Fourier series and delta-subharmonic functions of zero-type in a half-plane |
|
| Author |
malyutinkg@yahoo.com
Agrarian University of Sumy, Ukrainian Academy of Banking
|
| Abstract |
In terms of Fourier coefficients and associated complete measures a class of just $\delta$-subharmonic functions in a half-plane of a zero type is described.
|
| Keywords |
Fourier coefficient, associated complete measure, subharmonic function, zero type
|
| DOI |
doi:10.30970/ms.30.2.132-138
|
Reference |
1. Rubel L.A. and Taylor B.A. Fourier series method for meromorphic and entire functions, Bull. Soc. Math. France. 96(1968), 53--96.
2. Miles J.B. Quotient representations of meromorphic functions, J. Anal. Math. (1972), 371--388. 3. Kondratyuk A.A. The Fourier series method for entire and meromorphic functions of completely regular growth. I, Mat. Sb. 106(148) (1978), 386--408; English transl. in Math. USSR-Sb. 35 (1979). 4. Kondratyuk A.A. The Fourier series method for entire and meromorphic functions of completely regular growth. II, Mat. Sb. 113(155) (1980), 118--132; English transl. in Math. USSR-Sb. 41 (1982). 5. Kondratyuk A.A. The Fourier series method for entire and meromorphic functions of completely regular growth. III, Mat. Sb. 120(162) (1983), 331--343; English transl. in Math. USSR-Sb. 48 (1984). 6. Malyutin K.G. Fourier series and $\delta$-subharmonic functions of finite $\gamma$-type in a half-plane, Mat. Sb. 192 (2001), № 6, 51--70; English transl. in Sb.: Math. 192 (2001), № 6. 7. Grishin A.F. Continuity and asymptotic continuity of subharmonic functions, Mat. Fiz., Anal., Geom. 1 (1994), 193--215. (Russian) 8. Fedorov M.A. and Grishin A.F. Some questions of the Nevanlinna theory for the complex half-plane, Math. Phys., Anal., Geom. 1 (1998), № 3, 223--271. 9. Ahiezer N.I. Elements of the theory of elliptic functions. Nauka, Moskow 1970; English transl., Amer. Math. Soc., Providence, RI, 1990. 10. Malyutin K.G. Fourier series and $\delta$-subharmonic functions, Trudy Inst. Problem Mat. Mekh. Akad. Nauk Ukr. SSR 3 (1988), 146--157. (Russian) 11. Govorov N.V. Riemann's boundary problem with infinite index. Nauka, Moscow 1986; English transl., Birkhäuser, Basel, 1994. |
| Pages |
132-138
|
| Volume |
30
|
| Issue |
2
|
| Year |
2008
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |