Note on the weak polynomial topology |
|
| Author |
sharynsir@yahoo.com, andriyzag@yahoo.com
Precarpatian National University, Ivano-Frankivsk, Ukraine, Institute for Applied Problems of Mechanics and Mathematics, Lviv, Ukraine,
|
| Abstract |
We prove that there is a net $\{x_\alpha\}$ from the unit sphere of a complex infinite dimensional Banach space such that $\{\lambda_\alpha x_\alpha\}$ is convergent to zero in weak polynomial topology for an arbitrary collection of numbers $\{\lambda_\alpha\}$. Also we consider the situation in the real case.
|
| Keywords |
weak polynomial topology, net, complex infinite dimensional Banach space
|
| DOI |
doi:10.30970/ms.30.1.98-100
|
Reference |
1. R. Aron, B. Cole and T. Gamelin. Spectra of algebras of analytic functions on a Banach space// J. Reine Angew. Math. -- 1991. -- Bd.415. -- S.51--93.
2. R. Aron and P. Hájec. Zero sets of polynomials in several variables// Arhiv der Mathematic. -- 2006. -- V.56, № 6. -- P.561--568. 3. A. M Davie and T. W. Gamelin. A theorem on polynomial-star approximation// Proc. Amer. Math. Soc. -- 1989. -- V.106, № 2. -- P.351--356. 4. S. Dineen. Complex Analysis on Infinite Dimensional Spaces. -- London: Springer Verlag, 1999. 5. M. González, J. Gutiérrez and J. Llavona. Polynomial contiuity on $l_1$// Proc. Amer. Math. Soc. -- 1997. -- V.125, № 5. -- P.1349--1353. 6. A. Plichko and A. Zagorodnyuk. On automatic continuity and three problems of “The Scottish Book” concerning the boundedness of polynomial functionals// J. Math. Anal. Appl. -- 1998. -- V.220. -- P.477--494. |
| Pages |
98-100
|
| Volume |
30
|
| Issue |
1
|
| Year |
2008
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |