I. V. Andrusyak, P. V. Filevych

THE GROWTH OF AN ENTIRE FUNCTION WITH A GIVEN SEQUENCE OF ZEROS

I. V. Andrusyak, P. V. Filevych. The growth of an entire function with a given sequence of zeros, Matematychni Studii, 30 (2008) 115-124.

Let $\zeta=\left(\zeta_{n}\right)$ be a sequence of complex numbers tending to ∞, and $A(\zeta)$ be the class of entire functions with zeros at the points ζ_{n} and only at them. We investigate the problem on minimal growth of functions from the class $A(\zeta)$. In particular, we prove the existence of an entire function $f \in A(\zeta)$ such that

$$
\lim _{r \rightarrow+\infty} \frac{\ln \ln M_{f}(r)}{\ln N_{\zeta}(r)}=1
$$

where $M_{f}(r)$ is the maximum modulus of f, and $N_{\zeta}(r)$ denotes the integrated counting function of ζ.
И. В. Андрусяк, П. В. Филевич. Рост целой функиий с заданной последовательностью нулей // Математичні Студії. - 2008. - Т.30, №2. - С.115-124.

Пусть $\zeta=\left(\zeta_{n}\right)$ - стремящаяся к ∞ последовательность комплексных чисел, а $A(\zeta)$ класс целых функций с нулями в точках ζ_{n} и только в них. Исследуется вопрос о минимальном росте функций из класса $A(\zeta)$, в частности, доказано существование целой функции $f \in A(\zeta)$ такой, что

$$
\lim _{r \rightarrow+\infty} \frac{\ln \ln M_{f}(r)}{\ln N_{\zeta}(r)}=1,
$$

где $M_{f}(r)$ - максимум модуля f, а $N_{\zeta}(r)$ - усредненная считающая функция ζ.

1. Introduction. Denote by A the class of transcendental entire functions such that $f(z) \not \equiv 0$. For any $f \in A$ and each $r \geq 0$ put

$$
M_{f}(r)=\max \{|f(z)|:|z|=r\}, \quad T_{f}(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta
$$

Let L be the class of function that are positive continuous and increasing to $+\infty$ on \mathbb{R}.
By \mathcal{Z} we denote the class of complex sequences $\zeta=\left(\zeta_{n}\right)$ such that $0<\left|\zeta_{0}\right| \leq\left|\zeta_{1}\right| \leq \ldots$ and $\zeta_{n} \rightarrow \infty, n \rightarrow \infty$. Let $n_{\zeta}(r)=\sum_{\left|\zeta_{n}\right| \leq r} 1$ be the counting function, and

$$
N_{\zeta}(r)=\int_{0}^{r} \frac{n_{\zeta}(t)-n_{\zeta}(0)}{t} d t+n_{\zeta}(0) \ln r
$$

be the integrated counting function of the sequence $\zeta \in \mathcal{Z}$. We say that $f \in A(\zeta)$ if and only if $f \in A$ and the sequence of zeros of the function f such that their moduli form a nondecreasing sequence coinciding with ζ; in this case by the Jensen formula (see [1, p.24])

$$
N_{\zeta}(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|f\left(r e^{i \theta}\right)\right| d \theta-\ln \frac{\left|f^{(\lambda)}(0)\right|}{\lambda!},
$$

2000 Mathematics Subject Classification: 30D20.
where $\lambda=\min \left\{n \in \mathbb{Z}_{+}: f^{(n)}(0) \neq 0\right\}$, we have $N_{\zeta}(r) \leq \ln M_{f}(r)+O(1)(r \rightarrow+\infty)$.
By the classical Weierstrass theorem, $A(\zeta) \neq \varnothing$ for any sequence $\zeta \in \mathcal{Z}$. Moreover, if $g \in A(\zeta), h \in A, f(z)=g(z) e^{h(z)}$, then $f \in A(\zeta)$. Using this fact, it is easily seen that the following statement is true: for any sequence $\zeta \in \mathcal{Z}$ and any function $l \in L$ there exists an entire function $f \in A(\zeta)$ such that

$$
l\left(N_{\zeta}(r)\right)=o\left(\ln M_{f}(r)\right) \quad(r \rightarrow+\infty) .
$$

In other words, one cannot specify any restriction on the growth from above for entire functions with a given sequence of zeros.

The converse problem considered by A. A. Gol'dberg is fundamentally more important ([2]) : how slow is the growth of $\ln M_{f}(r)$ in comparison with the growth of $N_{\zeta}(r)$ for entire functions $f \in A(\zeta)$? In particular, in [2] the following theorems are proved.
Theorem A. For any sequence $\zeta \in \mathcal{Z}$ there exists an entire function $f \in A(\zeta)$ such that

$$
\begin{equation*}
\ln \ln M_{f}(r)=o\left(N_{\zeta}(r)\right) \quad\left(E_{f} \not \supset r \rightarrow+\infty\right), \tag{1}
\end{equation*}
$$

where $E_{f} \subset(1,+\infty)$ is an exceptional set, which has a finite logarithmic measure (i.e., $\left.\int_{E_{f}} \frac{d r}{r}<+\infty\right)$.
Теорема B. For any function $\psi \in L$ such that $\psi(x)=o(x), x \rightarrow+\infty$, there exist a sequence $\zeta \in \mathcal{Z}$ and a set $E \subset(0,+\infty)$ of upper linear density 1 (i.e., $\varlimsup_{r \rightarrow+\infty} \frac{1}{r} \int_{E \cap(0, r)} d t=1$) such that

$$
\begin{equation*}
\psi\left(N_{\zeta}(r)\right)=o\left(\ln \ln M_{f}(r)\right) \quad(E \ni r \rightarrow+\infty) \tag{2}
\end{equation*}
$$

for each entire function $f \in A(\zeta)$.
Another version of statement similar to Theorem A is obtained in [3]. Actually, in [3] some weaker estimate of $\ln M_{f}(r)$ is established, but this estimate holds outside a smaller exceptional set, namely: for any sequence $\zeta \in \mathcal{Z}$ there exists an entire function $f \in A(\zeta)$ such that (1) holds with " O " instead of " O " and with the set E_{f} of finite measure.

