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We prove that the minimal left ideals of the superextension A(X) of a discrete group X
are singletons if and only if X is odd in the sense that each element of X has odd order. On
the other hand, the minimal left ideals of the superextension A\(Z) of the discrete group Z of
integers are metrizable topological semigroups, topologically isomorphic to minimal left ideals
of the superextension \(Zs) of the compact group Zsy of integer 2-adic numbers.
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Jokazano, 4ro MuHuMAasbHbIE JeBble uieasbl cyuneppacuupenus A(X) rpynust X ogHo-
TOYEYHBI TOT/IA, U TOJIHKO TOTIA, KOT/IA KAXKIBIH 3JIEMEHT IPYTIhl X WMeeT HeYeTHYIO creneHb. C
JIPYrOii CTOPOHBI, MUHUMAJIbHBIE JIEBBIE UEAJbI Cyneppaciupenus A(Z) rpynnbl HEeJbIX YucesT
SABJIAIOTCS METPU3YEMBIMUA TOPOJIOTHIECKUMHU TOJYTPYIIaMu, W30MOP(MHBIMU MUHUMAIbHBIM
JIeBbIM uzeanaM cyneppacinuperusi A(Zg) rpynibl Zg UeIbIX 2-aIMUeCKUX YUCelL.

Introduction. After the topological proof (see [10, p.102], [9]) of Hindman theorem |[8],
topological methods become a standard tool in the modern combinatorics of numbers, see
[10], [12]. The crucial point is that any semigroup operation * defined on any discrete space
X can be extended to a right-topological semigroup operation on ((X), the Stone-Cech
compactification of X. The extension of the operation from X to 5(X) can be defined by
the simple formula:

UxV={ACX:3U eU WV, }sev CV |JaxV,C A}, (1)

zeU

where U,V are ultrafilters on X. Endowed with the so-extended operation, the Stone-
Cech compactification 3 (X) becomes a compact right-topological semigroup. The algebraic
properties of this semigroup (for example, the existence of idempotents or minimal left ideals)
have important consequences in combinatorics of numbers, see [10], [12].

The Stone-Cech compactification B(X) of X is the subspace of the double power-set
P(P(X)), which is a complete lattice with respect to the operations of union and intersection.
In [7] it was observed that the semigroup operation extends not only to (X) but also to the
complete sublattice G(X) of P(P(X)), generated by 5(X). This complete sublattice consists
of all inclusion hyperspaces over X.
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By definition, a family F of non-empty subsets of a discrete space X is called an inclusion
hyperspace if F is monotone in the sense that a subset A C X belongs to F provided A
contains some set B € F. Besides the operations of union and intersection, the set G(X)
possesses an important transversality operation assigning to each inclusion hyperspace F €
G(X) the inclusion hyperspace

Ft={ACX:VFeF (ANF +#2)}.
This operation is involutive in the sense that (F1)+ = F.

It is known that the family G(X) of inclusion hyperspaces on X is closed in the double
power-set P(P(X)) = {0,1}7X) endowed with the natural product topology. The induced
topology on G(X) can be described directly: it is generated by the sub-base consisting of
the sets

Ut={FeGX):UecFlandU ={FeGX):UeF'}
where U runs over subsets of X. Endowed with this topology, G(X) becomes a Hausdorff
supercompact space. The latter means that each cover of G(X) by the sub-basic sets has a
2-element subcover.

The extension of a binary operation * from X to G(X) can be defined in the same
way as for ultrafilters, i.e., by the formula (1) applied to any two inclusion hyperspaces
U,V € G(X). In [7] it was shown that for an associative binary operation % on X the space
G(X) endowed with the extended operation becomes a compact right-topological semigroup.
Besides the Stone-Cech extension, the semigroup G(X) contains many important spaces as
closed subsemigroups. In particular, the space

MNX)={FeGX): F=F"}
of maximal linked systems on X is a closed subsemigroup of G(X). The space A\(X) is
well-known in General and Categorial Topology as the superertension of X, see [13], |11].
Endowed with the extended binary operation, the superextension A\(X) of a semigroup X is
a supercompact right-topological semigroup containing 5(X) as a subsemigroup.

