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We establish the well-posedness of the boundary-value problems for some class of nonlinear
elliptic equations having exponential nonlinearities in unbounded domains. We consider mixed
boundary conditions and varying exponents of nonlinearity which are different with respect to
various derivatives and we seek for the weak solutions in the corresponding general anisotropic
Lebesgue-Sobolev spaces.
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Èññëåäóåòñÿ êîððåêòíîñòü êðàåâûõ çàäà÷ äëÿ íåêîòîðîãî êëàññà íåëèíåéíûõ ýëëèïòè-
÷åñêèõ óðàâíåíèé ñî ñòåïåííûìè íåëèíåéíîñòÿìè â íåîãðàíè÷åííûõ îáëàñòÿõ. Ðàññìàòðè-
âàþòñÿ ñìåøàííûå ãðàíè÷íûå óñëîâèÿ, êîãäà ïîêàçàòåëè íåëèíåéíîñòè � ïåðåìåííûå
è ðàçëè÷íûå îòíîñèòåëüíî ðàçëè÷íûõ ïðîèçâîäíûõ, è èùóòñÿ ñëàáûå ðåøåíèÿ èç ñîîò-
âåòñâóþùèõ îáîáùåííûõ àíèçîòðîïíûõ ïðîñòðàíñòâ Ëåáåãà-Ñîáîëåâà.

Introduction. The study of boundary problems in anisotropic spaces is motivated by their
applications to physics and mechanics. In particular, such problems describe flows of electro-
rheological fluids, processes of image restoration, filtration through inhomogeneous media,
motion of nonideal electrons in crystalline solid ([1]�[2]). They also appear in anisotropic
generalization of the special relativity theory that use nonlinear differential operators action
on functions from anisotropic spaces.

Boundary problems for static equations were studied in many mathematical publications
(see, for instance, [3]�[10] and the literature cited therein). In particular, H. Brezis presented
in [5] the first example

−∆u+ |u|p−2u = f(x), x ∈ Rn, p > 2,
of an elliptic equation given in unbounded domain such that the corresponding boundary
problems have unique solution without restrictions on its behavior and increasing of initial
data at infinity. Later on, the class of such equations and systems was extended ([7]�[10]).

In this paper we supplement this class with equations having exponential nonlinearities
that vary at x and are different with respect to various derivatives. A typical example of
such an equations is

−
n∑

i=1

(
|uxi

|pi(x)−2uxi

)
xi

+ |u|p0(x)−2u = f(x), x ∈ Ω, (1)
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where Ω is an unbounded domain, p0, . . . , pn are measurable functions satisfying the con-
ditions: 1 < pi ≤ 2, i ∈ {1, . . . , n}, p0 ≥ 2 for a.e. x ∈ Ω. We consider mixed boundary
conditions: the Dirichlet boundary condition on one part the of the boundary of the domain
Ω and the Neumann boundary condition on the other part. Equations of type (1) but with
constant exponents of nonlinearities were considered in [9]�[10]. In addition to one-valued
solvability of the problem in the class of functions with arbitrary behavior at infinity we
consider the question of continuous dependence of the solution on initial data.

1. Preliminaries. Let n be a natural number. We denote by Rn the arithmetical space of
n ordered arrays of real numbers, i.e. a linear space consisting of elements x = (x1, . . . , xn),
where xi ∈ R, i ∈ {1, . . . , n}, with the norm |x| =

√
x2

1 + . . .+ x2
n.

All functions considered here are given in the corresponding subsets of the spaces Rn

and Rn+1 and take the values in R. If v(z), z ∈ D̃, is a given function, then v|D denotes its

restriction to a set D ⊂ D̃.

Let Ω be an unbounded domain in Rn with piece wise regular boundary Γ
def
= ∂Ω; Γ =

Γ1

⋃
Γ2, where Γ1, Γ2 are open sets on ∂Ω (one of them can be empty), Γ1

⋂
Γ2 = ∅; ν is

a unit exterior normal vector to ∂Ω. Without loss of generality we will suppose that 0 ∈ Ω.
For all R > 0 we denote by ΩR the connected component of the set Ω ∩ {x : |x| < R} such

that 0 ∈ ΩR. Let SR = ∂ΩR ∩ Ω, Γk,R
def
= Γk

⋂
∂ΩR, k ∈ {1, 2}, R > 0.