In connection with the stated results, the following Problems arise, which are the objects of consideration for our paper.
Problem 1. To what extent the estimate of the exceptional set E_{f} in Theorem A can be improved with preservation of the statement of the theorem?
Problem 2. Find a necessary and sufficient condition on a function $\varphi \in L$ under which for any sequence $\zeta \in \mathcal{Z}$ there exists an entire function $f \in A(\zeta)$ such that

$$
\begin{equation*}
\ln \ln M_{f}(r) \leq \varphi\left(N_{\zeta}(r)\right) \tag{3}
\end{equation*}
$$

for all $r \geq r_{f}$ outside the exceptional set of a finite logarithmic measure (or a finite measure). Problem 3. Does there exist a function $\varphi(x)$ positive on \mathbb{R} and increasing much more slowly than x as $x \rightarrow+\infty$ such that for any sequence $\zeta \in \mathcal{Z}$ there exists an entire function $f \in A(\zeta)$ and we have

$$
\varliminf_{r \rightarrow+\infty} \frac{\ln \ln M_{f}(r)}{\varphi\left(N_{\zeta}(r)\right)}=0 ?
$$

Problem 4. Does there exist a function $\varphi \in L$ such that for any sequence $\zeta \in \mathcal{Z}$ there exists an entire function $f \in A(\zeta)$ satisfying the relation (3) for all $r \geq r_{f}$ (without the exceptional set)?

Concerning Problem 1, the following theorem is true.

Theorem 1. For any sequence $\zeta \in \mathcal{Z}$ there exist an entire function $f \in A(\zeta)$ and a function $\alpha \in L$ such that (1) holds with the exceptional set $E_{f} \subset(0,+\infty)$ that satisfy $\int_{E_{f}} r^{\alpha(r)} d r<$ $+\infty$.

The following theorem is a slight generalization of Theorem B.
Theorem 2. For any function $\psi \in L$ such that

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} \frac{\psi(x)}{x}=0 \tag{4}
\end{equation*}
$$

there exist a sequence $\zeta \in \mathcal{Z}$ and a set $E=\bigcup_{n=0}^{\infty}\left(x_{n}, y_{n}\right)$ such that

$$
\begin{equation*}
1<x_{0}<y_{0}<x_{1}<y_{1}<\ldots, \quad \lim _{n \rightarrow \infty} \frac{\ln y_{n}}{\ln x_{n}}=+\infty \tag{5}
\end{equation*}
$$

and (2) holds for any entire function $f \in A(\zeta)$.
It is easy to show that the set E from Theorem 2 has upper density 1 (even upper logarithmic density 1). Besides, for this set one has

$$
\int_{E} \frac{d r}{r \ln r}=\sum \ln \frac{\ln y_{n}}{\ln x_{n}}=+\infty
$$

As a consequence from Theorems 1 and 2 we obtain the following statement which solves Problem 2.

Theorem 3. Let $\varphi \in L$, and h be a function positive on \mathbb{R} such that

$$
\frac{c_{1}}{r \ln r} \leq h(r) \leq r^{c_{2}} \quad\left(r \geq r_{0}\right)
$$

where c_{1} and c_{2} are positive constants. For any sequence $\zeta \in \mathcal{Z}$ there exists an entire function $f \in A(\zeta)$ such that relation (3) holds for all $r>0$ outside the set $E_{f} \subset(0,+\infty)$ satisfying $\int_{E_{f}} h(r) d r<+\infty$ if and only if the condition (4) holds.

A positive answer to Problem 3 follows from the following statement.
Theorem 4. For any sequence $\zeta \in \mathcal{Z}$ there exists an entire function $f \in A(\zeta)$ such that

$$
\begin{equation*}
\varliminf_{r \rightarrow+\infty} \frac{\ln \ln M_{f}(r)}{\ln N_{\zeta}(r)}=1 \tag{6}
\end{equation*}
$$

The answer to Problem 4 is negative.
Theorem 5. For any function $\varphi \in L$ there exists a sequence $\zeta \in \mathcal{Z}$ such that for all entire functions $f \in A(\zeta)$ the following relation holds

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\ln \ln M_{f}(r)}{\varphi\left(\ln N_{\zeta}(r)\right)}=\infty \tag{7}
\end{equation*}
$$

We remark that Theorems 1-4 remain true if they are reformulated for the Nevanlinna characteristic $T_{f}(r)$ instead of $\ln M_{f}(r)$ (this is obvious concerning Theorems 1 and 4; concerning Theorems 2 and 3 see their proofs). The following Question remains open: is it allowed to replace $\ln M_{f}(r)$ with $T_{f}(r)$ in Theorem 5?

By \mathcal{Z}^{*} we denote the class of finite or countable complex sequences $\zeta=\left(\zeta_{n}\right)$ such that $0 \leq\left|\zeta_{0}\right| \leq\left|\zeta_{1}\right| \leq \ldots$ and, in the case of the countable sequences, $\zeta_{n} \rightarrow \infty$ as $n \rightarrow \infty$. For
$\zeta \in \mathcal{Z}^{*}$ we say that $f \in A(\zeta)$ if and only if $f \in A$ and the sequence of zeros of the function f such that moduli form a nondecreasing sequence coinciding with ζ. It is easily seen that all theorems stated above remain true if \mathcal{Z} is replaced with \mathcal{Z}^{*} in them.

