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Let ¢ = (¢,) be a sequence of complex numbers tending to oo, and A({) be the class of
entire functions with zeros at the points (,, and only at them. We investigate the problem on
minimal growth of functions from the class A((). In particular, we prove the existence of an
entire function f € A(¢) such that

lim Inln My(r) _q
rotoo INNe(r
where My (r) is the maximum modulus of f, and N¢
of .

A~ —

r) denotes the integrated counting function

. B. Aunpycsk, I1. B. @unesud. Pocm yeaoli Gynkuyutl ¢ 3a0annoti nociedosamensbHocmsio
nyaet // Maremaruuni Cryaii. — 2008. — T.30, Ne2. — C.115-124.

ITycrs ¢ = () — cTpemsinascsa K 00 HOCJIEI0BATEIHLHOCT KOMILIEKCHBIX yuces, a A(() —
KJIace nenblx (pyHKouil ¢ HyasMu B TOYKax (, U TOJLKO B HuX. cciemyercda BOIPOC O MH-
HUMAJIBbHOM pocte dyHkuuit u3 knacca A(C), B 4aCTHOCTH, JOKA3AHO CyNIECTBOBAHHUE IEJIOH

dyuxmpn f € A(¢) Takoii, uro
Inln My(r)

lim ——————= =1,
rotoo INNe(r)

rae My (r) — makcuMmy™m momyist f, a Ne(r) — ycpenHeHHas canTaomas QyHKIus ¢.

1. Introduction. Denote by A the class of transcendental entire functions such that
f(2) #£0. For any f € A and each r > 0 put

1 2m )
M) = max{f ()] el = ), ) = 5 [ 1 |Gl
0
Let L be the class of function that are positive continuous and increasing to +o0c on R.

By Z we denote the class of complex sequences ¢ = ((,) such that 0 < [(o] < |G| < ...
and ¢, — 00, n — o0. Let n¢(r) =>_ <, 1 be the counting function, and

Ne(r) = /07“ Mdt +ne(0)Inr

be the integrated counting function of the sequence ¢ € Z. We say that f € A(() if and
only if f € A and the sequence of zeros of the function f such that their moduli form a
nondecreasing sequence coinciding with ¢; in this case by the Jensen formula (see [1, p.24])

1o A ™(0
Ne(r) = %/0 ln|f(re’9)|d9—ln—’f )\!< N,
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where A = min{n € Z, : f™(0) # 0}, we have N¢(r) < In M;(r) + O(1) (r — +00).

By the classical Weierstrass theorem, A(() # @ for any sequence ¢ € Z. Moreover, if
g€ A(Q), h€ A, f(z) = g(2)e"® then f € A(¢). Using this fact, it is easily seen that the
following statement is true: for any sequence ( € Z and any function | € L there exists an
entire function f € A(() such that

I(N¢(r)) = o(In My(r)) (r — 400).
In other words, one cannot specify any restriction on the growth from above for entire
functions with a given sequence of zeros.

The converse problem considered by A.A.Gol’dberg is fundamentally more important
(12]) : how slow is the growth of In M¢(r) in comparison with the growth of N¢(r) for entire
functions f € A(C)? In particular, in [2] the following theorems are proved.

Theorem A. For any sequence ( € Z there exists an entire function f € A(() such that
Inln M (r) = o(N¢(r)) (Ef #r — +00), (1)

where Ef C (1,400) is an exceptional set, which has a finite logarithmic measure (i.e.,
dr
S B T < +00).

r

Teopema B. For any function ¢ € L such that ¢(z) = o(z), © — +oo, there exist a
sequence ( € Z and a set E C (0,+00) of upper linear density 1 (i.e., ligl %fEm(O " dt =1)

such that
Y(Ne(r)) = o(Inln My(r)) (E>r — +00) (2)

for each entire function f € A(().

Another version of statement similar to Theorem A is obtained in [3]. Actually, in [3]
some weaker estimate of In M (r) is established, but this estimate holds outside a smaller
exceptional set, namely: for any sequence ( € Z there exists an entire function f € A(()
such that (1) holds with "O" instead of "o" and with the set E; of finite measure.

In connection with the stated results, the following Problems arise, which are the objects
of consideration for our paper.

Problem 1. To what extent the estimate of the exceptional set Ey in Theorem A can be
improved with preservation of the statement of the theorem?

