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A ballean (or a coarse structure) is a set endowed with some family of subsets which are
called the balls. The properties of the family of balls are postulated in such a way that a
ballean can be considered as an asymptotical counterpart of a uniform topological space. We
prove that every ballean of bounded geometry is coarsely equivalent to a ballean on some set
X determined by some group of permutations of X.

U. B. IIporacos. Boaeanv ozpanuvennot zeomempuu u G-npocmpancmea // Maremaruani Cry-
aii. — 2008. — T.30, Nel. — C.61-66.

Bosiean (wiin 3KBHBaJIeHTHAs CTPYKTYypPa) — MHOMKECTBO OCHAIIEHHOE HEKOTOPBIM CeMeii-
CTBOM TIOJMHOXKECTB, HAa3bIBaeMbIX Imapamu. CBoWCTBa ceMeficTBa MAPOB MOCTYJIUPYIOTCS Ta-
KAM 00pa3oM, uTo 60jeaH MOXKHO PACCMATPUBATH KAaK ACUMITOTHYECKMIA aHAJIOT paBHOMEpD-
HO TOMOJIOTHYECKOT0 MPOCTPAHCTBA. JI0KA3BIBAETCSA, UTO KasyKIbIH OOJ€aH OrpAHWYEHHOH Teo-
MeTpuu rpydb0 IKBUBAJIEHTEH 0OJIEAHY HEKOTOPOrO MHOXKECTBA X, OMPEIEIIEMOro ¢ MOMOIIBIO
HEKOTOPOM TPYIIIBI TEPECTAHOBOK X .

1. Ball structures and balleans. A ball structure is a triple B = (X, P, B), where X, P

are nonempty sets and, for any = € X and a € P, B(z,«) is a subset of X which is called a

ball of radius  around x. It is supposed that = € B(z, «) for all x € X, € P. The set X is

called the support of B, P is called the set of radii. Given any x € X, A C X, € P we put
B*(z,a) ={y€e X :xz € B(y,a)}, B(A,a) = U B(a, ).

acA
A ball structure is called

e lower symmetric if, for any «, 3 € P, there exist o/, 3’ such that, for every x € X,
B*(z,d') C B(z,«), B(x,(") C B*(x,3);
e upper symmetric if, for any «, 8 € P, there exist o/, 3’ such that, for every z € X,
B(z,«a) C B*(z,d), B*(z,0) C B(z,3);
o lower multiplicative if, for any «, 0 € P, there exists v € P such that, for every z € X,
B(B(%,7),7) € B(z,a) N B(x, B);
o upper multiplicative if, for any «, 5 € P, there exists v € P such that, for every x € X,

B(B(z,a),3) C B(z,7).
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Let B = (X, P, B) be a lower symmetric and lower multiplicative ball structure. Then
the family
{ U B(z,a) x B(z,a) s« € P}
rxeX
is a base of entourages for some (uniquely determined) uniformity on X. On the other hand,

if Y C X x X is a uniformity on X, then the ball structure (X, U, B) is lower symmetric and
lower multiplicative, where B(z,U) ={y € X : (z,y) € U}. Thus, the lower symmetric and
lower multiplicative ball structures can be identified with the uniform topological spaces.

We say that a ball structure B is a ballean if B is upper symmetric and upper multi-
plicative. In this paper we follow terminology from [6, 7]. A structure on X, equivalent to a
ballean, can also be defined in terminology of entourages. In this case it is called a coarse
structure [8] or a uniformly bounded space [5]. For motivations to study balleans see also
1, 2, 4].

2. Morphisms. Let By = (X1, P, By), By = (X3, Py, Bs) be balleans. A mapping f : X; —
X5 is called a <-mapping if, for every a € Py, there exists § € P, such that, for every x € X,
F(Bi(x,0)) C B(f(x). B)

A bijection f : X; — X, is called an asymorphism between B; and B, if f and f~! are

<-mappings.

Let B = (X, P, B) be a ballean, S be a set. Two mappings f, f': S — X are called close
if there exists a € P such that f'(s) € B(f(s),«) for every s € S.

Two balleans By = (X3, Pi, B1) and By = (Xy, P, By) are called coarsely equivalent if
there exist the <-mappings f; : X1 — Xs, fo : Xo — X such that f; o f5, fo o fi are close
to the identity mappings idy,, idx,.