Let r ∈ L∞, loc(Ω) and r(x) ≥ 1 for a.e. x ∈ Ω. On the space C(ΩR) of continuous
functions on ΩR, where R > 0 is an arbitrary number, we introduce the norm

‖v‖Lr( · )(ΩR)

def
= inf{λ > 0 : ρr,R(v/λ) ≤ 1}, where ρr,R(v)

def
=
∫

ΩR

|v(x)|r(x) d x.

Let Lr( · )(ΩR) denote the completion of the linear space C(ΩR) by this norm (see [12]). The
set Lr( · )(ΩR) is a linear subspace of the space L1(ΩR) and is called the general Lebesgue
space.

Let Lr( · ), loc(Ω) denote the closure of the space C(Ω) in the topology generated by the
system of semi-norms ‖ · ‖Lr( · )(ΩR), R > 0. Put

Lr( · )(Ω) =
{
v ∈ Lr( · ), loc(Ω) : sup

R>0
‖v|ΩR

‖Lr( · )(ΩR) <∞
}
.

Let pi ∈ L∞, loc(Ω), i ∈ {0, . . . , n}, with pi(x) ≥ 1, i ∈ {0, . . . , n}, for a.e. x ∈ Ω. Denote

p
def
=(p0, p1, . . . , pn). For all R > 0 we define W 1

p( · )(ΩR) to be the Banach space obtained as

the completion of the space C1(ΩR) by the norm

‖v‖W 1
p( · )(ΩR)

def
= ‖v‖Lp 0( · )(ΩR) +

n∑
i=1

‖vxi
‖Lp i( · )(ΩR).

It is obvious that W 1
p( · )(ΩR) is a subspace of the space

{
v(x), x ∈ ΩR : v ∈ Lp 0( · )(ΩR),

vxi
∈ Lpi( · )(ΩR), i ∈ {1, . . . , n}

}
.

On the space C1(Ω), consider a locally convex linear topology generated by the system
of semi-norms: ‖ · ‖W 1

p( · )(ΩR) , R > 0, and let W 1
p( · ), loc(Ω) be the completion of C1(Ω) in this

topology. It is evident that a sequence {vk}∞k=1 is convergent to v in this space if ‖vk −
v‖W 1

p( · )(ΩR)−→
k→∞

0 for all R > 0. Note that v
∣∣
ΩR

∈ W 1
p( · )(ΩR) for all R > 0 provided v ∈

W 1
p( · ), loc(Ω).

Let C1
c (Ω) be the subspace of the space C1(Ω) consisting of the functions with supports in

Ω, and C1,+
c (Ω) be the subspace of the space C1

c (Ω) consisting of the nonnegative functions.

2. The statement of the problem and main results.We denote by P the set of vector-



BOUNDARY PROBLEMS FOR ELLIPTIC EQUATIONS IN ANISOTROPIC SPACES 79

functions p = (p 0, p1, . . . , pn) such that pi ∈ L∞, loc(Ω) and pi(x) > 1, i ∈ {0, . . . , n}, for a.e.
x ∈ Ω. For a function p ∈ P, by p∗ = (p∗0, p

∗
1, . . . , p

∗
n) we denote the vector-function such that

1
pi(x)

+ 1
p∗i (x)

= 1, i ∈ {0, . . . , n}, for a.e. x ∈ Ω (it is obvious that p∗ ∈ P).
For p ∈ P, we define Ap to be the set of ordered arrays a = (a0, a1, . . . , an) of n + 1

real-valued functions defined on Ω× R and satisfying the following conditions:
1) for all i ∈ {0, . . . , n} ai(x, ξ), (x, ξ) ∈ Ω× R is a Caratheodory function, i.e. for a.e.
x ∈ Ω the function ai(x, · ) : R → R is continuous and for all ξ ∈ R the function ai(· , ξ) :
Ω → R is Lebesgue measurable.
1′) ai(x, 0) = 0, i ∈ {0, . . . , n}, for a.e. x ∈ Ω;