Problem 2. Find a necessary and sufficient condition on a function ¢ € L under which for
any sequence ( € Z there exists an entire function f € A(() such that

Inln My (r) < ¢(Ne(r)), (3)

for all > 1 outside the exceptional set of a finite logarithmic measure (or a finite measure).

Problem 3. Does there exist a function ¢(x) positive on R and increasing much more slowly
than x as x — oo such that for any sequence ( € Z there exists an entire function f € A(()
and we have

Inln My(r)
rtoo @(Ne(r))
Problem 4. Does there exist a function ¢ € L such that for any sequence ¢ € Z there exists
an entire function f € A(() satisfying the relation (3) for all v > r (without the exceptional
set)?
Concerning Problem 1, the following theorem is true.

=07
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Theorem 1. For any sequence ¢ € Z there exist an entire function f € A(() and a function
a € L such that (1) holds with the exceptional set Ey C (0,400) that satisfy fEf redr <
+00.

The following theorem is a slight generalization of Theorem B.
Theorem 2. For any function 1) € L such that
lim ¥(z)

Tr—+00 x

=0, (4)

there exist a sequence ¢ € Z and a set E = J~ (%n, y,) such that

. Iny,
l<zo<yo<m <y <..., l1ml = 400 (5)
n—oo In 1,

and (2) holds for any entire function f € A(().

It is easy to show that the set E from Theorem 2 has upper density 1 (even upper
logarithmic density 1). Besides, for this set one has

dr Iny,
= 1 = .
/E rinr Z "o Tp oo
As a consequence from Theorems 1 and 2 we obtain the following statement which solves
Problem 2.

Theorem 3. Let ¢ € L, and h be a function positive on R such that
g < h(r) <r® (r>rg),

rinr
where ¢, and co are positive constants. For any sequence ( € Z there exists an entire function

f € A(C) such that relation (3) holds for all r > 0 outside the set Ey C (0,400) satisfying
fEf h(r)dr < 4oc if and only if the condition (4) holds.

A positive answer to Problem 3 follows from the following statement.

Theorem 4. For any sequence ( € Z there exists an entire function f € A(() such that

Inln M¢(r)

=1. 6
7‘—1>_5—noo IHNC(T> ()

The answer to Problem 4 is negative.

Theorem 5. For any function ¢ € L there exists a sequence ( € Z such that for all entire
functions f € A(() the following relation holds

lim M = 00. (7)
r—+oo o(In Ne(r))

We remark that Theorems 1-4 remain true if they are reformulated for the Nevanli-
nna characteristic T¢(r) instead of In M (r) (this is obvious concerning Theorems 1 and 4;
concerning Theorems 2 and 3 see their proofs). The following Question remains open: is it
allowed to replace In My(r) with Ty(r) in Theorem 57

By Z* we denote the class of finite or countable complex sequences ( = ((,) such that
0 <G| <[] < ... and, in the case of the countable sequences, ¢, — oo as n — oo. For
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¢ € Z* we say that f € A(C) if and only if f € A and the sequence of zeros of the function
f such that moduli form a nondecreasing sequence coinciding with (. It is easily seen that
all theorems stated above remain true if Z is replaced with Z* in them.

Remark also that problems, similar to ones considered here, but with n.(r) instead of
N¢(r), are studied in the papers 2], [4-8|.

2. Auxiliary results. Suppose that p € Z,, and E(z,p) is the Weierstrass primary factor,
that is

22 2P
E(z,0)=1—z E(z,p)=(1—-2)e 27" % peN.
The following statement of O. Blumenthal ([9]) is true.
Lemma A. For all z € C and p € Z, the inequality In|E(z,p)| < |z|P™! holds.

Lemma 1. For any sequence ( € Z there exists a nonnegative sequence A = (\,) such that
Ap ~ B — oo, and for any sequence of nonnegative integers (p,) such that p, > [\.],

T[]
n > ng, the product
-[IE (Ci pn> 8)
n=0 n
0 pn+1
specifies an entire function f € A((). Besides, In M¢(r) < Gy(r) Z (’C ) i

Proof. Suppose that («,) is any positive sequence increasing to +o0o such that lncq,, =
o(In|¢,|), n — oo. Put

0, if ay, > |Cu] or < 3;
A=< Inn+2Inlnn

—, if dn > 3.
i —Ina,’ if o, < |¢,| and n > 3

. . Inn Qi \ Mn 1
Then the sequence A = ()\,,) is nonnegative, \, ~ —— n — o0, and (—) = —

An
(n > nyg). Since @, — +oo (n — o0), the series >~ <ﬁ> converges for each fixed

&) pn“‘l
r
r > 0. According to the inequalities A, < p,, + 1, n > ng, the series Gy(r) = Z (m)

also converges for each fixed » > 0. If |z| < r then by Lemma A In|f(z)] < Gy(r), that
is the product in (8) is convergent uniformly and absolutely on each compact set from C.
Therefore, it specifies a entire function f € A((), besides, In M (r) < G¢(r). ]

The following statement is well known (|10, 11]).

