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Let ζ = (ζn) be a sequence of complex numbers tending to ∞, and A(ζ) be the class of
entire functions with zeros at the points ζn and only at them. We investigate the problem on
minimal growth of functions from the class A(ζ). In particular, we prove the existence of an
entire function f ∈ A(ζ) such that

lim
r→+∞

ln lnMf (r)
lnNζ(r)

= 1,

whereMf (r) is the maximum modulus of f , and Nζ(r) denotes the integrated counting function
of ζ.
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Ïóñòü ζ = (ζn) � ñòðåìÿùàÿñÿ ê ∞ ïîñëåäîâàòåëüíîñòü êîìïëåêñíûõ ÷èñåë, à A(ζ) �
êëàññ öåëûõ ôóíêöèé ñ íóëÿìè â òî÷êàõ ζn è òîëüêî â íèõ. Èññëåäóåòñÿ âîïðîñ î ìè-
íèìàëüíîì ðîñòå ôóíêöèé èç êëàññà A(ζ), â ÷àñòíîñòè, äîêàçàíî ñóùåñòâîâàíèå öåëîé
ôóíêöèè f ∈ A(ζ) òàêîé, ÷òî

lim
r→+∞

ln lnMf (r)
lnNζ(r)

= 1,

ãäå Mf (r) � ìàêñèìóì ìîäóëÿ f , à Nζ(r) � óñðåäíåííàÿ ñ÷èòàþùàÿ ôóíêöèÿ ζ.

1. Introduction. Denote by A the class of transcendental entire functions such that
f(z) 6≡ 0. For any f ∈ A and each r ≥ 0 put

Mf (r) = max{|f(z)| : |z| = r}, Tf (r) =
1

2π

∫ 2π

0

ln+ |f(reiθ)|dθ.
Let L be the class of function that are positive continuous and increasing to +∞ on R.

By Z we denote the class of complex sequences ζ = (ζn) such that 0 < |ζ0| ≤ |ζ1| ≤ . . .
and ζn →∞, n→∞. Let nζ(r) =

∑
|ζn|≤r 1 be the counting function, and

Nζ(r) =

∫ r

0

nζ(t)− nζ(0)

t
dt+ nζ(0) ln r

be the integrated counting function of the sequence ζ ∈ Z. We say that f ∈ A(ζ) if and
only if f ∈ A and the sequence of zeros of the function f such that their moduli form a
nondecreasing sequence coinciding with ζ; in this case by the Jensen formula (see [1, p.24])

Nζ(r) =
1

2π

∫ 2π

0

ln |f(reiθ)|dθ − ln
|f (λ)(0)|

λ!
,
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where λ = min{n ∈ Z+ : f (n)(0) 6= 0}, we have Nζ(r) ≤ lnMf (r) +O(1) (r → +∞).
By the classical Weierstrass theorem, A(ζ) 6= ∅ for any sequence ζ ∈ Z. Moreover, if

g ∈ A(ζ), h ∈ A, f(z) = g(z)eh(z), then f ∈ A(ζ). Using this fact, it is easily seen that the
following statement is true: for any sequence ζ ∈ Z and any function l ∈ L there exists an
entire function f ∈ A(ζ) such that

l(Nζ(r)) = o(lnMf (r)) (r → +∞).

In other words, one cannot specify any restriction on the growth from above for entire
functions with a given sequence of zeros.

The converse problem considered by À.À.Gol'dberg is fundamentally more important
([2]) : how slow is the growth of lnMf (r) in comparison with the growth of Nζ(r) for entire

functions f ∈ A(ζ)? In particular, in [2] the following theorems are proved.

Theorem A. For any sequence ζ ∈ Z there exists an entire function f ∈ A(ζ) such that

ln lnMf (r) = o(Nζ(r)) (Ef 63 r → +∞), (1)

where Ef ⊂ (1,+∞) is an exceptional set, which has a �nite logarithmic measure (i.e.,∫
Ef

dr
r
< +∞).