Remark also that problems, similar to ones considered here, but with $n_{\zeta}(r)$ instead of $N_{\zeta}(r)$, are studied in the papers [2], [4-8].
2. Auxiliary results. Suppose that $p \in \mathbb{Z}_{+}$, and $E(z, p)$ is the Weierstrass primary factor, that is

$$
E(z, 0)=1-z ; \quad E(z, p)=(1-z) e^{z+\frac{z^{2}}{2}+\cdots+\frac{z^{p}}{p}}, \quad p \in \mathbb{N} .
$$

The following statement of O. Blumenthal ([9]) is true.
Lemma A. For all $z \in \mathbb{C}$ and $p \in \mathbb{Z}_{+}$the inequality $\ln |E(z, p)| \leq|z|^{p+1}$ holds.
Lemma 1. For any sequence $\zeta \in \mathcal{Z}$ there exists a nonnegative sequence $\lambda=\left(\lambda_{n}\right)$ such that $\lambda_{n} \sim \frac{\ln n}{\ln \left|\zeta_{n}\right|}, n \rightarrow \infty$, and for any sequence of nonnegative integers $\left(p_{n}\right)$ such that $p_{n} \geq\left[\lambda_{n}\right]$, $n \geq n_{0}$, the product

$$
\begin{equation*}
f(z)=\prod_{n=0}^{\infty} E\left(\frac{z}{\zeta_{n}}, p_{n}\right) \tag{8}
\end{equation*}
$$

specifies an entire function $f \in A(\zeta)$. Besides, $\ln M_{f}(r) \leq G_{f}(r):=\sum_{n=0}^{\infty}\left(\frac{r}{\left|\zeta_{n}\right|}\right)^{p_{n}+1}$.
Proof. Suppose that $\left(\alpha_{n}\right)$ is any positive sequence increasing to $+\infty$ such that $\ln \alpha_{n}=$ $o\left(\ln \left|\zeta_{n}\right|\right), n \rightarrow \infty$. Put

$$
\lambda_{n}= \begin{cases}0, & \text { if } \alpha_{n} \geq\left|\zeta_{n}\right| \text { or } n<3 \\ \frac{\ln n+2 \ln \ln n}{\ln \left|\zeta_{n}\right|-\ln \alpha_{n}}, & \text { if } \alpha_{n}<\left|\zeta_{n}\right| \text { and } n \geq 3\end{cases}
$$

Then the sequence $\lambda=\left(\lambda_{n}\right)$ is nonnegative, $\lambda_{n} \sim \frac{\ln n}{\ln \left|\zeta_{n}\right|}, n \rightarrow \infty$, and $\left(\frac{\alpha_{n}}{\left|\zeta_{n}\right|}\right)^{\lambda_{n}}=\frac{1}{n \ln ^{2} n}$ $\left(n \geq n_{0}\right)$. Since $\alpha_{n} \rightarrow+\infty(n \rightarrow \infty)$, the series $\sum_{n=0}^{\infty}\left(\frac{r}{\left|\zeta_{n}\right|}\right)^{\lambda_{n}}$ converges for each fixed $r \geq 0$. According to the inequalities $\lambda_{n} \leq p_{n}+1, n \geq n_{0}$, the series $G_{f}(r)=\sum_{n=0}^{\infty}\left(\frac{r}{\left|\zeta_{n}\right|}\right)^{p_{n}+1}$ also converges for each fixed $r \geq 0$. If $|z| \leq r$ then by Lemma $\mathrm{A} \ln |f(z)| \leq G_{f}(r)$, that is the product in (8) is convergent uniformly and absolutely on each compact set from \mathbb{C}. Therefore, it specifies a entire function $f \in A(\zeta)$, besides, $\ln M_{f}(r) \leq G_{f}(r)$.

The following statement is well known $([10,11])$.
Lemma B. Let a function $l \in L$ have the right-hand derivative $l_{+}^{\prime}(x)$ at each point $x \in \mathbb{R}$, and functions h and ψ be positive integrated on each finite segment. Then for the set $E(a)=$ $\left\{x \in \mathbb{R}: l(x)>a, l_{+}^{\prime}(x)>h(x) \psi(l(x))\right\}$, where $a \in \mathbb{R}$, the following estimate holds

$$
\int_{E(a)} h(x) d x \leq \int_{a}^{\infty} \frac{d y}{\psi(y)}
$$

Lemma 2. Let $l \in L$ and $\underset{r \rightarrow+\infty}{\lim } \frac{l(r)}{\ln r}=0$. Then there exists a set $E=\bigcup_{n=0}^{\infty}\left(x_{n}, y_{n}\right)$ such that relation (5) and $l(r)=o(\ln r)(E \ni r \rightarrow+\infty)$ hold.

Proof. The statement of lemma is trivial if $l(r)=o(\ln r)(r \rightarrow+\infty)$. In the other case the conditions of our lemma imply the existence of a function $\gamma \in L$ such that

$$
\varliminf_{r \rightarrow+\infty} \frac{\gamma(r) l(r)}{\ln r}=0, \quad \varlimsup_{r \rightarrow+\infty} \frac{\gamma(r) l(r)}{\ln r}=+\infty .
$$

Consider the set $E_{0}=\{r>1: \gamma(r) l(r)<\ln r\}$. Then E_{0} and $E_{0} \backslash(1,+\infty)$ are unbounded from above sets. Besides, E_{0} is open. Thus, the set E_{0} is a countable union of intervals. Let us select from this union a sequence of intervals $\left(t_{n} ; y_{n}\right)$ so that for all n the inequality $2 y_{n}<t_{n+1}$ holds and there exists a point $x_{n} \in\left(t_{n} ; y_{n}\right)$ at which $\sqrt{\gamma\left(x_{n}\right) l} l\left(x_{n}\right)=\ln x_{n}$.