Lemma B. Let a function | € L have the right-hand derivative I, (x) at each point x € R,
and functions h and v be positive integrated on each finite segment. Then for the set F(a) =
{xeR: l(x) >a, I' (x) > h(x)y(l(x))}, where a € R, the following estimate holds

h(z)dx < —.
/L‘C(a) a w(?ﬂ
{(r) : >
Lemma 2. Let [ € L and lim Wy = = 0. Then there exists a set E = |J (v, y,) such that
r—+4oo 1T n=0

relation (5) and I(r) = o(lnr) (E 3 r — +00) hold.
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Proof. The statement of lemma is trivial if I(r) = o(lnr) (r — +00). In the other case the
conditions of our lemma imply the existence of a function v € L such that
2000 e 200
rotoo N7 r—+oo Inr

Consider the set Ey = {r > 1 : y(r)l(r) < lnr}. Then Ey and Ey\(1, +00) are unbounded
from above sets. Besides, Fj, is open. Thus, the set Ej is a countable union of intervals.
Let us select from this union a sequence of intervals (¢,;y,) so that for all n the inequality
2y, < t,41 holds and there exists a point x, € (t,;y,) at which \/v(x,)l(x,) = Inx,.

Suppose E = |J(zn, yn). Since E C Ey and I(r) = o(Inr), Ey > r — 400, I(r) = o(Inr),
Iy, y(ya)l(yn)

o, Al -

proved. O

E 5 r — +4o00. Further,

Y(yn) — +00, n — oo. The lemma is

The following lemma ([1, ¢. 338-341]) is used in the proof of Theorem 2.

oo 1

Lemma C. If a sequence ¢ € Z is positive and )~ r

for any entire function f € A(().

= 00, then r = o(T§(r)), r — 400,

Suppose f(z) € A, p € Z, ¢y(r) = 5= 0% e~ 1n | f(re?)|dd is the p-th Fourier coefficient

of the function In|f(re)|, d,(r) = Rec,(r).
If ¢ = (¢u) is the sequence of zeros of the function f, f(0) # 0 and In f(2) = 377 a,2”
in a neighborhood of the point 0, then for each p € N by the Poisson—Jensen formula (|1,

p.16-17|) one has

Further, for R > r we obtain

= (Bo0-3 5 (B -G -5 2 (- G-

ICnl<R [Cnl<r
1 R\? (P 1 CuR\P  [Ca\P
2 S (-G S (G-
w2 () - (7)) 52 (Gr) - (%))
p r<|(n|<R Cn R p [Cnl<r r R
From this the sequent statement immediately follows.
Lemma 3. If an entire function f has only positive zeros (g, (1, ..., then
R\p 1 RN\P Cn\P
BR) - (C)hn =g 3 ((0) - (%)) #>r

Lemma D ([6, 4]|). For any entire function f(z) # 0 and each s € N the following
inequalities hold

do(r)+2) " (1= 2) dy(r) <1y (r), (9)

les(r)] < InMy(r), r>r. (10)
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3. Proof of the theorems.

Proof of Theorem 1. Suppose that ¢ € Z. Then, as it is known, Inr = o(N¢(r)), r — +oo.
Thus, there exists a function o € L such that a(r) Inr = o(N¢(r)), r — +o0o. Let h(r) = r*"),
For each n € Z, put p, = [\/n] and consider the product in (8). By Lemma 1, this product
defines an entire function f € A(¢) such that In My (r) < G(r), where

Glr) = 2 (ﬁ)w |

Put k(r) = (InG(r)), Ef = {r >0: InG(r) > 1, k(r) > h(r)In* G(r)}.

Let us show that for the functions a € L, f € A(() defined above and the set Ey,
Theorem 1 is valid.