Òåîðåìà B. For any function ψ ∈ L such that ψ(x) = o(x), x → +∞, there exist a
sequence ζ ∈ Z and a set E ⊂ (0,+∞) of upper linear density 1 (i.e., lim

r→+∞
1
r

∫
E∩(0,r)

dt = 1)

such that
ψ(Nζ(r)) = o(ln lnMf (r)) (E 3 r → +∞) (2)

for each entire function f ∈ A(ζ).

Another version of statement similar to Theorem A is obtained in [3]. Actually, in [3]
some weaker estimate of lnMf (r) is established, but this estimate holds outside a smaller
exceptional set, namely: for any sequence ζ ∈ Z there exists an entire function f ∈ A(ζ)
such that (1) holds with "O" instead of "o" and with the set Ef of �nite measure.

In connection with the stated results, the following Problems arise, which are the objects
of consideration for our paper.

Problem 1. To what extent the estimate of the exceptional set Ef in Theorem A can be
improved with preservation of the statement of the theorem?

Problem 2. Find a necessary and su�cient condition on a function ϕ ∈ L under which for
any sequence ζ ∈ Z there exists an entire function f ∈ A(ζ) such that

ln lnMf (r) ≤ ϕ(Nζ(r)), (3)

for all r ≥ rf outside the exceptional set of a �nite logarithmic measure (or a �nite measure).

Problem 3. Does there exist a function ϕ(x) positive on R and increasing much more slowly
than x as x→ +∞ such that for any sequence ζ ∈ Z there exists an entire function f ∈ A(ζ)
and we have

lim
r→+∞

ln lnMf (r)

ϕ(Nζ(r))
= 0?

Problem 4. Does there exist a function ϕ ∈ L such that for any sequence ζ ∈ Z there exists
an entire function f ∈ A(ζ) satisfying the relation (3) for all r ≥ rf (without the exceptional
set)?

Concerning Problem 1, the following theorem is true.
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Theorem 1. For any sequence ζ ∈ Z there exist an entire function f ∈ A(ζ) and a function
α ∈ L such that (1) holds with the exceptional set Ef ⊂ (0,+∞) that satisfy

∫
Ef
rα(r)dr <

+∞.

The following theorem is a slight generalization of Theorem B.

Theorem 2. For any function ψ ∈ L such that

lim
x→+∞

ψ(x)

x
= 0, (4)

there exist a sequence ζ ∈ Z and a set E =
⋃∞
n=0(xn, yn) such that

1 < x0 < y0 < x1 < y1 < . . . , lim
n→∞

ln yn
lnxn

= +∞ (5)

and (2) holds for any entire function f ∈ A(ζ).

It is easy to show that the set E from Theorem 2 has upper density 1 (even upper
logarithmic density 1). Besides, for this set one has∫

E

dr

r ln r
=
∑

ln
ln yn
lnxn

= +∞.

As a consequence from Theorems 1 and 2 we obtain the following statement which solves
Problem 2.

Theorem 3. Let ϕ ∈ L, and h be a function positive on R such that
c1
r ln r

≤ h(r) ≤ rc2 (r ≥ r0),

where c1 and c2 are positive constants. For any sequence ζ ∈ Z there exists an entire function
f ∈ A(ζ) such that relation (3) holds for all r > 0 outside the set Ef ⊂ (0,+∞) satisfying∫
Ef
h(r)dr < +∞ if and only if the condition (4) holds.

A positive answer to Problem 3 follows from the following statement.

Theorem 4. For any sequence ζ ∈ Z there exists an entire function f ∈ A(ζ) such that

lim
r→+∞

ln lnMf (r)

lnNζ(r)
= 1. (6)

The answer to Problem 4 is negative.

Theorem 5. For any function ϕ ∈ L there exists a sequence ζ ∈ Z such that for all entire
functions f ∈ A(ζ) the following relation holds

lim
r→+∞

ln lnMf (r)

ϕ(lnNζ(r))
=∞. (7)

We remark that Theorems 1�4 remain true if they are reformulated for the Nevanli-
nna characteristic Tf (r) instead of lnMf (r) (this is obvious concerning Theorems 1 and 4;
concerning Theorems 2 and 3 see their proofs). The following Question remains open: is it

allowed to replace lnMf (r) with Tf (r) in Theorem 5?