Suppose $E=\bigcup\left(x_{n}, y_{n}\right)$. Since $E \subset E_{0}$ and $l(r)=o(\ln r), E_{0} \ni r \rightarrow+\infty, l(r)=o(\ln r)$,
 proved.

The following lemma ([1, c. 338-341]) is used in the proof of Theorem 2.
Lemma C. If a sequence $\zeta \in \mathcal{Z}$ is positive and $\sum_{n=0}^{\infty} \frac{1}{\zeta_{n}}=\infty$, then $r=o\left(T_{f}(r)\right), r \rightarrow+\infty$, for any entire function $f \in A(\zeta)$.

Suppose $f(z) \in A, p \in \mathbb{Z}, c_{p}(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i p \theta} \ln \left|f\left(r e^{i \theta}\right)\right| d \theta$ is the p-th Fourier coefficient of the function $\ln \left|f\left(r e^{i \theta}\right)\right|, d_{p}(r)=\operatorname{Re} c_{p}(r)$.

If $\zeta=\left(\zeta_{n}\right)$ is the sequence of zeros of the function $f, f(0) \neq 0$ and $\ln f(z)=\sum_{p=0}^{\infty} a_{p} z^{p}$ in a neighborhood of the point 0 , then for each $p \in \mathbb{N}$ by the Poisson-Jensen formula ($[1$, p. 16-17]) one has

$$
c_{p}(r)=\frac{1}{2} a_{p} r^{p}+\frac{1}{2 p} \sum_{\left|\zeta_{n}\right|<r}\left(\left(\frac{r}{\zeta_{n}}\right)^{p}-\left(\overline{\zeta_{n}} \frac{p}{r}\right)^{p}\right) .
$$

Further, for $R>r$ we obtain

$$
\begin{gathered}
c_{p}(R)-\left(\frac{R}{r}\right)^{p} c_{p}(r)=\frac{1}{2 p} \sum_{\left|\zeta_{n}\right|<R}\left(\left(\frac{R}{\zeta_{n}}\right)^{p}-\left(\overline{\zeta_{n}} \frac{1}{R}\right)^{p}\right)-\frac{1}{2 p} \sum_{\left|\zeta_{n}\right|<r}\left(\left(\frac{R}{\zeta_{n}}\right)^{p}-\left(\frac{\overline{\zeta_{n}} R}{r^{2}}\right)^{p}\right)= \\
=\frac{1}{2 p} \sum_{r \leq\left|\zeta_{n}\right|<R}\left(\left(\frac{R}{\zeta_{n}}\right)^{p}-\left(\frac{\overline{\zeta_{n}}}{R}\right)^{p}\right)+\frac{1}{2 p} \sum_{\left|\zeta_{n}\right|<r}\left(\left(\frac{\left(\overline{\zeta_{n} R}\right.}{r^{2}}\right)^{p}-\left(\frac{\zeta_{n}}{R}\right)^{p}\right) .
\end{gathered}
$$

From this the sequent statement immediately follows.
Lemma 3. If an entire function f has only positive zeros $\zeta_{0}, \zeta_{1}, \ldots$, then

$$
d_{p}(R)-\left(\frac{R}{r}\right)^{p} d_{p}(r) \geq \frac{1}{2 p} \sum_{r \leq \zeta_{n}<R}\left(\left(\frac{R}{\zeta_{n}}\right)^{p}-\left(\frac{\zeta_{n}}{R}\right)^{p}\right), \quad R>r .
$$

Lemma D ([6, 4]). For any entire function $f(z) \not \equiv 0$ and each $s \in \mathbb{N}$ the following inequalities hold

$$
\begin{gather*}
d_{0}(r)+2 \sum_{p=1}^{s}\left(1-\frac{p}{s}\right) d_{p}(r) \leq \ln M_{f}(r), \tag{9}\\
\left|c_{s}(r)\right| \leq \ln M_{f}(r), \quad r \geq r_{0} . \tag{10}
\end{gather*}
$$

3. Proof of the theorems.

Proof of Theorem 1. Suppose that $\zeta \in \mathcal{Z}$. Then, as it is known, $\ln r=o\left(N_{\zeta}(r)\right), r \rightarrow+\infty$. Thus, there exists a function $\alpha \in L$ such that $\alpha(r) \ln r=o\left(N_{\zeta}(r)\right), r \rightarrow+\infty$. Let $h(r)=r^{\alpha(r)}$. For each $n \in \mathbb{Z}_{+}$put $p_{n}=[\sqrt{n}]$ and consider the product in (8). By Lemma 1, this product defines an entire function $f \in A(\zeta)$ such that $\ln M_{f}(r) \leq G(r)$, where

$$
G(r)=\sum_{n=0}^{\infty}\left(\frac{r}{\left|\zeta_{n}\right|}\right)^{p_{n}+1} .
$$

Put $k(r)=(\ln G(r))^{\prime}, E_{f}=\left\{r>0: \ln G(r)>1, k(r)>h(r) \ln ^{2} G(r)\right\}$.
Let us show that for the functions $\alpha \in L, f \in A(\zeta)$ defined above and the set E_{f}, Theorem 1 is valid.