Let B = (X, P, B) be a ballean. Every non-empty subset Y C X determines the subbal-
lean By = (Y, P, By), where By(y,a) = B(Y,a)NY,y € Y, a € P. A subset Y is called
large if there exists v € P such that B(Y,v) = X. If Y is large, then By and B are coarsely
equivalent. We shall use also the following observations. Two balleans B, = (Xy, P, By)
and By = (X, P2, By) are coarsely equivalent if and only if there exist the large subsets
Y: € X4,Y; C X, such that the subballeans By, and By, are asymorphic.

3. Density and capacity. Let B = (X, P, B) be a ballean, Y C X, S CY, o € P. We say
that a subset S is a-dense in Y if Y C B(S,a). An a-density of Y is the cardinal
deno(Y) = min{|S| : S is an a — dense subset of Y'}.
A subset S of X is called a-separated if B(xz,a) N B(y,a) = & for all distinct z,y € S. An
a-capacity of Y is the cardinal
cap,(Y) = sup{|S| : S is an a — separated subset of Y'}.

Let B = (X, P, B) be an arbitrary ballean. Replacing every ball B(z,«) to B'(z,«a) =
B(z,a) N B*(x, a), we get the asymorphic ballean B’ = (X, P, B') with (B’)* = B’. Thus, in
what follows we may suppose that B*(x,«) = B(z,«a) for all z € X, a € P.

Lemma 1. Let B = (X, P, B) be a ballean, Y C X, o, € P and B(B(z,«a)) C B(z,3) for
every x € X. Then the following statements hold

(i) deng(Y) < capo(Y) < deng(Y);

(ii) if Z C X and Y C B(Z,«), then deng(Y) < |Z].

Proof. (i) Let S be an a-separated subset of Y, D be an a-dense subset of Y. Then every ball
B(z,a), € D has at most one point of S. Since S CY C |J B(z,«), we have |S| < |D|,

zeD
50 cap, (V) < deny (V).
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Let S be a maximal by inclusion a-separated subset of Y. Then every ball B(z,«a), z € Y
meets at least one ball B(y,«), y € S. It follows that Y C |J B(z,3), so S is f-dense in Y

zeS
and deng(Y') < cap,(Y).
(ii) We put Z' = {z € Z : B(z,a) NY # @} and, for every z € Z’, pick some point
Y, € B(z,a) NY. Then the subset {y, : 2 € Z'} of Y is f-dense in Y, so deng(Y) < |Z'| <
|Z]. O

4. Locally finite balleans. A ballean B = (X, P, B) is called locally finite if every ball
B(z,a), z € X, a € P is finite.

Let B= (X, P, B), B = (X', P, B’) be balleans, f : X — X’ be an injective <-mapping.
If B’ is locally finite then B is locally finite. In particular, every ballean asymorphic to a
locally finite ballean is locally finite.

We say that a ballean B is coarsely locally finite if B is coarsely equivalent to some locally
finite ballean.

Proposition 1. A ballean B = (X, P, B) is coarsely locally finite if and only if there exists
(3 € P such that (-capacity of every ball B(x,~),x € X, v € P is finite.

Proof. Let B = (X', P, B') be a locally finite ballean coarsely equivalent to B. Then there
exist the large subsets Y C X, Y’ C X' such that the subballeans By and By are asymorphic.
We choose a € P such that B(Y,a) = X and take an arbitrary z € X, v € P. Since By is
locally finite then the subset Z = B(B(z,v),a) NY is finite. Since B(z,v) C B(Z,«a), by
Lemma 1 (ii), deng(B(z,7)) < |Z|. Since Z is finite, by Lemma 1 (i), S-capacity of B(x,)
is finite.

On the other hand, let S-capacity of every ball B(z,~) is finite. We choose a maximal by
inclusion (-separated subset Y of X. Clearly, Y is large in X, so By is coarsely equivalent
to B. Since capgB(x,) is finite, then B(z,v) NY is finite. Hence, By is locally finite. [

Every metric space (X,d) determines the metric ballean B(X,d) = (X,R", By), where
By(xz,r) = {y € X : d(x,y) < r}. For criterion of metrizability of balleans see |7, Theorem
2.1.1]. A metric space is called proper if every ball By(z,r) is compact.

Corollary 1. Let (X,d) be a proper metric space. Then the metric ballean B(X,d) is
coarsely locally finite.

Proof. Tt suffices to note that an 1-capacity of every ball in (X, d) is finite, and apply Proposi-
tion 1. [

5. Uniformly locally finite balleans. A ballean B = (X, P, B) is called uniformly locally
finite if there exists a function h : P — w such that |B(z, )| < h(a) for all x € X, a € P.

Let B= (X, P, B), B = (X', P, B’) be balleans, f : X — X’ be an injective <-mapping.
If B’ is uniformly locally finite then so is B. In particular, every ballean asymorphic to an
uniformly locally finite ballean is uniformly locally finite.

We say that a ballean B = (X, P, B) has bounded geometry if there exist § € P and a
function h : P — w such that capgB(z,a) < h(a) for all z € X, o € P.

Repeating the arguments proving Proposition 1 we get the following statements.

Proposition 2. A ballean B = (X, P, B) has bounded geometry if and only if B is coarsely
equivalent to some uniformly locally finite ballean.
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Example 1. Let I'(V, E) be a connected graph with the set of vertices V' and the set of
edges E. Given any u,v € V', we denote by d(u,v) the length of a shortest path between u
and v. Then we get the metric space (V,d) associated with I'(V, E') and the metric ballean
B(V,d). Clearly, B(V, d) is uniformly locally finite if and only if there exists a natural number
r such that |By(v, 1)| < r for every v € V.

Example 2. Let G be a finitely generated group with the identity e, I’ be a symmetric
(F = F1) set of generators of G such that e ¢ F. The Cayley graph Cay(G, F) is a graph
with the set of vertices G and set of edges {{u,v} : uv™" € F}. Let dr be a path metric on
Cay(G, F). Then the metric ballean B(G, dr) is uniformly locally finite.

Example 3. Let G be an arbitrary group, F. the family of all symmetric subsets of G
containing e. Then we get a ballean B(G) = (G, F., B), where B(g, F') = Fg. Clearly, B(G)
is uniformly locally finite and in the case G is finitely generated, B(G) is asymorphic to the
ballean B(G, dp) determined in Example 2.

Example 4. Let G be a group and X be a G-space with the action of G on X defined by
(9,z) — g(x). We denote by F, the family of all finite symmetric subsets of G containing
e. Then we get the ballean B(G, X) = (X, F., B), where B(z, F) = {g(x) : g € F}, v € X,
F € F.. Clearly, B(G, X) is uniformly locally finite.

Example 5. Let G be a gruppoid (=inverse semigroup) of partial bijections of a set X, F
be a family of all finite subsets of G such that F' = F~! for every F € F. Given any x € X
and F' € F, we put B(z,F) = {z} U{g(z) : ¢ € F} and get the uniformly locally finite
ballean B(G, X).

Example 6. Let GG be a locally compact topological group, C be the family of all compact
symmetric subsets of G containing e. Then, by Proposition 2, the ballean B(G) = (G, C, B),
where B(z,C) = Cz, is of bounded geometry.

Question 1. Let GG be a locally compact group. Does there exist a discrete group D such
that the balleans B(G) and B(D) are coarsely equivalent? This is so if G is Abelian or a
connected Lie group.

6. G-space realization. Let B, B’ be balleans with the same support X. We write B < B’
if the identity mapping id : X — X is a <-mapping from B to B'. If B < B' and B’ < B, we
identify B and B’ and write B = 5.

Let B be a uniformly locally finite ballean with the support X. Applying Lemma 4.10
from [8], one can show that there exists a gruppoid G of partial bijections of X such that
B = B(G, X) where B(G, X) is a ballean determined in Example 5. Our next result states
that instead of the gruppoid G' we can take some group of permutations of X.

Theorem 1. For every uniformly locally finite ballean B = (X, P, B), there exists a group
G of permutations of X such that B = B(G, X).

Proof. We fix an arbitrary o € P and choose 3 € P such that B(B(z,«a),a) C B(z,3) for
each € X. Then we define the graph I's with the set of vertices X and the set of edges
Ejs defined by the rule: {z,y} € Ejs if and only if x € B(y, ). Since B is uniformly locally
finite, there exists a natural number n(«) such that the local degree of every vertex of I'g
does not exceed n(«a). By [3, Corollary 12.2], the chromatic number of I's does not exceed
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n(a) + 1. Tt follows that we can partition X = X; U ... U Xn(a)+1 so that any two vertices
from X; are non-adjacent, in particular, every subset X; is a-separated.