By Z∗ we denote the class of �nite or countable complex sequences ζ = (ζn) such that
0 ≤ |ζ0| ≤ |ζ1| ≤ . . . and, in the case of the countable sequences, ζn → ∞ as n → ∞. For
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ζ ∈ Z∗ we say that f ∈ A(ζ) if and only if f ∈ A and the sequence of zeros of the function
f such that moduli form a nondecreasing sequence coinciding with ζ. It is easily seen that
all theorems stated above remain true if Z is replaced with Z∗ in them.

Remark also that problems, similar to ones considered here, but with nζ(r) instead of
Nζ(r), are studied in the papers [2], [4�8].

2. Auxiliary results. Suppose that p ∈ Z+, and E(z, p) is the Weierstrass primary factor,
that is

E(z, 0) = 1− z; E(z, p) = (1− z)ez+
z2

2
+···+ zp

p , p ∈ N.
The following statement of Î.Blumenthal ([9]) is true.

Lemma A. For all z ∈ C and p ∈ Z+ the inequality ln |E(z, p)| ≤ |z|p+1 holds.

Lemma 1. For any sequence ζ ∈ Z there exists a nonnegative sequence λ = (λn) such that
λn ∼ lnn

ln |ζn| , n → ∞, and for any sequence of nonnegative integers (pn) such that pn ≥ [λn],
n ≥ n0, the product

f(z) =
∞∏
n=0

E

(
z

ζn
, pn

)
(8)

speci�es an entire function f ∈ A(ζ). Besides, lnMf (r) ≤ Gf (r) :=
∞∑
n=0

(
r

|ζn|

)pn+1

.

Proof. Suppose that (αn) is any positive sequence increasing to +∞ such that lnαn =
o(ln |ζn|), n→∞. Put

λn =

0, if αn ≥ |ζn| or n < 3;
lnn+ 2 ln lnn

ln |ζn| − lnαn
, if αn < |ζn| and n ≥ 3.

Then the sequence λ = (λn) is nonnegative, λn ∼
lnn

ln |ζn|
, n → ∞, and

( αn
|ζn|

)λn
=

1

n ln2 n

(n ≥ n0). Since αn → +∞ (n → ∞), the series
∑∞

n=0

(
r
|ζn|

)λn
converges for each �xed

r ≥ 0. According to the inequalities λn ≤ pn + 1, n ≥ n0, the series Gf (r) =
∞∑
n=0

(
r

|ζn|

)pn+1

also converges for each �xed r ≥ 0. If |z| ≤ r then by Lemma A ln |f(z)| ≤ Gf (r), that
is the product in (8) is convergent uniformly and absolutely on each compact set from C.
Therefore, it speci�es a entire function f ∈ A(ζ), besides, lnMf (r) ≤ Gf (r).

The following statement is well known ([10, 11]).

Lemma B. Let a function l ∈ L have the right-hand derivative l′+(x) at each point x ∈ R,
and functions h and ψ be positive integrated on each �nite segment. Then for the set E(a) =
{x ∈ R : l(x) > a, l′+(x) > h(x)ψ(l(x))}, where a ∈ R, the following estimate holds∫

E(a)

h(x)dx ≤
∫ ∞
a

dy

ψ(y)
.

Lemma 2. Let l ∈ L and lim
r→+∞

l(r)

ln r
= 0. Then there exists a set E =

∞⋃
n=0

(xn, yn) such that

relation (5) and l(r) = o(ln r) (E 3 r → +∞) hold.
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Proof. The statement of lemma is trivial if l(r) = o(ln r) (r → +∞). In the other case the
conditions of our lemma imply the existence of a function γ ∈ L such that

lim
r→+∞

γ(r)l(r)

ln r
= 0, lim

r→+∞

γ(r)l(r)

ln r
= +∞.

Consider the set E0 = {r > 1 : γ(r)l(r) < ln r}. Then E0 and E0\(1,+∞) are unbounded
from above sets. Besides, E0 is open. Thus, the set E0 is a countable union of intervals.
Let us select from this union a sequence of intervals (tn; yn) so that for all n the inequality
2yn < tn+1 holds and there exists a point xn ∈ (tn; yn) at which

√
γ(xn)l(xn) = ln xn.

Suppose E =
⋃

(xn, yn). Since E ⊂ E0 and l(r) = o(ln r), E0 3 r → +∞, l(r) = o(ln r),

E 3 r → +∞. Further,
ln yn
lnxn

=
γ(yn)l(yn)√
γ(xn)l(xn)

≥
√
γ(yn) → +∞, n → ∞. The lemma is

proved.

The following lemma ([1, c. 338�341]) is used in the proof of Theorem 2.

Lemma C. If a sequence ζ ∈ Z is positive and
∑∞

n=0
1
ζn

=∞, then r = o(Tf (r)), r → +∞,

for any entire function f ∈ A(ζ).

Suppose f(z) ∈ A, p ∈ Z, cp(r) = 1
2π

∫ 2π

0
e−ipθ ln |f(reiθ)|dθ is the p-th Fourier coe�cient

of the function ln |f(reiθ)|, dp(r) = Re cp(r).
If ζ = (ζn) is the sequence of zeros of the function f , f(0) 6= 0 and ln f(z) =

∑∞
p=0 apz

p

in a neighborhood of the point 0, then for each p ∈ N by the Poisson�Jensen formula ([1,
p. 16�17]) one has

cp(r) =
1

2
apr

p +
1

2p

∑
|ζn|<r

(( r
ζn

)p
−
(ζn
r

)p)
.

Further, for R > r we obtain

cp(R)−
(R
r

)p
cp(r) =

1

2p

∑
|ζn|<R

((R
ζn

)p
−
(ζn
R

)p)
− 1

2p

∑
|ζn|<r

((R
ζn

)p
−
(ζnR
r2

)p)
=

=
1

2p

∑
r≤|ζn|<R

((R
ζn

)p
−
(ζn
R

)p)
+

1

2p

∑
|ζn|<r

((ζnR
r2

)p
−
(ζn
R

)p)
.

From this the sequent statement immediately follows.

Lemma 3. If an entire function f has only positive zeros ζ0, ζ1, . . . , then

dp(R)−
(R
r

)p
dp(r) ≥

1

2p

∑
r≤ζn<R

((R
ζn

)p
−
(ζn
R

)p)
, R > r.

Lemma D ([6, 4]). For any entire function f(z) 6≡ 0 and each s ∈ N the following
inequalities hold

d0(r) + 2
s∑

p=1

(
1− p

s

)
dp(r) ≤ lnMf (r), (9)

|cs(r)| ≤ lnMf (r), r ≥ r0. (10)
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3. Proof of the theorems.

Proof of Theorem 1. Suppose that ζ ∈ Z. Then, as it is known, ln r = o(Nζ(r)), r → +∞.
Thus, there exists a function α ∈ L such that α(r) ln r = o(Nζ(r)), r → +∞. Let h(r) = rα(r).
For each n ∈ Z+ put pn = [

√
n] and consider the product in (8). By Lemma 1, this product

de�nes an entire function f ∈ A(ζ) such that lnMf (r) ≤ G(r), where

G(r) =
∞∑
n=0

(
r

|ζn|

)pn+1

.

Put k(r) = (lnG(r))′, Ef = {r > 0 : lnG(r) > 1, k(r) > h(r) ln2G(r)}.
Let us show that for the functions α ∈ L, f ∈ A(ζ) de�ned above and the set Ef ,

Theorem 1 is valid.
First, applying Lemma B with l(r) = lnG(r), a = 1 and ψ(y) = y2, we obtain∫

Ef

rα(r)dr =

∫
Ef

h(r)dr ≤
∫ ∞

1

dy

y2
< +∞.