First, applying Lemma B with $l(r)=\ln G(r), a=1$ and $\psi(y)=y^{2}$, we obtain

$$
\int_{E_{f}} r^{\alpha(r)} d r=\int_{E_{f}} h(r) d r \leq \int_{1}^{\infty} \frac{d y}{y^{2}}<+\infty .
$$

Further, introduce the notation

$$
\mu(r)=\max \left\{\left(\frac{r}{\left|\zeta_{n}\right|}\right)^{p_{n}+1}: n \in \mathbb{Z}_{+}\right\}, \quad \nu(r)=\max \left\{n \in \mathbb{Z}_{+}:\left(\frac{r}{\left|\zeta_{n}\right|}\right)^{p_{n}+1}=\mu(r)\right\} .
$$

It is easy to see that $\mu(r) \rightarrow+\infty, \nu(r) \rightarrow+\infty$, if $r \rightarrow+\infty$. Therefore as $r \rightarrow+\infty$ we have

$$
\begin{gathered}
\ln \mu(r)=\left(p_{\nu(r)}+1\right) \ln \frac{r}{r_{\nu(r)}}=\frac{p_{\nu(r)}+1}{\nu(r)+1} n_{\zeta}\left(r_{\nu(r)}\right) \ln \frac{r}{r_{\nu(r)}} \leq \frac{p_{\nu(r)}+1}{\nu(r)+1} \int_{r_{\nu(r)}}^{r} \frac{n_{\zeta}(t)}{t} d t= \\
=\frac{p_{\nu(r)}+1}{\nu(r)+1}\left(N_{\zeta}(r)-N_{\zeta}\left(r_{\nu(r)}\right)\right)=o\left(N_{\zeta}(r)\right) .
\end{gathered}
$$

In addition, for all $r>0$ and $c>0$ we have

$$
G(r)-\sum_{\sqrt{n} \leq c}\left(\frac{r}{\left|\zeta_{n}\right|}\right)^{p_{n}+1}=\sum_{\sqrt{n}>c}\left(\frac{r}{\left|\zeta_{n}\right|}\right)^{p_{n}+1} \leq \frac{1}{c} \sum_{\sqrt{n}>c}\left(p_{n}+1\right)\left(\frac{r}{\left|\zeta_{n}\right|}\right)^{p_{n}+1} \leq \frac{r}{c} G^{\prime}(r) .
$$

Putting here $c=2 r k(r)=2 r \frac{G^{\prime}(r)}{G(r)}$, we get

$$
G(r) \leq 2 \sum_{\sqrt{n} \leq 2 r k(r)}\left(\frac{r}{\left|\zeta_{n}\right|}\right)^{p_{n}+1} \leq 2(2 r k(r)+1)^{2} \mu(r)
$$

hence if $E_{f} \nexists r \rightarrow+\infty$, then

$$
\begin{gathered}
\ln G(r) \leq \ln 2+2 \ln \left(r h(r) \ln ^{2} G(r)+1\right)+\ln \mu(r) \leq \\
\leq 4(\ln r+\ln h(r)+2 \ln \ln G(r))+\ln \mu(r)=8 \ln \ln G(r)+o\left(N_{\zeta}(r)\right)
\end{gathered}
$$

Thus,

$$
\ln G(r)=o\left(N_{\zeta}(r)\right), \quad E_{f} \not \ngtr r \rightarrow+\infty,
$$

whence, in view of the inequality $\ln M_{f}(r) \leq G(r)$, we obtain (1). Theorem 1 is proved.

Proof of Theorem 2. Let for a function $\psi \in L$ (4) holds. Then it is clear that for any constant $c>0$ we have

$$
\varliminf_{x \rightarrow+\infty} \frac{\psi(c \ln [x])}{\ln [x]}=0
$$

whence it follows that there exist a sequence $\left(n_{k}\right)$ of integers such that $n_{0} \geq 1$, and

$$
\begin{equation*}
\psi\left(\left(n_{0}+\cdots+n_{k}\right) \ln n_{k+1}\right)=o\left(\ln n_{k+1}\right), \quad k \rightarrow \infty . \tag{11}
\end{equation*}
$$

Construct the sequence $\zeta=\left(\zeta_{n}\right)$ as follows:

$$
\underbrace{n_{0}, \ldots, n_{0}}_{n_{0} \text { times }}, \underbrace{n_{1}, \ldots, n_{1}}_{n_{1} \text { times }}, \ldots, \underbrace{n_{k}, \ldots, n_{k}}_{n_{k} \text { times }}, \ldots
$$

For this sequence

$$
\sum_{n=0}^{\infty} \frac{1}{\zeta_{n}}=\sum_{k=0}^{\infty}(\underbrace{\frac{1}{n_{k}}+\ldots+\frac{1}{n_{k}}}_{n_{k} \text { times }})=\sum_{k=0}^{\infty} 1=\infty
$$

Then for each entire function $f \in A(\zeta)$, by Lemma C we obtain

$$
\begin{equation*}
\ln r \leq \ln T_{f}(r), \quad r \geq r_{f} . \tag{12}
\end{equation*}
$$

On the other hand, since $n_{\zeta}(r)=n_{0}+\cdots+n_{k}$ for all $r \in\left[n_{k}, n_{k+1}\right)$ and $k \in \mathbb{Z}_{+}$, we have

$$
N_{\zeta}\left(n_{k+1}\right)=\int_{n_{0}}^{n_{k+1}} \frac{n_{\zeta}(t)}{t} d t \leq n_{\zeta}\left(n_{k+1}-0\right) \int_{1}^{n_{k+1}} \frac{d t}{t}=\left(n_{0}+\cdots+n_{k}\right) \ln n_{k+1} .
$$

Therefore, in view of (11),

$$
\varliminf_{r \rightarrow+\infty} \frac{\psi\left(N_{\zeta}(r)\right)}{\ln r}=0
$$

By Lemma 2, there exists a set $E=\bigcup_{n=0}^{\infty}\left(x_{n}, y_{n}\right)$ such that relations (5) and $\psi\left(N_{\zeta}(r)\right)=$ $o(\ln r), E \ni r \rightarrow+\infty$ are valid. Then, by (12) for each entire function $f \in A(\zeta)$, we have $\psi\left(N_{\zeta}(r)\right)=o\left(\ln T_{f}(r)\right), E \ni r \rightarrow+\infty$, whence we obtain (2). Theorem 2 is proved.