2) for a.e. x ∈ Ω there exist the derivatives ∂ai(x, ξ)
∂ξ

, ξ 6= 0, i ∈ {1, . . . , n}, and the following
inequalities hold:

Ki|ξ|pi(x)−2 ≤ ∂ai(x,ξ)
∂ξ

≤ K̃i(1 + |x|)σi|ξ|pi(x)−2, ξ 6= 0, i ∈ {1, . . . , n},
where Ki > 0, K̃i > 0, σi ≥ 0, i ∈ {1, . . . , n}, are some constants;

3) for a.e. x ∈ Ω there exists ∂a0(x, ξ)
∂ξ

, ξ 6= 0, and the following inequalities are satisfied
∂a0(x,ξ)

∂ξ
≥ K0|ξ|p0(x)−2, ξ 6= 0, and |a0(x, ξ)| ≤ K̃0|ξ|p 0(x)−1 + h(x), ξ ∈ R,

where K0, K̃0 are some positive constants and h is a function from Lp ∗0( · ), loc(Ω).

Remark 1. The set Ap contains the array of functions
(a0(x) |ξ|p 0(x)−2 ξ, a1(x) |ξ|p 1(x)−2 ξ, . . . , an(x) |ξ|p n(x)−2 ξ),

where ai, i ∈ {0, . . . , n}, satisfy the condition: |ai(x)| ≤ K∗
i (1 + |x|)σi , where K∗

i > 0 is a
constant.

For all p ∈ P, put Fp
def
= Lp ∗0( · ), loc(Ω)×Lp∗1( · ), loc(Ω)×· · ·×Lp∗n( · ), loc(Ω). On Fp we introduce

the Cartesian product locally convex topology.
On the spaceW 1

p( · ), loc(Ω) define an equivalence relation such that two elements v1 and v2

are equivalent if v1 = v2 on Γ1 in the sense of traces. We denote by Vp the quotient-space of
W 1

p( · ), loc(Ω) by this equivalence relation. The space Vp is a locally convex space with respect

to the set of semi-norms: pnR(Φ) = inf
ϕ∈Φ

‖ϕ‖W 1
p( · )(ΩR), Φ ∈ Vp, R > 0. It is easy to see that

a sequence {Φk}∞k=1 is convergent to Φ in Vp if and only if there exists ϕ and a sequence
{ϕk}∞k=1 such that ϕ ∈ Φ, ϕk ∈ Φk, k ∈ N, and ϕk −→

k→∞
ϕ in W 1

p( · ), loc(Ω).

For p ∈ P, we denote by Up the linear space W
1
p( · ), loc(Ω) with the following convergence:

a sequence of elements {vk}∞k=1 is convergent to v in Up if∫
Ω

{ n∑
i=1

(
|vk,xi

|pi(x)−2vk,xi
− |vxi

|pi(x)−2vxi

)(
vk,xi

− vxi

)
+ |vk − v|p0(x)

}
d x−→

k→∞
0.

Remark 2. The choice of such a convergence on Up was motivated by the fact that
(|rk|p−2rk − |r|p−2r)(rk − r)−→

k→∞
0 if and only if rk−→

k→∞
r

for all r ∈ R, rk, k ∈ N, and arbitrary p > 1.