Further, introduce the notation

µ(r) = max

{(
r

|ζn|

)pn+1

: n ∈ Z+

}
, ν(r) = max

{
n ∈ Z+ :

(
r

|ζn|

)pn+1

= µ(r)

}
.

It is easy to see that µ(r)→ +∞, ν(r)→ +∞, if r → +∞. Therefore as r → +∞ we have

lnµ(r) = (pν(r) + 1) ln
r

rν(r)
=
pν(r) + 1

ν(r) + 1
nζ(rν(r)) ln

r

rν(r)
≤
pν(r) + 1

ν(r) + 1

∫ r

rν(r)

nζ(t)

t
dt =

=
pν(r) + 1

ν(r) + 1
(Nζ(r)−Nζ(rν(r))) = o(Nζ(r)).

In addition, for all r > 0 and c > 0 we have

G(r)−
∑
√
n≤c

(
r

|ζn|

)pn+1

=
∑
√
n>c

(
r

|ζn|

)pn+1

≤ 1

c

∑
√
n>c

(pn + 1)

(
r

|ζn|

)pn+1

≤ r

c
G′(r).

Putting here c = 2rk(r) = 2rG
′(r)
G(r)

, we get

G(r) ≤ 2
∑

√
n≤2rk(r)

(
r

|ζn|

)pn+1

≤ 2(2rk(r) + 1)2µ(r),

hence if Ef 63 r → +∞, then

lnG(r) ≤ ln 2 + 2 ln(rh(r) ln2G(r) + 1) + lnµ(r) ≤
≤ 4(ln r + lnh(r) + 2 ln lnG(r)) + lnµ(r) = 8 ln lnG(r) + o(Nζ(r)).

Thus,
lnG(r) = o(Nζ(r)), Ef 63 r → +∞,

whence, in view of the inequality lnMf (r) ≤ G(r), we obtain (1). Theorem 1 is proved.
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Proof of Theorem 2. Let for a function ψ ∈ L (4) holds. Then it is clear that for any
constant c > 0 we have

lim
x→+∞

ψ(c ln[x])

ln[x]
= 0,

whence it follows that there exist a sequence (nk) of integers such that n0 ≥ 1, and

ψ((n0 + · · ·+ nk) lnnk+1) = o(lnnk+1), k →∞. (11)

Construct the sequence ζ = (ζn) as follows:

n0, . . . , n0︸ ︷︷ ︸
n0 times

, n1, . . . , n1︸ ︷︷ ︸
n1 times

, . . . , nk, . . . , nk︸ ︷︷ ︸
nk times

, . . . .

For this sequence
∞∑
n=0

1

ζn
=
∞∑
k=0

(
1

nk
+ . . .+

1

nk︸ ︷︷ ︸
nk times

)
=
∞∑
k=0

1 =∞.

Then for each entire function f ∈ A(ζ), by Lemma C we obtain

ln r ≤ lnTf (r), r ≥ rf . (12)

On the other hand, since nζ(r) = n0 + · · ·+nk for all r ∈ [nk, nk+1) and k ∈ Z+, we have

Nζ(nk+1) =

∫ nk+1

n0

nζ(t)

t
dt ≤ nζ(nk+1 − 0)

∫ nk+1

1

dt

t
= (n0 + · · ·+ nk) lnnk+1.

Therefore, in view of (11),

lim
r→+∞

ψ(Nζ(r))

ln r
= 0.

By Lemma 2, there exists a set E =
⋃∞
n=0(xn, yn) such that relations (5) and ψ(Nζ(r)) =

o(ln r), E 3 r → +∞ are valid. Then, by (12) for each entire function f ∈ A(ζ), we have
ψ(Nζ(r)) = o(lnTf (r)), E 3 r → +∞, whence we obtain (2). Theorem 2 is proved.