Proof of Theorem 4. Consider any sequence $\zeta \in \mathcal{Z}$ and let us prove that there exists an entire function $f \in A(\zeta)$ such that relation (6) holds. Let

$$
\begin{equation*}
\rho_{\zeta}:=\varlimsup_{r \rightarrow+\infty} \frac{\ln n_{\zeta}(r)}{\ln r}=\varlimsup_{n \rightarrow \infty} \frac{\ln n}{\ln \left|\zeta_{n}\right|} \tag{13}
\end{equation*}
$$

be the order of the counting function for the sequence ζ. As it is well known [1, p. 63], $n_{\zeta}(r)$ in (13) can be replaced with $N_{\zeta}(r)$.

First suppose that $\rho_{\zeta}<+\infty$. Let p be the genus of the sequence ζ. Consider the entire function (8) with $p_{n}=p, n \in \mathbb{Z}_{+}$, that is the Weierstrass canonical product of genus p. For this product in the case of $p=0$ we have (see [1, p.273])

$$
\lim _{r \rightarrow+\infty} \frac{\ln M_{f}(r)}{N_{\zeta}(r)}=1
$$

whence we derive (6). And if $p>0$ (thus $\rho_{\zeta}>0$), and $\left(x_{n}\right)$ is a sequence increasing to $+\infty$ such that $\ln N_{\zeta}\left(x_{n}\right) \sim \rho_{\zeta} \ln x_{n}, n \rightarrow \infty$, then by Borel's theorem [1, p. 79], according to which the order of f equals ρ_{ζ}, we have $\ln \ln M_{f}\left(x_{n}\right) \leq(\rho+o(1)) \ln x_{n}, n \rightarrow \infty$, whence we again obtain (6).

Let $\rho_{\zeta}=+\infty$, and $\left(\lambda_{n}\right)$ be a nonnegative sequence such that the conclusions of Lemma 1 are true. According to (13) we have $\lim _{n \rightarrow \infty} \lambda_{n}=+\infty$, therefore the set

$$
N=\left\{n \in \mathbb{Z}_{+}: \lambda_{k} \leq \lambda_{n} \text { for all } k=0, \ldots n\right\}
$$

is infinite.
Consider also the set $E=\left\{r>0: N_{\zeta}(r)>e^{2}, n_{\zeta}(r)>N_{\zeta}(r) \ln ^{2} N_{\zeta}(r)\right\}$. Taking into account that $n_{\zeta}(r)=r\left(N_{\zeta}(r)\right)_{+}^{\prime}$, by Lemma B we have

$$
\int_{E} \frac{d r}{r} \leq \int_{e^{2}}^{\infty} \frac{d y}{y \ln ^{2} y}=\frac{1}{2}
$$

Remark that the logarithmic measure of the interval $(r, e r)$ is equal to 1 . Thus, for any $r>0$ such that $N_{\zeta}(r)>e^{2}$, the interval $(r, e r)$ contains a point x that does not belong to the sequence $\left(\left|\zeta_{n}\right|\right)$ such that $n_{\zeta}(x) \leq N_{\zeta}(x) \ln ^{2} N_{\zeta}(x)$.

Put

$$
m(r)=\min \left\{m \geq n_{\zeta}(r)+1: \sum_{n=m+1}^{\infty}\left(\frac{r}{\left|\zeta_{n}\right|}\right)^{\lambda_{n}} \leq \frac{1}{2}\right\}
$$

Choose $n_{0} \in N$ so that $r_{n_{0}}>1, N\left(r_{n_{0}}\right)>e^{2}$, and on the interval $\left(r_{n_{0}}, e r_{n_{0}}\right)$ choose a point x_{0} that does not belong to the sequence $\left(\left|\zeta_{n}\right|\right)$ and such that $n_{\zeta}\left(x_{0}\right) \leq N_{\zeta}\left(x_{0}\right) \ln ^{2} N_{\zeta}\left(x_{0}\right)$.

Suppose that we have already defined integers $n_{0}<\cdots<n_{k}$ and real numbers $x_{0}<\cdots<$ x_{k} different from the members of the sequence $\left(\left|\zeta_{n}\right|\right)$. Notice that $r_{n\left(x_{k}\right)}<x_{k}<r_{n\left(x_{k}\right)+1}$, and put

$$
n_{k+1}=\min \left\{m \in N: m \geq n_{k}+1, \sum_{n=n_{\varsigma}\left(x_{k}\right)+1}^{m\left(x_{k}\right)}\left(\frac{x_{k}}{\left|\zeta_{n}\right|}\right)^{\lambda_{m}} \leq \frac{1}{2}\right\} .
$$

Then on the interval $\left(r_{n_{k+1}}, e r_{n_{k+1}}\right)$ we select a point x_{k+1} that does not belong to the sequence $\left(\left|\zeta_{n}\right|\right)$, and $n_{\zeta}\left(x_{k+1}\right) \leq N_{\zeta}\left(x_{k+1}\right) \ln ^{2} N_{\zeta}\left(x_{k+1}\right)$.

