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A ballean (or a coarse structure) is a set endowed with some family of subsets which are
called the balls. The properties of the family of balls are postulated in such a way that a
ballean can be considered as an asymptotical counterpart of a uniform topological space. We
prove that every ballean of bounded geometry is coarsely equivalent to a ballean on some set
X determined by some group of permutations of X.

È. Â. Ïðîòàñîâ. Áîëåàíû îãðàíè÷åííîé ãåîìåòðèè è G-ïðîñòðàíñòâà // Ìàòåìàòè÷íi Ñòó-
äi¨. � 2008. � Ò.30, �1. � C.61�66.

Áîëåàí (èëè ýêâèâàëåíòíàÿ ñòðóêòóðà) � ìíîæåñòâî îñíàùåííîå íåêîòîðûì ñåìåé-
ñòâîì ïîäìíîæåñòâ, íàçûâàåìûõ øàðàìè. Ñâîéñòâà ñåìåéñòâà øàðîâ ïîñòóëèðóþòñÿ òà-
êèì îáðàçîì, ÷òî áîëåàí ìîæíî ðàññìàòðèâàòü êàê àñèìïòîòè÷åñêèé àíàëîã ðàâíîìåð-
íî òîïîëîãè÷åñêîãî ïðîñòðàíñòâà. Äîêàçûâàåòñÿ, ÷òî êàæäûé áîëåàí îãðàíè÷åííîé ãåî-
ìåòðèè ãðóáî ýêâèâàëåíòåí áîëåàíó íåêîòîðîãî ìíîæåñòâà X, îïðåäåëÿåìîãî ñ ïîìîùüþ
íåêîòîðîé ãðóïïû ïåðåñòàíîâîê X.

1. Ball structures and balleans. A ball structure is a triple B = (X,P,B), where X, P
are nonempty sets and, for any x ∈ X and α ∈ P , B(x, α) is a subset of X which is called a
ball of radius α around x. It is supposed that x ∈ B(x, α) for all x ∈ X,α ∈ P . The set X is
called the support of B, P is called the set of radii. Given any x ∈ X,A ⊆ X,α ∈ P we put

B∗(x, α) = {y ∈ X : x ∈ B(y, α)}, B(A,α) =
⋃
a∈A

B(a, α).

A ball structure is called

• lower symmetric if, for any α, β ∈ P , there exist α′, β′ such that, for every x ∈ X,

B∗(x, α′) ⊆ B(x, α), B(x, β′) ⊆ B∗(x, β);

• upper symmetric if, for any α, β ∈ P , there exist α′, β′ such that, for every x ∈ X,

B(x, α) ⊆ B∗(x, α′), B∗(x, β) ⊆ B(x, β′);

• lower multiplicative if, for any α, β ∈ P , there exists γ ∈ P such that, for every x ∈ X,

B(B(x, γ), γ) ⊆ B(x, α) ∩B(x, β);

• upper multiplicative if, for any α, β ∈ P , there exists γ ∈ P such that, for every x ∈ X,

B(B(x, α), β) ⊆ B(x, γ).
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Let B = (X,P,B) be a lower symmetric and lower multiplicative ball structure. Then
the family { ⋃

x∈X

B(x, α)×B(x, α) : α ∈ P
}

is a base of entourages for some (uniquely determined) uniformity on X. On the other hand,
if U ⊆ X×X is a uniformity on X, then the ball structure (X,U , B) is lower symmetric and
lower multiplicative, where B(x, U) = {y ∈ X : (x, y) ∈ U}. Thus, the lower symmetric and
lower multiplicative ball structures can be identi�ed with the uniform topological spaces.

We say that a ball structure B is a ballean if B is upper symmetric and upper multi-
plicative. In this paper we follow terminology from [6, 7]. A structure on X, equivalent to a
ballean, can also be de�ned in terminology of entourages. In this case it is called a coarse
structure [8] or a uniformly bounded space [5]. For motivations to study balleans see also
[1, 2, 4].

2. Morphisms. Let B1 = (X1, P1, B1), B2 = (X2, P2, B2) be balleans. A mapping f : X1 →
X2 is called a ≺-mapping if, for every α ∈ P1, there exists β ∈ P2 such that, for every x ∈ X1,

f(B1(x, α)) ⊆ B2(f(x), β)
A bijection f : X1 → X2 is called an asymorphism between B1 and B2 if f and f−1 are
≺-mappings.

Let B = (X,P,B) be a ballean, S be a set. Two mappings f, f ′ : S → X are called close

if there exists α ∈ P such that f ′(s) ∈ B(f(s), α) for every s ∈ S.
Two balleans B1 = (X1, P1, B1) and B2 = (X2, P2, B2) are called coarsely equivalent if

there exist the ≺-mappings f1 : X1 → X2, f2 : X2 → X1 such that f1 ◦ f2, f2 ◦ f1 are close
to the identity mappings idX1 , idX2 .