Now we fix i € {1,...,n(a) + 1} and, for every vertex z € X;, enumerate the set
B(z,a) \ {z} = {z(1),...,2(n,)}, where n, < n(a). Then we define the set S;(«) of n(«)
permutations of X as follows. For each j € {1,...,n(a)} and =z € X;, we put 7m;(z) =
x(j),mj(x;) = xif j < ng, and 7j(x) = x otherwise. Then we extend 7 to X putting 7;(y) =y
forally € X\ U {z,2(y)}. Since X; is a-separated, this definition is correct. Thus, we get

reX;
the set S;(a) = {m1,..., Ty} of permutations of X. We put S(a) = Si(a)U...USy)+1()

and denote by G the group of permutations of X generated by |J S(a).
a€P
At last we show that the identity mapping id : X — X is an asymorphism between B

and the ballean B(G, X) = (X, F., B’) determined in Example 4. Given any o € P and
x € X, we have B(z,a) C B'(z,S,). On the other hand, let F' be a finite subset of G,
g € F. Then there exists ay,...,a,, € P and s(ay) € S(aq), ..., s(ay) € S(ay,) such that
g = s(am)...s(aq). We choose 7, € P such that

B(...(B(B(z, 1), a2),...), an) C B(z,7,)

for every x € X. Then B'(z,{g}) C B(x,,) for every x € X. Since F is finite, there exists
v € P such that, for each x € X, we have B'(z, F) C B(z,~). O

Sticking together Proposition 2 and Theorem 1 we get the following statement.

Theorem 2. Every ballean of bounded geometry is coarsely equivalent to some ballean
B(G,X) of G-space X.

We conclude our paper with two applications of Theorem 1.

Theorem 3. Let X be a set, Sx be a group of all permutations of X. Then B(Sx, X) is the
strongest uniformly locally finite ballean on X.

Proof. Let B’ be a uniformly locally finite ballean on X. Using Theorem 1, we choose a
group G of permutations of X such that B’ = B(G, X). Since G is a subgroup of Sx, we
have B’ < B(Sx, X). O

A ballean B = (X, P, B) is called connected if, for any x,y € X, there exists o € P such
that y € B(xz, «). Clearly, a ballean B(G, X) of a G-space is connected if and only if G acts
transitively on X.

Let By = (X1, P1, By), By = (X3, Py, Bs) be balleans. A mapping f : X; — X, is called
a —-mapping if, for every § € Py, there exists a € P, such that By(f(x),)) C f(Bi(z,a))
for each x € X;. A bijection f : X; — X, is a =-mapping if and only if f~! is a <-mapping.
Thus, By and B,y are asymorphic if and only if there is a bijection f : X; — X, which is a
<-mapping and a >-mapping.

Theorem 4. For every connected uniformly locally finite ballean B on a set X, there exist
a group G of permutations of X and a surjective mapping f : G — X which is a <-mapping
and a >-mapping from B(G) to B.

Proof. Applying Theorem 1, we identify B with B(G, X) for some group G of permutations of
X. Then we fix g € X and, for every g € G, put f(g) = g(x¢). Since B is connected, (G, X)
is a transitive G-space, so f is surjective. For any finite subset F' of G, we have f(Fg) =
Fg(zo) = F(g(x9)) = F(f(g)). It follows that f is a <-mapping and a >-mapping. O
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Let (G, X) be a transitive G-space, xg € X. If St(zg) = {9 € G : g(xg) = o} is finite,

applying Theorem 4, it is easy to show that the balleans B(G) and B(G, X) are coarsely
equivalent.

Question 2. Let (G, X) be a transitive G-space. How to detect whether the ballean B(G, X)
is asymorphic (coarsely equivalent) to the ballean B(H) of some group H?

=

-

REFERENCES

A. Dranishnikov, Asymptotic topology, Russian Math. Surveys, 55(2000), 1085-1129.

M. Gromov, Asymptotic invariants for infinite groups, in Geometric Group Theory, vol.2, 1-295, Cambri-
dge University Press, 1993.

F. Harary, Graph Theory, Addison-Wesley Publ. Comp., 1969.

P. Harpe, Topics in Geometrical Group Theory, University Chicago Press, 2000.

V. Nekrashevych, Uniformly bounded spaces, Problems in Algebra, 14, 47-67, Gomel University Press,
1999.

I. Protasov, T. Banakh, Ball Structures and Colorings of Groups and Graphs, Math. Stud. Monogr. Ser.,
vol.11, VNTL, Lviv, 2003.

I. Protasov, M. Zarichnyi, General Asymptology, Math. Stud. Monogr. Ser., vol.12, VNTL, Lviv, 2007.
J. Roe, Lectures on Coarse Geometry, University Lecture Series, vol.31, American Mathematical Society,
Providence, RI, 2003.

Department of Cybernetics,

Kyiv Taras Shevchenko University
Volodimirska str., 64, 01033 Kyiv, Ukraine
protasov@unicyb.kiev.ua

Received 31.10.2007