The thorough study of algebraic properties of the superextensions A(X) of groups X was
started in [3] and continued in [4]. In this paper we concentrate at describing the minimal
(left) ideals of A(X).

Understanding the structure of minimal left ideals of the semigroup 3(X) had important
combinatorial consequences. For example, properties of ultrafilters from a minimal left ideal
of B(X) were exploited in the topological proof of the classical Van der Waerden Theorem
[10, 14.3] due to Fustenberg and Katznelson |5|. Minimal left ideals of the semigroup ((Z)
play also an important role in Topological Dynamics, see [1], [2], [10, Ch.19]. We believe that
studying the structure of minimal (left) ideals of the semigroups A(X) also will have some
combinatorial or dynamical consequences.

The main result of this paper is Theorem 3 asserting that the minimal left ideals of the
semigroup A(Z) are compact metrizable topological semigroups topologically isomorphic to
minimal left ideals of the superextension A\(Zj) of the (compact metrizable) group Z, of
integer 2-adic numbers.

1. Right-topological semigroups. In this section we recall some information from [10]
related to right-topological semigroups. By definition, a right-topological semigroup is a
topological space S endowed with a semigroup operation x: S x S — S such that for every
a € S the right shift r,: S — S, ry: © — x % a, is continuous. If the semigroup operation
x: 5 x S — S is continuous, then (S, *) is a topological semigroup.

A non-empty subset I of a semigroup S is called a left (resp. right) ideal it ST C I (resp.
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IS C I). If I is both a left and right ideal in S, then [ is called an ideal in S. Observe that
for every x € S the set Sz = {sx: s € S} (resp. ©S = {xs: s € S}) is a left (resp. right)
ideal in S. Such an ideal is called principal. An ideal I C S is called minimal if any ideal of
S that lies in I coincides with /. By analogy we define minimal left and right ideals of S.
It is easy to see that each minimal left (resp. right) ideal I is principal. Moreover, [ = Sx
(resp. I = xS) for each x € I.

If S is a compact Hausdorff right-topological semigroup, then each minimal left ideal in
S, being principal, is closed in S. By [10, 2.6], each left ideal in S contains a minimal left
ideal. The union of all minimal left ideals of S coincides with the minimal ideal K(S) of S,
[10, 2.8]. By [10, 2.11], all the minimal left ideals of S are mutually homeomorphic.

An element z of a semigroup S is called a right zero in S if xz = 2z for all x € S. It is
clear that z € S is a right zero in S if and only if the singleton {z} is a (minimal) left ideal
in S.

In the sequel we shall often use the following

Lemma 1. Let X,Y be compact right-topological semigroups. If a semigroup homomor-
phism h: X — Y is injective on some minimal left ideal of X, then h is injective on each
minimal left ideal of X.

Proof. Assume that h is injective on a minimal left ideal X a of X and take any other minimal
left ideal Xb of X. By [10, 2.11], the right shift r,: X — X, r,: x + za, is injective on Xb.
Next, consider the right shift r,4): Y — Y, 74 ¥y — y - h(a). It follows from the equality
hor, = rp@e o h and the injectivity of the maps 7,|Xb and h|Xa that the map h|XD is
injective. O

2. Inclusion hyperspaces and superextensions. A family £ of subsets of a set X is called
a linked system on X if AN B # @ for all A,B € L. Such a linked system L is mazimal
linked if £ coincides with any linked system £’ on X that contains £. Each (ultra)filter on
X is a (maximal) linked system. A linked system £ on X is maximal linked if and only if
for any partition X = AU B either A or B belongs to L.