First, applying Lemma B with [(r) = InG(r), a = 1 and ¥(y) = y*, we obtain

[ o [ o< [ < e
Yy

Further, introduce the notation

1(r) = max { (Kf;' pﬁl ne Z+} ~ max {n €z, : (ﬁ)w _ p(r)} |

It is easy to see that u(r) — 400, v(r) — +o0, if r — 400. Therefore as r — +o00 we have

r p,”»)-i-l T <p,,(r)-|—1/r ne(t
v(r)

L) 1 ﬁdt —
Tu(r) v(r) + 1 (7“ ( )) . Tu@r) v(r)+1 t

oy 1 WVelr) = Ne(ru)) = o(Ne(r))-

Inpu(r) = (puy +1)In

In addition, for all » > 0 and ¢ > 0 we have

o r pnt1 r pn+1 1 . r pntl TG
_ — — — <= — < -G'(r).
“);LQ> %xw>-w%ﬁ*%m> =

G'(r)
G(r)>

G(r) <2 Z <L|> n < 2(2rk(r) + 1)%u(r),

Vn<2rk(r) |Cn

Putting here ¢ = 2rk(r) = 2r

we get

hence if £y Z r — +o0, then

InG(r) <In2+2In(rh(r)In* G(r) + 1) + Inpu(r) <
<Ad(lnr+Inh(r)+2InInG(r)) + Inpu(r) =8Inln G(r) + o(N¢(r)).

Thus,
I G(r) = o(Ne(r),  Ef #r — +oo,

whence, in view of the inequality In M (r) < G(r), we obtain (1). Theorem 1 is proved. [
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Proof of Theorem 2. Let for a function ¢ € L (4) holds. Then it is clear that for any
constant ¢ > 0 we have

I (cln|x])

lim ———=

=0
r—too  In[z] ’

whence it follows that there exist a sequence (ny) of integers such that no > 1, and
(o + -+ +ng) Inng) =o(lnngy), k — oo. (11)
Construct the sequence ¢ = ((,) as follows:

no,...,ng,@l,...,nl,...,nk,...,nk,....

J J

vV VvV vV
ng times ny times ny times

For this sequence

ng times

Then for each entire function f € A((), by Lemma C we obtain
Inr <InTy(r), r>ry. (12)
On the other hand, since n¢(r) = ng+- - - +ny, for all r € [ng, ny+1) and k € Z,, we have

e (t ned
Ne(ngyr) = / #dt < ne(ngs1 — O)/ - = (ng+ -+ ng) Inngyq.

no 1

Therefore, in view of (11),
N,
L)
rtoo DT
By Lemma 2, there exists a set £ = (J7_ (@, yn) such that relations (5) and ¥(N¢(r)) =

o(Inr), E 5 r — 400 are valid. Then, by (12) for each entire function f € A((), we have
Y(Ne(r)) = o(InTy(r)), E 5 r — 400, whence we obtain (2). Theorem 2 is proved. O

=0.

Proof of Theorem 4. Consider any sequence ¢ € Z and let us prove that there exists an
entire function f € A(() such that relation (6) holds. Let

— Inne(r)  +— Inn

=1 =
O W n—oo In ||

(13)

be the order of the counting function for the sequence (. As it is well known [1, p.63], n¢(r)
in (13) can be replaced with N¢(r).

First suppose that p; < +oc. Let p be the genus of the sequence (. Consider the entire
function (8) with p, = p, n € Z,, that is the Weierstrass canonical product of genus p. For
this product in the case of p = 0 we have (see |1, p.273])

lim In My(r) _
rotoo V()

’
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whence we derive (6). And if p > 0 (thus p > 0), and (z,,) is a sequence increasing to 400
such that In N¢(z,,) ~ p¢Inz,, n — oo, then by Borel’s theorem [1, p. 79], according to which
the order of f equals p¢, we have Inln M¢(z,) < (p+ o(1))Inz,, n — oo, whence we again
obtain (6).

Let pc = +00, and (),) be a nonnegative sequence such that the conclusions of Lemma
1 are true. According to (13) we have n@ An = +00, therefore the set

N={neZ,: y <\, forallk=0,...n}

is infinite.
Consider also the set £ = {r > 0: Ng(r) > €2, ne(r) > N¢(r)In® Ne(r)}. Taking into
account that n¢(r) = r(N¢(r))!., by Lemma B we have

L5l
E 2ylny

Remark that the logarithmic measure of the interval (r, er) is equal to 1. Thus, for any r > 0
such that N¢(r) > €2, the interval (r,er) contains a point z that does not belong to the
sequence (|¢,|) such that n¢(z) < Ne(x) In® Ne ().