Proof of Theorem 4. Consider any sequence ζ ∈ Z and let us prove that there exists an
entire function f ∈ A(ζ) such that relation (6) holds. Let

ρζ := lim
r→+∞

lnnζ(r)

ln r
= lim

n→∞

lnn

ln |ζn|
(13)

be the order of the counting function for the sequence ζ. As it is well known [1, p. 63], nζ(r)
in (13) can be replaced with Nζ(r).

First suppose that ρζ < +∞. Let p be the genus of the sequence ζ. Consider the entire
function (8) with pn = p, n ∈ Z+, that is the Weierstrass canonical product of genus p. For
this product in the case of p = 0 we have (see [1, p. 273])

lim
r→+∞

lnMf (r)

Nζ(r)
= 1,
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whence we derive (6). And if p > 0 (thus ρζ > 0), and (xn) is a sequence increasing to +∞
such that lnNζ(xn) ∼ ρζ lnxn, n→∞, then by Borel's theorem [1, p. 79], according to which
the order of f equals ρζ , we have ln lnMf (xn) ≤ (ρ + o(1)) lnxn, n → ∞, whence we again
obtain (6).

Let ρζ = +∞, and (λn) be a nonnegative sequence such that the conclusions of Lemma
1 are true. According to (13) we have lim

n→∞
λn = +∞, therefore the set

N = {n ∈ Z+ : λk ≤ λn for all k = 0, . . . n}
is in�nite.

Consider also the set E = {r > 0 : Nζ(r) > e2, nζ(r) > Nζ(r) ln2Nζ(r)}. Taking into
account that nζ(r) = r(Nζ(r))

′
+, by Lemma Â we have∫

E

dr

r
≤
∫ ∞
e2

dy

y ln2 y
=

1

2
.

Remark that the logarithmic measure of the interval (r, er) is equal to 1. Thus, for any r > 0
such that Nζ(r) > e2, the interval (r, er) contains a point x that does not belong to the
sequence (|ζn|) such that nζ(x) ≤ Nζ(x) ln2Nζ(x).

Put

m(r) = min

{
m ≥ nζ(r) + 1 :

∞∑
n=m+1

(
r

|ζn|

)λn
≤ 1

2

}
.

Choose n0 ∈ N so that rn0 > 1, N(rn0) > e2, and on the interval (rn0 , ern0) choose a point
x0 that does not belong to the sequence (|ζn|) and such that nζ(x0) ≤ Nζ(x0) ln2Nζ(x0).

Suppose that we have already de�ned integers n0 < · · · < nk and real numbers x0 < · · · <
xk di�erent from the members of the sequence (|ζn|). Notice that rn(xk) < xk < rn(xk)+1, and
put

nk+1 = min

{
m ∈ N : m ≥ nk + 1,

m(xk)∑
n=nζ(xk)+1

(
xk
|ζn|

)λm
≤ 1

2

}
.

Then on the interval (rnk+1
, ernk+1

) we select a point xk+1 that does not belong to the sequence
(|ζn|), and nζ(xk+1) ≤ Nζ(xk+1) ln2Nζ(xk+1).

For each k ∈ Z+ by lk we denote the largest index of the numbers λ0, . . . , λnζ(xk):

lk = max{n ∈ {0, . . . , nζ(xk)} : λn = max{λ0, . . . , λnζ(xk)}}.
It is clear that nk ≤ lk ≤ nζ(xk), rlk ≤ xk ≤ erlk .

For each n ∈ {0, . . . , nζ(x0)} put pn = [λl0 ] and let pn = [λlk+1
] for each n ∈ {nζ(xk) +

1, . . . , nζ(xk+1)} and k ∈ Z+. Consider the product in (8), which by Lemma 1 speci�es the
entire function f ∈ A(ζ). Let us prove that for this function relation (6) is satis�ed.