For each $k \in \mathbb{Z}_{+}$by l_{k} we denote the largest index of the numbers $\lambda_{0}, \ldots, \lambda_{n_{\varsigma}\left(x_{k}\right)}$:

$$
l_{k}=\max \left\{n \in\left\{0, \ldots, n_{\zeta}\left(x_{k}\right)\right\}: \lambda_{n}=\max \left\{\lambda_{0}, \ldots, \lambda_{n_{\zeta}\left(x_{k}\right)}\right\}\right\}
$$

It is clear that $n_{k} \leq l_{k} \leq n_{\zeta}\left(x_{k}\right), r_{l_{k}} \leq x_{k} \leq e r_{l_{k}}$.
For each $n \in\left\{0, \ldots, n_{\zeta}\left(x_{0}\right)\right\}$ put $p_{n}=\left[\lambda_{l_{0}}\right]$ and let $p_{n}=\left[\lambda_{l_{k+1}}\right]$ for each $n \in\left\{n_{\zeta}\left(x_{k}\right)+\right.$ $\left.1, \ldots, n_{\zeta}\left(x_{k+1}\right)\right\}$ and $k \in \mathbb{Z}_{+}$. Consider the product in (8), which by Lemma 1 specifies the entire function $f \in A(\zeta)$. Let us prove that for this function relation (6) is satisfied.

For any $k \in \mathbb{Z}_{+}$we have

$$
\begin{gathered}
\ln M_{f}\left(x_{k}\right) \leq \sum_{n=0}^{\infty}\left(\frac{x_{k}}{\left|\zeta_{n}\right|}\right)^{p_{n}+1} \leq \\
\leq \sum_{n=0}^{n_{\zeta}\left(x_{k}\right)}\left(\frac{x_{k}}{\left|\zeta_{n}\right|}\right)^{p_{n}+1}+\sum_{n=n_{\zeta}\left(x_{k}\right)+1}^{m\left(x_{k}\right)}\left(\frac{x_{k}}{\left|\zeta_{n}\right|}\right)^{\lambda_{n_{k+1}}}+\sum_{n=m\left(x_{k}\right)+1}^{\infty}\left(\frac{x_{k}}{\left|\zeta_{n}\right|}\right)^{\lambda_{n}} \leq \\
\leq x_{k}^{\lambda_{l_{k}}+1} \sum_{n=0}^{n_{\zeta}\left(x_{k}\right)}\left(\frac{1}{\left|\zeta_{n}\right|}\right)^{p_{n}+1}+\frac{1}{2}+\frac{1}{2}<x_{k}^{\lambda_{l_{k}}+1} G_{f}(1)+1 .
\end{gathered}
$$

Then we obtain, as $k \rightarrow \infty$

$$
\begin{gathered}
\ln \ln M_{f}\left(x_{k}\right) \leq(1+o(1)) \lambda_{l_{k}} \ln x_{k}=(1+o(1)) \frac{\ln l_{k}}{\ln r_{l_{k}}} \ln r_{l_{k}}=(1+o(1)) \ln l_{k} \leq \\
\leq(1+o(1)) \ln n_{\zeta}\left(x_{k}\right) \leq(1+o(1)) \ln \left(N_{\zeta}\left(x_{k}\right) \ln ^{2} N_{\zeta}\left(x_{k}\right)\right)= \\
=(1+o(1)) \ln N_{\zeta}\left(x_{k}\right),
\end{gathered}
$$

whence we obviously derive (6). Theorem 4 is proved.

Proof of Theorem 5. Let $\varphi \in L$. Let us prove that there exists a sequence $\zeta \in \mathcal{Z}$ such that for any entire function $f \in A(\zeta)$ relation (7) holds.

Let $h(x)=e^{\varphi^{2}(x)}$ and $\gamma \in L$ be any function such that

$$
\begin{equation*}
\gamma(x) \leq \min \left\{\ln x ; \frac{1}{3} h^{-1}(\ln x)\right\}, \quad x \geq x_{0} . \tag{14}
\end{equation*}
$$

Put $n_{0}=3$ and define inductively

$$
\begin{equation*}
n_{k}=\min \left\{n \in \mathbb{N}: m_{k-1}:=n_{0}+\ldots+n_{k-1}<\frac{n}{k} ; k m_{k-1}<\min \left\{h^{-1}(\gamma(n)) ; \gamma(n)\right\}\right\} \tag{15}
\end{equation*}
$$

for each $k \in \mathbb{N}$.
Let us generate the sequence ζ in the following way:

$$
\underbrace{1, \ldots, 1}_{n_{0} \text { times }}, \underbrace{e, \ldots, e}_{n_{1} \text { times }}, \ldots, \underbrace{e^{k}, \ldots, e^{k}}_{n_{k} \text { times }}, \ldots
$$

Let $R_{k}=e^{k+\frac{\gamma\left(n_{k}\right)}{n_{k}}}$. Then $e^{k}<R_{k}$ for each $k \in \mathbb{Z}_{+}$and, according to (14), $R_{k}<e^{k+1}$ for each $k \geq k_{0}$.