Let B = (X,P,B) be a ballean. Every non-empty subset Y ⊆ X determines the subbal-
lean BY = (Y, P,BY ), where BY (y, α) = B(Y, α) ∩ Y , y ∈ Y , α ∈ P . A subset Y is called
large if there exists γ ∈ P such that B(Y, γ) = X. If Y is large, then BY and B are coarsely
equivalent. We shall use also the following observations. Two balleans B1 = (X1, P1, B1)
and B2 = (X2, P2, B2) are coarsely equivalent if and only if there exist the large subsets
Y1 ⊆ X1,Y2 ⊆ X2 such that the subballeans BY1 and BY2 are asymorphic.

3. Density and capacity. Let B = (X,P,B) be a ballean, Y ⊆ X, S ⊆ Y , α ∈ P . We say
that a subset S is α-dense in Y if Y ⊆ B(S, α). An α-density of Y is the cardinal

denα(Y ) = min{|S| : S is an α− dense subset of Y }.
A subset S of X is called α-separated if B(x, α) ∩ B(y, α) = ∅ for all distinct x, y ∈ S. An
α-capacity of Y is the cardinal

capα(Y ) = sup{|S| : S is an α− separated subset of Y }.
Let B = (X,P,B) be an arbitrary ballean. Replacing every ball B(x, α) to B′(x, α) =

B(x, α)∩B∗(x, α), we get the asymorphic ballean B′ = (X,P,B′) with (B′)∗ = B′. Thus, in
what follows we may suppose that B∗(x, α) = B(x, α) for all x ∈ X, α ∈ P .

Lemma 1. Let B = (X,P,B) be a ballean, Y ⊆ X, α, β ∈ P and B(B(x, α)) ⊆ B(x, β) for
every x ∈ X. Then the following statements hold

(i) denβ(Y ) 6 capα(Y ) 6 denα(Y );
(ii) if Z ⊆ X and Y ⊆ B(Z, α), then denβ(Y ) 6 |Z|.

Proof. (i) Let S be an α-separated subset of Y , D be an α-dense subset of Y . Then every ball
B(x, α), x ∈ D has at most one point of S. Since S ⊆ Y ⊆

⋃
x∈D

B(x, α), we have |S| 6 |D|,

so capα(Y ) 6 denα(Y ).
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Let S be a maximal by inclusion α-separated subset of Y . Then every ball B(x, α), x ∈ Y
meets at least one ball B(y, α), y ∈ S. It follows that Y ⊆

⋃
x∈S

B(x, β), so S is β-dense in Y

and denβ(Y ) 6 capα(Y ).
(ii) We put Z ′ = {z ∈ Z : B(z, α) ∩ Y 6= ∅} and, for every z ∈ Z ′, pick some point

yz ∈ B(z, α) ∩ Y . Then the subset {yz : z ∈ Z ′} of Y is β-dense in Y , so denβ(Y ) 6 |Z ′| 6
|Z|.

4. Locally �nite balleans. A ballean B = (X,P,B) is called locally �nite if every ball
B(x, α), x ∈ X, α ∈ P is �nite.

Let B = (X,P,B), B′ = (X ′, P ′, B′) be balleans, f : X → X ′ be an injective ≺-mapping.
If B′ is locally �nite then B is locally �nite. In particular, every ballean asymorphic to a
locally �nite ballean is locally �nite.

We say that a ballean B is coarsely locally �nite if B is coarsely equivalent to some locally
�nite ballean.

Proposition 1. A ballean B = (X,P,B) is coarsely locally �nite if and only if there exists
β ∈ P such that β-capacity of every ball B(x, γ),x ∈ X, γ ∈ P is �nite.

Proof. Let B′ = (X ′, P ′, B′) be a locally �nite ballean coarsely equivalent to B. Then there
exist the large subsets Y ⊆ X, Y ′ ⊆ X ′ such that the subballeans BY and BY ′ are asymorphic.
We choose α ∈ P such that B(Y, α) = X and take an arbitrary x ∈ X, γ ∈ P . Since BY is
locally �nite then the subset Z = B(B(x, γ), α) ∩ Y is �nite. Since B(x, γ) ⊆ B(Z, α), by
Lemma 1 (ii), denβ(B(x, γ)) 6 |Z|. Since Z is �nite, by Lemma 1 (i), β-capacity of B(x, γ)
is �nite.

On the other hand, let β-capacity of every ball B(x, γ) is �nite. We choose a maximal by
inclusion β-separated subset Y of X. Clearly, Y is large in X, so BY is coarsely equivalent
to B. Since capβB(x, γ) is �nite, then B(x, γ) ∩ Y is �nite. Hence, BY is locally �nite.