Put N N
m(r):min{man(T)—i-l' D (IC:I) g%}

n=m-+1

Choose ng € N so that r,, > 1, N(r,,) > €2, and on the interval (r,,, er,,) choose a point
o that does not belong to the sequence (|(,|) and such that n¢ () < N¢(zo) In® Ne(z).

Suppose that we have already defined integers ng < --- < n; and real numbers xg < --- <
xy, different from the members of the sequence (|(,|). Notice that 7,4,) < T < Tnzy)41, and

put
m(zg) " Am 1
nkﬂ:min{me]\/’: m > n + 1, Z (Kk‘) Si}

n=n¢(zy)+1

Then on the interval (rnkﬂ, ernkﬂ) we select a point g that does not belong to the sequence
(I¢al), and n¢(zx11) < Ne(2r1) In® Ne(241).

For each k € Z, by [}, we denote the largest index of the numbers Ao, ..., Ay (z,):
Iy = max{n € {0,... ,n¢(zr)} : Ay = max{ Ao, .-, Ang (@) } -

It is clear that ny, <l < ne(xy), 1, < xp < ery,.

For each n € {0,...,n¢(x0)} put p, = [N,] and let p, = [N, ,] for each n € {n¢(zy) +
1,...,n¢(zk41)} and k € Z,. Consider the product in (8), which by Lemma 1 specifies the
entire function f € A((). Let us prove that for this function relation (6) is satisfied.

For any k € Z, we have

o0 Tk pntl
minto) < 30 () <
n=0 n
n¢(zk) P+l m(wy,) Anj, 00 An
x T +1 T
<> (—’“) - ( ’“) + > (—'“) <
— \ |Gl [y 11 \Gal

n=n¢(zy)+ n=m(zy,

n((xk) pn+1

A 1 1 1 A

<3 (@) raraedamn
n=0 n
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Then we obtain, as k — oo
Inl

Inln My(x) < (1+o(1)N, Inz, = (1 + 0(1))# Inr, =(140(1))Inl; <
k

< (14 o(1)) Inng(zx) < (14 o(1)) In(Ne(wx) In® Ne(z1)) =
= (14 0(1))In N¢(xy),

whence we obviously derive (6). Theorem 4 is proved. O

Proof of Theorem 5. Let ¢ € L. Let us prove that there exists a sequence ¢ € Z such that
for any entire function f € A(() relation (7) holds.
Let h(z) = e#°® and v € L be any function such that

1
v(z) < min {ln x; gh_l(ln x)} , x> Io. (14)
Put ny = 3 and define inductively
ng = min {n ENimy_1:=no+...+n41 < %; kmy_1 < min{h "' (y(n)); y(n)}} (15)

for each k € N.
Let us generate the sequence ( in the following way:

1,...,1,6,...,e,...,ek,...,ek,....
——— N — ——
no times mnjp times ny times

y(ng)

Let Ry = €7 n . Then ef < Ry, for each k € Z, and, according to (14), Ry, < e*** for
each k > k.
Further, using (15), we obtain

k k
ot “
Ne(e") = / th < / %dt = ki1, keN; (16)
1 1
B n(t Bk m
< kmy_, + mﬂ("’“) <3y(m), k> ko (17)

U

Consider any function f € A(¢). The following two cases are possible.
Case 1: there exist infinitely many k € Z, such that |c,(e*)| > 37(ng) for some integer
p. In this case, for all such sufficiently large &, according to (10), (15) and (16), we have

1 1

In My (e¥) > ~~(ng) > Zh(kmk—l) > ~h(Ne(e)),

N

whence we easily obtain relation (7).

Case 2: |¢p(e”)] < 37(ny,) for all k > ko and each integer p. In this case we put s, = [mgl;k]
and suppose 1 < p < si; then, according to (14), we obtain uniformly with respect to such p

p’y(nk)gsklnnk< 1 0, n— oo,

ny, n  Ilnng

0<
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Thus, for k > kg, accordingly to Lemma 3, we have

o (B (2))- (%) -

Nk pY(ng) _py(ng) pr(ng) ] Nk 2 2p’y(nk) 1 1
— ke —e n —e m .= > _kRZZPATR) 2 — - _
% (e Eo—e ) e e oy(ng) = 93 57 () = 27 ()
Therefore, using (9), (14), and (17), we get
Sk D _

L )~ 1) >

1 °k
In My (Ry) > g’y(nk) .2 ;

whence we again obtain (7). Theorem 5 is proved. O
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