By A(X) we denote the family of all maximal linked systems on X. Since each ultrafilter
on X is a maximal linked system, A\(X) contain the Stone-Cech extension 3(X) of X. It
is easy to see that each maximal linked system on X is an inclusion hyperspace on X and
hence A\(X) C G(X). Moreover, it can be shown that A\(X) = {4 € G(X): A = A*}. Let
also No(X) = {A € G(X): A C A'} denote the family of all linked inclusion hyperspaces
on X. By [6] both the subspaces A(X) and Ny(X) are closed in the compact Hausdorff space
G(X).

Each function f: X — Y between sets X,Y induces a continuous map Gf: G(X) —
G(Y) assigning to an inclusion hyperspace A € G(X) the inclusion hyperspace

Gf(A)={BcCY: f}(B)e A €G(Y).
The function G f maps A(X) into A(Y'), so we can put Af = Gf|\(X).
Given any semigroup operation x: X x X — X on a set X we can extend this operation
to G(X) letting
UxV={ACX: TV eUIV,}oer CV [JoxV,C A4}
zeU
for inclusion hyperspaces U,V € G(X). Equivalently, the product U %V can be defined as

UxV={ACX: {zeX:a'AcV}ecUu}
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where 27'A = {z € X: 2z %2 € A}. By [7] the so-extended operation turns G(X) into a
right-topological semigroup. The structure of this semigroup was studied in details in [7]. In
particular, it was shown that for each group X the minimal left ideals of G(X) are singletons
containing snwvartant inclusion hyperspaces.

We call an inclusion hyperspace A € G(X) invariant if xA = A for all x € X. More
generally, given a subgroup H C X we define A to be H-invariant if z.A = A for all x € H.

It follows from the definition of the topology on G(X) that the set 5(X ) of invariant
inclusion hyperspaces is closed in G(X) and coincides with the minimal ideal K (G(X)) of the
semigroup G(X). Consequently, K (G (X)) is a closed subsemigroup of right zeros in G(X).

3. The minimal ideal of A\(G) for odd groups. In this section we characterize groups G
whose superextension A\(G) has one-point minimal left ideals.

Following [3], we define a group G to be odd if the order of each element x of G is odd.
If G is a finite odd group, then the maximal linked system

L={ACG:|A|>|G|/2}

is invariant. In fact, a group G possesses an invariant maximal linked system if and only if G
is odd, see Theorem 3.2 of [3]. By Proposition 3.1 of [3], a maximal linked system Z € A\(G)
on a group G is invariant if and only if Z is a right zero of the semigroup A(G) if and only
if the singleton {Z} is a minimal left ideal in A\(G). Taking into account that the invariant
maximal linked systems form a closed subsemigroup of right zeros in A(G), we obtain the
main result of this section.

Theorem 1. A group G is odd if and only if all the minimal left ideals of \(G) are singletons.
In this case the minimal ideal K (\(G)) of A(G) is a closed semigroup of right zeros, consisting
of invariant maximal linked systems.

Given a subgroup H of a group G let G/H = {zH: x € G} and 7: G — G/H denote the
quotient map. It induces a continuous map Am: A(G) — A(G/H) between the corresponding
superextensions.

Lemma 2. For any H-invariant maximal linked system A € \(H) C A(G) the restriction
of \t: AM(G) — AN(G/H) to the principal left ideal \(G) x A is injective.

Proof. Fix a section s: G/H — G of . For every £ € MG) let £ = M\r(L) € A(G/H) be
the projection of £ onto G/H and M = As(£) € A(G) be the lift of £ by the section s.