For any k ∈ Z+ we have

lnMf (xk) ≤
∞∑
n=0

(
xk
|ζn|

)pn+1

≤

≤
nζ(xk)∑
n=0

(
xk
|ζn|

)pn+1

+

m(xk)∑
n=nζ(xk)+1

(
xk
|ζn|

)λnk+1

+
∞∑

n=m(xk)+1

(
xk
|ζn|

)λn
≤

≤ x
λlk+1

k

nζ(xk)∑
n=0

(
1

|ζn|

)pn+1

+
1

2
+

1

2
< x

λlk+1

k Gf (1) + 1.
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Then we obtain, as k →∞

ln lnMf (xk) ≤ (1 + o(1))λlk lnxk = (1 + o(1))
ln lk
ln rlk

ln rlk = (1 + o(1)) ln lk ≤

≤ (1 + o(1)) lnnζ(xk) ≤ (1 + o(1)) ln(Nζ(xk) ln2Nζ(xk)) =

= (1 + o(1)) lnNζ(xk),

whence we obviously derive (6). Theorem 4 is proved.

Proof of Theorem 5. Let ϕ ∈ L. Let us prove that there exists a sequence ζ ∈ Z such that
for any entire function f ∈ A(ζ) relation (7) holds.

Let h(x) = eϕ
2(x) and γ ∈ L be any function such that

γ(x) ≤ min

{
lnx;

1

3
h−1(lnx)

}
, x ≥ x0. (14)

Put n0 = 3 and de�ne inductively

nk = min
{
n ∈ N : mk−1 := n0 + . . .+ nk−1 <

n

k
; kmk−1 < min{h−1(γ(n)); γ(n)}

}
(15)

for each k ∈ N.
Let us generate the sequence ζ in the following way:

1, . . . , 1︸ ︷︷ ︸
n0 times

, e, . . . , e︸ ︷︷ ︸
n1 times

, . . . , ek, . . . , ek︸ ︷︷ ︸
nk times

, . . . .

Let Rk = e
k+

γ(nk)

nk . Then ek < Rk for each k ∈ Z+ and, according to (14), Rk < ek+1 for
each k ≥ k0.

Further, using (15), we obtain

Nζ(e
k) =

∫ ek

1

n(t)

t
dt ≤

∫ ek

1

mk−1

t
dt = kmk−1, k ∈ N; (16)

Nζ(Rk) = Nζ(e
k) +

∫ Rk

ek

n(t)

t
dt = Nζ(e

k) +

∫ Rk

ek

mk

t
dt ≤

≤ kmk−1 +mk
γ(nk)

nk
≤ 3γ(nk), k ≥ k0. (17)

Consider any function f ∈ A(ζ). The following two cases are possible.
Case 1: there exist in�nitely many k ∈ Z+ such that |cp(ek)| ≥ 1

4
γ(nk) for some integer

p. In this case, for all such su�ciently large k, according to (10), (15) and (16), we have

lnMf (e
k) ≥ 1

4
γ(nk) ≥

1

4
h(kmk−1) ≥

1

4
h(Nζ(e

k)),

whence we easily obtain relation (7).

Case 2: |cp(ek)| < 1
4
γ(nk) for all k ≥ k0 and each integer p. In this case we put sk =

[
nk

ln2 nk

]
and suppose 1 ≤ p ≤ sk; then, according to (14), we obtain uniformly with respect to such p

0 ≤ pγ(nk)

nk
≤ sk lnnk

nk
≤ 1

lnnk
→ 0, n→∞.
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Thus, for k ≥ k0, accordingly to Lemma 3, we have

dp(Rk) ≥
nk
2p

((
Rk

ek

)p
−
(
ek

Rk

)p)
−
(
Rk

ek

)p
|cp(ek)| =

=
nk
2p

(
e
pγ(nk)

nk − e−
pγ(nk)

nk

)
− e

pγ(nk)

nk · 1
4
γ(nk) ≥

nk
2p

2

3

2pγ(nk)

nk
− 1

3
γ(nk) =

1

3
γ(nk).

Therefore, using (9), (14), and (17), we get

lnMf (Rk) ≥
1

3
γ(nk) · 2

sk∑
p=1

sk − p
p

=
1

3
γ(nk)(sk − 1) >

> lnnk ≥ h(3γ(nk)) ≥ h(Nζ(Rk)), k ≥ k0,

whence we again obtain (7). Theorem 5 is proved.
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