Every metric space (X, d) determines the metric ballean B(X, d) = (X,R+, Bd), where
Bd(x, r) = {y ∈ X : d(x, y) 6 r}. For criterion of metrizability of balleans see [7, Theorem
2.1.1]. A metric space is called proper if every ball Bd(x, r) is compact.

Corollary 1. Let (X, d) be a proper metric space. Then the metric ballean B(X, d) is
coarsely locally �nite.

Proof. It su�ces to note that an 1-capacity of every ball in (X, d) is �nite, and apply Proposi-
tion 1.

5. Uniformly locally �nite balleans. A ballean B = (X,P,B) is called uniformly locally

�nite if there exists a function h : P → ω such that |B(x, α)| 6 h(α) for all x ∈ X, α ∈ P .
Let B = (X,P,B), B′ = (X ′, P ′, B′) be balleans, f : X → X ′ be an injective ≺-mapping.

If B′ is uniformly locally �nite then so is B. In particular, every ballean asymorphic to an
uniformly locally �nite ballean is uniformly locally �nite.

We say that a ballean B = (X,P,B) has bounded geometry if there exist β ∈ P and a
function h : P → ω such that capβB(x, α) 6 h(α) for all x ∈ X, α ∈ P .

Repeating the arguments proving Proposition 1 we get the following statements.

Proposition 2. A ballean B = (X,P,B) has bounded geometry if and only if B is coarsely
equivalent to some uniformly locally �nite ballean.
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Example 1. Let Γ(V,E) be a connected graph with the set of vertices V and the set of
edges E. Given any u, v ∈ V , we denote by d(u, v) the length of a shortest path between u
and v. Then we get the metric space (V, d) associated with Γ(V,E) and the metric ballean
B(V, d). Clearly, B(V, d) is uniformly locally �nite if and only if there exists a natural number
r such that |Bd(v, 1)| 6 r for every v ∈ V .

Example 2. Let G be a �nitely generated group with the identity e, F be a symmetric
(F = F−1) set of generators of G such that e /∈ F . The Cayley graph Cay(G,F ) is a graph
with the set of vertices G and set of edges {{u, v} : uv−1 ∈ F}. Let dF be a path metric on
Cay(G,F ). Then the metric ballean B(G, dF ) is uniformly locally �nite.

Example 3. Let G be an arbitrary group, Fe the family of all symmetric subsets of G
containing e. Then we get a ballean B(G) = (G,Fe, B), where B(g, F ) = Fg. Clearly, B(G)
is uniformly locally �nite and in the case G is �nitely generated, B(G) is asymorphic to the
ballean B(G, dF ) determined in Example 2.

Example 4. Let G be a group and X be a G-space with the action of G on X de�ned by
(g, x) 7→ g(x). We denote by Fe the family of all �nite symmetric subsets of G containing
e. Then we get the ballean B(G,X) = (X,Fe, B), where B(x, F ) = {g(x) : g ∈ F}, x ∈ X,
F ∈ Fe. Clearly, B(G,X) is uniformly locally �nite.

Example 5. Let G be a gruppoid (=inverse semigroup) of partial bijections of a set X, F
be a family of all �nite subsets of G such that F = F−1 for every F ∈ F . Given any x ∈ X
and F ∈ F , we put B(x, F ) = {x} ∪ {g(x) : g ∈ F} and get the uniformly locally �nite
ballean B(G,X).

Example 6. Let G be a locally compact topological group, C be the family of all compact
symmetric subsets of G containing e. Then, by Proposition 2, the ballean B(G) = (G,C,B),
where B(x,C) = Cx, is of bounded geometry.

Question 1. Let G be a locally compact group. Does there exist a discrete group D such
that the balleans B(G) and B(D) are coarsely equivalent? This is so if G is Abelian or a
connected Lie group.

6. G-space realization. Let B, B′ be balleans with the same support X. We write B ≺ B′
if the identity mapping id : X → X is a ≺-mapping from B to B′. If B ≺ B′ and B′ ≺ B, we
identify B and B′ and write B = B′.

Let B be a uniformly locally �nite ballean with the support X. Applying Lemma 4.10
from [8], one can show that there exists a gruppoid G of partial bijections of X such that
B = B(G,X) where B(G,X) is a ballean determined in Example 5. Our next result states
that instead of the gruppoid G we can take some group of permutations of X.

Theorem 1. For every uniformly locally �nite ballean B = (X,P,B), there exists a group
G of permutations of X such that B = B(G,X).