We claim that £ % A = M % A. Since £ x A and M * A are maximal linked systems,
it suffices to check that £+ .4 C M x A. Take any set |J,., ©* A, € L+ A where L € L
and {A;}.er C A. Consider the set M = son(L) € M. For every point y € M find a
point =, € L with y = s o m(x,) and observe that yH = n(y) = n(z,) = =, H, which implies
y 'z, € H and hence y~'z,A,, € A by the H-invariantness of A. Since

MxA> U y(y_lary*Aa:y): U Ty * Ay, C LJ:E*AQC

yeM yeM x€L

we conclude that (J, ., »x A, € M * A
Now we are able to prove that A7: A\(G)*.A — A(G/H) is injective. Take any two distinct

elements £1 x A # Lo % A of A(G) x A. For every i € {1,2} consider the maximal linked
systems £; = Am(L;) = Ar(L;  A) and M; = As(L;). It follows from My x A = Ly % A #
Lox A= Msx*x A that M; # M, and hence

AT(Ly % A) = L1 # Ly = Mr(Ly * A).



146 T. O. BANAKH, V. GAVRYLKIV

Corollary 1. For a normal odd subgroup H of a group G the map Ar: \(G) — A(G/H) is
injective on each minimal left ideal of \(G). Consequently, every minimal left ideal of \(G)
is topologically isomorphic to a minimal left ideal of \(G/H).

Proof. By Lemma 1, it suffices to show that A7 is injective on some minimal left ideal. The
group H, being odd, admits an H-invariant maximal linked system A € \(H) C A(G). By
Lemma 2 the homomorphism Ar is injective on the left ideal A(G) *.A and hence is injective
on any minimal left ideal contained in A(G) x A (it exists because A\(G) is a compact right-
topological semigroup). O

4. Maximal invariant linked systems on groups. As we have seen in the preceding
section, the property of a maximal system £ € A(G) to be invariant is very strong and forces
L to be a right zero of A(G). Such maximal linked systems exist only on odd groups.

On the other hand, maximal invariant linked systems exist on each group. An invariant

linked inclusion hyperspace £ € No(G) is called a mazimal invariant linked system it £ = L’

for any invariant linked inclusion hyperspace £’ € No(G) enlarging £. By the Zorn Lemma,
each invariant linked inclusion hyperspace can be enlarged to a maximal invariant linked
system.

Proposition 1. For any maximal invariant linked system L, on a group G the set
T/CO = {[, € )\(G) L D Eo}
is a left ideal in \(G).

Proof. Let A,B € AG) be maximal linked systems with £, C B. Then for every subset
L e Ly we get
L=|Jz(@'L)e AxLoC AxB

zeG

which means that £, C A * B. n

Observe that Lo C £ C LF for every £ € TLy. The following theorem shows that the
difference L3 \ Lo (and consequently, £\ Lo) is relatively small (for the group G = Z it is
countable!).

Theorem 2. If L is an invariant linked system on an Abelian group G, then for any subset
A€ L3\ Ly there is a point x € G such that xA = G \ A and consequently, A = x> A.

Proof. Fix a subset A € Lg \ Lo. We claim that
aANA=0 (2)

for some a € G. Assuming the converse, we would conclude that the family {zA: x € G}
is linked and then the invariant linked system Lo U {zA: x € G} is strictly larger than Lo,
which impossible because of the maximality of L.
Next, we find b € G with
AUbLA =G. (3)
Assuming that no such a point b exist, we conclude that for any x,y € G the union tAUyA #
G. Then (G\zA)N(G\yA) = G\ (rAUyA) # &, which means that the family {G\zA: = € G}

is linked and invariant. We claim that G\ A € L£3. Assuming the converse, we would conclude
that G \ A misses some set L € Ly. Then L C A and hence A € Ly which is not the
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case. Thus G\ A € L3 and hence {G \ zA: x € G} C Li because L3 is invariant. Since
LoU{G\ zA: x € G} is an invariant linked system containing Ly, the maximality of L
guarantees that G\ A € £, which contradicts A € L.