Now we formulate the investigated problem. Let P̃ ⊂ P and Ãp ⊂ Ap, F̃p ⊂ Fp, Ṽp ⊂ Vp,

Ũp ⊂ Up for p ∈ P̃. The main problem PA
(
Ãp, F̃p, Ṽp, Ũp : p ∈ P̃

)
(Problem in Anisotropic

spaces) is to find for every p ∈ P̃ and a ∈ Ãp, f ∈ F̃p, Φ ∈ Ṽp the set SPA
(
a, f,Φ

)
(Solutions

of Problem in Anisotropic spaces) of functions u ∈ Ũp such that u ∈ Φ and the equality∫
Ω

{∑n
i=1 ai(x, uxi

)vxi
+ a0(x, u)v

}
d x =

∫
Ω

{
f0v +

∑n
i=1 fivxi

}
d x (2)

holds for all v ∈ W 1
p( · ), loc(Ω), v|Γ1 = 0, supp v is compact.
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Remark 3. It is seen from the statement of the investigated problem that the restricting
condition 1′) is not essential. Otherwise, we can introduce new functions

ãi(x, ξ)
def
= ai(x, ξ)− ai(x, 0), f̃i(x)

def
= fi(x)− ai(x, 0), i ∈ {0, . . . , n},

for a.e. x ∈ Ω and rewrite identity (2) with ãi(x, ξ), f̃i(x), i ∈ {0, . . . , n}, instead of
ai(x, ξ), fi(x), i ∈ {0, . . . , n}, respectively, where functions ai(x, ξ), i ∈ {0, . . . , n}, satisfy
condition 1′).

Let us say that PA
(
Ãp, F̃p, Ṽp, Ũp : p ∈ P̃

)
is solvable (unique, uniquely solvable)

problem, if for every p ∈ P̃ and arbitrary a ∈ Ãp, f ∈ F̃p and Φ ∈ Ṽp the set SPA
(
a, f,Φ

)
⊂

Ũp is non-empty (contains at most one element, has exactly one element).

Let us say that PA
(
Ãp,F̃p,Ṽp,Ũp : p ∈ P̃

)
is a weakly well-posed problem, if it is uniquely

solvable and for all p ∈ P̃ and arbitrary elements a ∈ Ãp , f ∈ F̃p , Φ ∈ Ṽp and a sequence

{fk}∞k=1 ⊂ F̃p such that fk−→
k→∞

f in F̃p, we have uk−→
k→∞

u in Up , where uk ∈ SPA
(
a, fk,Φ

)
,

k ∈ N, u ∈ SPA
(
a, f,Φ

)
.

It is obvious that problem PA
(
Ãp, F̃p, Ṽp, Ũp : p ∈ P̃

)
can be formally interpreted as

the boundary value problem for the equation

−
n∑

i=1

d

dxi

ai(x, uxi
) + a0(x, u) = f0(x)−

n∑
i=1

∂

∂xi

fi(x), x ∈ Ω,

with boundary conditions
u(x) = ϕ(x), x ∈ Γ1,

∂u
∂νa

≡
n∑

i=1

ai(x, uxi
) cos(ν, xi) = 0, x ∈ Γ2,

where a ∈ Ãp , f ∈ F̃p for p ∈ P̃, ϕ is an arbitrary element from Φ ∈ Ṽp.

We seek for the set P̃ and spaces Ãp , F̃p , Ṽp , p ∈ P̃ such that problem PA
(
Ãp, F̃p, Ṽp,

Up : p ∈ P̃
)
is unique, uniquely solvable or weakly well-posed. Note that we do not want to

impose any restrictions on increasing of the elements of the sets F̃p, Ṽp (p ∈ P̃) at infinity.

Here we make the following choice of the indicated sets.

Let P∗ be a set of elements p = (p0, p1, . . . , pn) ∈ P such that

p−0
def
= ess inf

x∈Ω
p 0(x) ≥ 2, p+

0
def
= ess sup

x∈Ω
p 0(x) <∞,

p−i
def
= ess inf

x∈Ω
pi(x) > 1, p+

i
def
= ess sup

x∈Ω
pi(x) ≤ 2, i ∈ {1, . . . , n},

the functions qi(x)
def
= p 0(x)p i(x)

p 0(x)−p i(x)
, x ∈ Ω, i ∈ {1, . . . , n}, belong to the space L∞(Ω),

n− q−i < 0, where q−i
def
= ess inf

x∈Ω
qi(x), i ∈ {1, . . . , n}.