Proof. We �x an arbitrary α ∈ P and choose β ∈ P such that B(B(x, α), α) ⊆ B(x, β) for
each x ∈ X. Then we de�ne the graph Γβ with the set of vertices X and the set of edges
Eβ de�ned by the rule: {x, y} ∈ Eβ if and only if x ∈ B(y, β). Since B is uniformly locally
�nite, there exists a natural number n(α) such that the local degree of every vertex of Γβ
does not exceed n(α). By [3, Corollary 12.2], the chromatic number of Γβ does not exceed
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n(α) + 1. It follows that we can partition X = X1 ∪ . . . ∪Xn(α)+1 so that any two vertices
from Xj are non-adjacent, in particular, every subset Xi is α-separated.

Now we �x i ∈ {1, . . . , n(α) + 1} and, for every vertex x ∈ Xi, enumerate the set
B(x, α) \ {x} = {x(1), . . . , x(nx)}, where nx 6 n(α). Then we de�ne the set Si(α) of n(α)
permutations of X as follows. For each j ∈ {1, . . . , n(α)} and x ∈ Xi, we put πj(x) =
x(j),πj(xj) = x if j 6 nx, and πj(x) = x otherwise. Then we extend π to X putting πj(y) = y
for all y ∈ X \

⋃
x∈Xi

{x, x(j)}. Since Xi is α-separated, this de�nition is correct. Thus, we get

the set Si(α) = {π1, . . . , πn(α)} of permutations of X. We put S(α) = S1(α)∪ . . .∪Sn(α)+1(α)
and denote by G the group of permutations of X generated by

⋃
α∈P

S(α).

At last we show that the identity mapping id : X → X is an asymorphism between B
and the ballean B(G,X) = (X,Fe, B′) determined in Example 4. Given any α ∈ P and
x ∈ X, we have B(x, α) ⊆ B′(x, Sα). On the other hand, let F be a �nite subset of G,
g ∈ F . Then there exists α1, . . . , αm ∈ P and s(α1) ∈ S(α1), . . . , s(αm) ∈ S(αm) such that
g = s(αm) . . . s(α1). We choose γg ∈ P such that

B(. . . (B(B(x, α1), α2), . . .), αm) ⊆ B(x, γg)

for every x ∈ X. Then B′(x, {g}) ⊆ B(x, γg) for every x ∈ X. Since F is �nite, there exists
γ ∈ P such that, for each x ∈ X, we have B′(x, F ) ⊆ B(x, γ).

Sticking together Proposition 2 and Theorem 1 we get the following statement.

Theorem 2. Every ballean of bounded geometry is coarsely equivalent to some ballean
B(G,X) of G-space X.

We conclude our paper with two applications of Theorem 1.

Theorem 3. Let X be a set, SX be a group of all permutations of X. Then B(SX , X) is the
strongest uniformly locally �nite ballean on X.

Proof. Let B′ be a uniformly locally �nite ballean on X. Using Theorem 1, we choose a
group G of permutations of X such that B′ = B(G,X). Since G is a subgroup of SX , we
have B′ ≺ B(SX , X).

A ballean B = (X,P,B) is called connected if, for any x, y ∈ X, there exists α ∈ P such
that y ∈ B(x, α). Clearly, a ballean B(G,X) of a G-space is connected if and only if G acts
transitively on X.

Let B1 = (X1, P1, B1), B2 = (X2, P2, B2) be balleans. A mapping f : X1 → X2 is called
a �-mapping if, for every β ∈ P2, there exists α ∈ P1 such that B2(f(x), β)) ⊆ f(B1(x, α))
for each x ∈ X1. A bijection f : X1 → X2 is a �-mapping if and only if f−1 is a ≺-mapping.
Thus, B1 and B2 are asymorphic if and only if there is a bijection f : X1 → X2 which is a
≺-mapping and a �-mapping.

Theorem 4. For every connected uniformly locally �nite ballean B on a set X, there exist
a group G of permutations of X and a surjective mapping f : G→ X which is a ≺-mapping
and a �-mapping from B(G) to B.

Proof. Applying Theorem 1, we identify B with B(G,X) for some group G of permutations of
X. Then we �x x0 ∈ X and, for every g ∈ G, put f(g) = g(x0). Since B is connected, (G,X)
is a transitive G-space, so f is surjective. For any �nite subset F of G, we have f(Fg) =
Fg(x0) = F (g(x0)) = F (f(g)). It follows that f is a ≺-mapping and a �-mapping.
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Let (G,X) be a transitive G-space, x0 ∈ X. If St(x0) = {g ∈ G : g(x0) = x0} is �nite,
applying Theorem 4, it is easy to show that the balleans B(G) and B(G,X) are coarsely
equivalent.

Question 2. Let (G,X) be a transitive G-space. How to detect whether the ballean B(G,X)
is asymorphic (coarsely equivalent) to the ballean B(H) of some group H?
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