Finally we show that G\ A = aA = bA. Observe that (2) and (3) imply that aA C bA
and hence A C a~'0A. On the other hand, (2) and (3) are equivalent to a P AN A = &
and b"'AU A = @, which implies a='A C b~'A and this yields ba 'A C A. Unifying this
inclusion with A C a7 'bA = ba—' A, we conclude that ba—'A = A and hence bA = aA. Now
looking at (2) and (3) we see that G\ A = aA = bA. O

5. Minimal left ideals of \(Z). In this section we apply the results of the preceding sections
to describe the structure of minimal left ideals of the semigroup A(Z). It turns out that they
are isomorphic to minimal left ideals of the superextension A(Z3) of the compact topological
group Zs of integer 2-adic numbers. We recall that Z, = lim Cy is a totally disconnected
compact metrizable Abelian group, which is the limit of the inverse sequence
= O — ... = Cy — Cy — Oy

of cyclic 2-groups Con. Let m: Z — Zs denote the canonic (injective) homomorphism of Z
into Z, (induced by the quotient maps mox: Z — Z /287 = Cor, k € N).

By the continuity of the functor A in the category of compact Hausdorff spaces (see [11,
2.3.2]), the superextension A(Z,) can be identified with the limit of the inverse sequence

= AMCon) — ..o = AMCs) — A(Cy) — A(Cy)

of finite semigroups A(Cyx ). This implies that A(Zy) is a metrizable zero-dimensional compact
topological semigroup.

Theorem 3. The homomorphism Aw: A(Z) — X(Z>) is injective on each minimal left ideal
of \(Z). Consequently, the minimal left ideals of the semigroup \(Z) are compact metrizable
topological semigroups.

Proof. By Lemma 1, it suffices to check that the homomorphism A7 is injective on some
minimal left ideal of A(Z). Fix any maximal invariant linked system L, on Z (such a system
exists by Zorn Lemma). By Proposition 1 the set 1Ly = {L € AM(Z): L D Lo} is a left ideal
which necessarily contains a minimal left ideal I of A\(Z). We claim that the homomorphism
AT AN(Z) — A(Z2) is injective on I. Given two different maximal linked system A, B € I we
need to check that A\w(A) # An(B).

Since the superextension A\(Z) is the limit of the inverse sequence

o ACon) — ..o = ANCg) = A(Cy) — A(Cy),

the inequality Am(A) # An(B) will follow as soon as we find & € N such that Amor(A) #
Aok (B) where Amor: A(Z) — A(Car) is the homomorphism induced by the quotient homo-
morphism 7o : Z — Cas.

Pick any set A € A\ B. Since A € Ly \ Loy, we can apply Theorem 2 to conclude that
A = 2n+ A for some positive number n € Z. The later equality means that A = 7, (7, (A))
is the complete preimage of the set my,(A) under the quotient homomorphism my,: Z —
Z7.)2nZ = Csy,. Tt follows that mo,(A) € Ama,(A) \ Ama,(B) and hence A, (A) # Ao, (B).

Write the number 2n as the product 2n = 2¥-m for some odd number m and find a (uni-
que) subgroup H C Cy, of order |H| = m. It follows that the quotient group Cy,/H can be
identified with the cyclic 2-group Cyr so that g o o, = mor where q: Cy,, — Cy,/H = Cor is
the quotient homomorphism. Corollary 1 guarantees that the homomorphism Ag: A(Csy,) —
A(Cyr) is injective on each minimal left ideal of A(Cyy,). In particular, it is injective on the mi-
nimal left ideal A7y, (I). Consequently, Amor (A) = Ag(A) # Ag(B) = Ao (B). This completes
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the proof of the injectivity of Am: A(Z) — A(Zz) on the left ideal I and consequently, on
each minimal left ideal J of A\(Z)

Since minimal left ideals of A(Z) are compact, the restriction Arn|J is a topological
isomorphism of J onto the minimal left ideal Aw(J) of A(Zy). Since A(Zz) is a metrizable
topological semigroup, so are the semigroups Aw(J) and J. O]
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