Further, using (15), we obtain

$$
\begin{align*}
N_{\zeta}\left(e^{k}\right) & =\int_{1}^{e^{k}} \frac{n(t)}{t} d t \leq \int_{1}^{e^{k}} \frac{m_{k-1}}{t} d t=k m_{k-1}, \quad k \in \mathbb{N} ; \tag{16}\\
N_{\zeta}\left(R_{k}\right) & =N_{\zeta}\left(e^{k}\right)+\int_{e^{k}}^{R_{k}} \frac{n(t)}{t} d t=N_{\zeta}\left(e^{k}\right)+\int_{e^{k}}^{R_{k}} \frac{m_{k}}{t} d t \leq \\
& \leq k m_{k-1}+m_{k} \frac{\gamma\left(n_{k}\right)}{n_{k}} \leq 3 \gamma\left(n_{k}\right), \quad k \geq k_{0} . \tag{17}
\end{align*}
$$

Consider any function $f \in A(\zeta)$. The following two cases are possible.
Case 1: there exist infinitely many $k \in \mathbb{Z}_{+}$such that $\left|c_{p}\left(e^{k}\right)\right| \geq \frac{1}{4} \gamma\left(n_{k}\right)$ for some integer p. In this case, for all such sufficiently large k, according to (10), (15) and (16), we have

$$
\ln M_{f}\left(e^{k}\right) \geq \frac{1}{4} \gamma\left(n_{k}\right) \geq \frac{1}{4} h\left(k m_{k-1}\right) \geq \frac{1}{4} h\left(N_{\zeta}\left(e^{k}\right)\right),
$$

whence we easily obtain relation (7).
Case 2: $\left|c_{p}\left(e^{k}\right)\right|<\frac{1}{4} \gamma\left(n_{k}\right)$ for all $k \geq k_{0}$ and each integer p. In this case we put $s_{k}=\left[\frac{n_{k}}{\ln ^{2} n_{k}}\right]$ and suppose $1 \leq p \leq s_{k}$; then, according to (14), we obtain uniformly with respect to such p

$$
0 \leq \frac{p \gamma\left(n_{k}\right)}{n_{k}} \leq \frac{s_{k} \ln n_{k}}{n_{k}} \leq \frac{1}{\ln n_{k}} \rightarrow 0, \quad n \rightarrow \infty .
$$

Thus, for $k \geq k_{0}$, accordingly to Lemma 3 , we have

$$
\begin{gathered}
d_{p}\left(R_{k}\right) \geq \frac{n_{k}}{2 p}\left(\left(\frac{R_{k}}{e^{k}}\right)^{p}-\left(\frac{e^{k}}{R_{k}}\right)^{p}\right)-\left(\frac{R_{k}}{e^{k}}\right)^{p}\left|c_{p}\left(e^{k}\right)\right|= \\
=\frac{n_{k}}{2 p}\left(e^{\frac{p \gamma\left(n_{k}\right)}{n_{k}}}-e^{-\frac{p \gamma\left(n_{k}\right)}{n_{k}}}\right)-e^{\frac{p \gamma\left(n_{k}\right)}{n_{k}}} \cdot \frac{1}{4} \gamma\left(n_{k}\right) \geq \frac{n_{k}}{2 p} \frac{2}{3} \frac{2 p \gamma\left(n_{k}\right)}{n_{k}}-\frac{1}{3} \gamma\left(n_{k}\right)=\frac{1}{3} \gamma\left(n_{k}\right) .
\end{gathered}
$$

Therefore, using (9), (14), and (17), we get

$$
\begin{gathered}
\ln M_{f}\left(R_{k}\right) \geq \frac{1}{3} \gamma\left(n_{k}\right) \cdot 2 \sum_{p=1}^{s_{k}} \frac{s_{k}-p}{p}=\frac{1}{3} \gamma\left(n_{k}\right)\left(s_{k}-1\right)> \\
>\ln n_{k} \geq h\left(3 \gamma\left(n_{k}\right)\right) \geq h\left(N_{\zeta}\left(R_{k}\right)\right), \quad k \geq k_{0}
\end{gathered}
$$

whence we again obtain (7). Theorem 5 is proved.

REFERENCES

1. Гольдберг А.А., Островский И.В. Распределение значений мероморфных функций. - М.: Наука 1970.
2. Гольдберг А.А. О представлении мероморфной функиии в виде частного целых функиий // Изв. вузов. Мат. - 1972. - №10 (125). - С. 13-17.
3. Frank G., Hennekemper W., Polloczek G. Über die Nullstellen meromorpher Funktionen und deren Ableitungen // Math. Ann. - 1977. - V. 225. - S. 145-154.
4. Bergweiler W. A question of Gol'dberg concerning entire functions with prescribed zeros |/ J. Anal. Math. - 1994. - V. 63. - P. 121-129.
5. Хирівський І.В. Мінімальне зростання цілих функиій із заданою послідовністю нулів // Мат. студ. - 1994. - Т. 3. - С. 49-51.
6. Bergweiler W. Canonical products of infinite order // J. reine angew. Math. - 1992. - V. 430. - P. 85-107.
7. Miles J. On the growth of entire functions with zero sets having infinite exponent of convergence // Ann. Acad. Sci. Fenn. Math. - 2002. - V. 27. - P. 69-90.
8. Sheremeta M.M. A remark to the construction of canonical products of minimal growth // Mat. fiz., anal., geom. - 2004. - V. 11, №2. - P. 243-248.
9. Blumenthal O. Principes de la théory des fonctions entières d'ordre infini. - Paris: Gauthier-Villars, 1910.
10. Hayman W.K. The local growth of power series: a survey of the Wiman-Valyron method // Canad. Math. Bull. - 1974. - V. 17, №3. - P. 317-358.
11. Скаскив О.Б. О некоторых соотношениях между максимумом модулл и максимальным членом целого ряда Дирихле // Мат. заметки. - 1999. - Т. 66, №2. - С. 282-292.

Faculty of Mechanics and Mathematics, Lviv Ivan Franko National University, tftj@franko.lviv.ua

