= ∅, which means that the family {G\xA : x ∈ G}
is linked and invariant. We claim that G\A ∈ L⊥0 . Assuming the converse, we would conclude
that G \ A misses some set L ∈ L0. Then L ⊂ A and hence A ∈ L0 which is not the
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case. Thus G \ A ∈ L⊥0 and hence {G \ xA : x ∈ G} ⊂ L⊥0 because L⊥0 is invariant. Since
L0 ∪ {G \ xA : x ∈ G} is an invariant linked system containing L0, the maximality of L0

guarantees that G \ A ∈ L0 which contradicts A ∈ L⊥0 .
Finally we show that G \ A = aA = bA. Observe that (2) and (3) imply that aA ⊂ bA

and hence A ⊂ a−1bA. On the other hand, (2) and (3) are equivalent to a−1A ∩ A = ∅
and b−1A ∪ A = G, which implies a−1A ⊂ b−1A and this yields ba−1A ⊂ A. Unifying this
inclusion with A ⊂ a−1bA = ba−1A, we conclude that ba−1A = A and hence bA = aA. Now
looking at (2) and (3) we see that G \ A = aA = bA.

5. Minimal left ideals of λ(Z). In this section we apply the results of the preceding sections
to describe the structure of minimal left ideals of the semigroup λ(Z). It turns out that they
are isomorphic to minimal left ideals of the superextension λ(Z2) of the compact topological
group Z2 of integer 2-adic numbers. We recall that Z2 = lim←−C2k is a totally disconnected
compact metrizable Abelian group, which is the limit of the inverse sequence

. . .→ C2n → . . .→ C8 → C4 → C2

of cyclic 2-groups C2n . Let π : Z → Z2 denote the canonic (injective) homomorphism of Z
into Z2 (induced by the quotient maps π2k : Z→ Z/2kZ = C2k , k ∈ N).

By the continuity of the functor λ in the category of compact Hausdor� spaces (see [11,
2.3.2]), the superextension λ(Z2) can be identi�ed with the limit of the inverse sequence

. . .→ λ(C2n)→ . . .→ λ(C8)→ λ(C4)→ λ(C2)
of �nite semigroups λ(C2k). This implies that λ(Z2) is a metrizable zero-dimensional compact
topological semigroup.

Theorem 3. The homomorphism λπ : λ(Z)→ λ(Z2) is injective on each minimal left ideal

of λ(Z). Consequently, the minimal left ideals of the semigroup λ(Z) are compact metrizable

topological semigroups.

Proof. By Lemma 1, it su�ces to check that the homomorphism λπ is injective on some
minimal left ideal of λ(Z). Fix any maximal invariant linked system L0 on Z (such a system
exists by Zorn Lemma). By Proposition 1 the set ↑L0 = {L ∈ λ(Z) : L ⊃ L0} is a left ideal
which necessarily contains a minimal left ideal I of λ(Z). We claim that the homomorphism
λπ : λ(Z)→ λ(Z2) is injective on I. Given two di�erent maximal linked system A,B ∈ I we
need to check that λπ(A) 6= λπ(B).

Since the superextension λ(Z2) is the limit of the inverse sequence

. . .→ λ(C2n)→ . . .→ λ(C8)→ λ(C4)→ λ(C2),
the inequality λπ(A) 6= λπ(B) will follow as soon as we �nd k ∈ N such that λπ2k(A) 6=
λπ2k(B) where λπ2k : λ(Z) → λ(C2k) is the homomorphism induced by the quotient homo-
morphism π2k : Z→ C2k .

Pick any set A ∈ A \ B. Since A ∈ L⊥0 \ L0, we can apply Theorem 2 to conclude that
A = 2n+A for some positive number n ∈ Z. The later equality means that A = π−1

2n (π2n(A))
is the complete preimage of the set π2n(A) under the quotient homomorphism π2n : Z →
Z/2nZ = C2n. It follows that π2n(A) ∈ λπ2n(A) \ λπ2n(B) and hence λπ2n(A) 6= λπ2n(B).

Write the number 2n as the product 2n = 2k ·m for some odd number m and �nd a (uni-
que) subgroup H ⊂ C2n of order |H| = m. It follows that the quotient group C2n/H can be
identi�ed with the cyclic 2-group C2k so that q ◦ π2n = π2k where q : C2n → C2n/H = C2k is
the quotient homomorphism. Corollary 1 guarantees that the homomorphism λq : λ(C2n)→
λ(C2k) is injective on each minimal left ideal of λ(C2n). In particular, it is injective on the mi-
nimal left ideal λπ2n(I). Consequently, λπ2k(A) = λq(Ã) 6= λq(B̃) = λπ2k(B). This completes
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the proof of the injectivity of λπ : λ(Z) → λ(Z2) on the left ideal I and consequently, on
each minimal left ideal J of λ(Z).

Since minimal left ideals of λ(Z) are compact, the restriction λπ|J is a topological
isomorphism of J onto the minimal left ideal λπ(J) of λ(Z2). Since λ(Z2) is a metrizable
topological semigroup, so are the semigroups λπ(J) and J .
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