For all p ∈ P∗, define A∗
p as the set of functions arrays a ∈ Ap that satisfy the additional

condition:

4) Constants σ1, . . . , σn in condition 2) are such that

n− q−i + σi
q+
i

p−i
< 0, where q+

i
def
= ess sup

x∈Ω
qi(x), i ∈ {1, . . . , n}.

Denote by F∗
p the subset of Fp with elements (f0, 0, . . . , 0), i.e. if f ∈ F∗

p, then fi = 0,

i ∈ {1, . . . , n}, f0 ∈ Lp∗0( · ), loc(Ω).

Theorem 1. The following propositions are valid.
1) The problem PA

(
A∗

p, Fp, Vp, Up : p ∈ P ∗) is uniquely solvable and for all p ∈ P ∗ and
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a ∈ A∗
p, f ∈ Fp, Φ ∈ Vp the (unique) function u ∈SPA

(
a, f,Φ) for every R0 > 0, R ≥ 1,

R0 < R, satisfies the inequality∫
ΩR0

[∑n
i=1 |uxi

(x)|pi(x) + |u(x)|p 0(x)
]
d x ≤

≤
(

R
R−R0

)s
{
C1R

n−γ + C2

∫
ΩR

[
|f0(x)|p

∗
0(x) +

∑n
i=1 |fi(x)|p

∗
i(x)
]
d x+

+C3

∫
ΩR

[
|ϕ(x)|p 0(x) +

∑n
i=1R

σi|ϕxi
(x)|p i(x)

]
d x+ C4

∫
ΩR

|h(x)|p∗0(x) d x

}
, (3)

where γ = min
1≤i≤n

(q−i −σiq
+
i /p

−
i ), s > max

1≤ i≤n
q+
i is an arbitrary number, C1, C2, C3, C4 are some

positive constants depending only on n, s, p−i , p
+
i (i ∈ {0, . . . , n}), q−i , q+

i (i ∈ {1, . . . , n}).
2) The problem PA

(
A∗

p, F∗
p, Vp, Up : p ∈ P ∗) is weakly well-posed and its solution satisfies

estimate (3) with fi = 0, i ∈ {1, . . . , n}.

3. Auxiliary statements. It is easy to establish that the following proposition is valid (see
[13], p. 312).

Proposition 1. Let R > 0 be an arbitrary number, r ∈ L∞(ΩR), r−
def
= ess inf

x∈ΩR

r(x) > 1,

r+ def
= ess sup

x∈ΩR

r(x) < +∞. Then for every function v ∈ Lr( · )(ΩR) the following inequalities

hold

min
{

(ρr,R(v))1/r− , (ρr,R(v))1/r+
}
≤ ‖v‖Lr( · )(ΩR) ≤ max

{
(ρr,R(v))1/r− , (ρr,R(v))1/r+

}
,

min
{
‖v‖r−

Lr( · )(ΩR), ‖v‖r+

Lr( · )(ΩR)

}
≤ ρr,R(v) ≤ max

{
‖v‖r−

Lr( · )(ΩR), ‖v‖r+

Lr( · )(ΩR)

}
.

Remark 4. For all a ≥ 0, b ≥ 0, ε > 0, ν > 1 Young's inequality [4] (a b ≤ aν

ν
+ aν∗

ν∗
,

ν ∗ = ν
ν−1

) implies the inequality: a b ≤ εaν + ε1−ν∗

ν∗

(
1
ν

) ν∗
ν b ν∗ . Hence taking into account

that
(

1
ν

) ν∗
ν < 1 for all ν > 1, we obtain

a b ≤ εaν + ε1−ν∗

ν∗
b ν∗ . (4)

Remark 5. Young's inequality [4] (a b c ≤ aν1

ν1
+ aν2

ν2
+ aν3

ν3
, a ≥ 0, b ≥ 0, c ≥ 0, ε > 0, ν1 >

1, ν2 > 1, ν3 > 1, 1
ν1

+ 1
ν2

+ 1
ν3

= 1) simply implies the inequality a b c ≤ εaν1 + εbν2 +

ε1−ν3

ν3

(
1
ν1

) ν3
ν1

(
1
ν2

) ν3
ν2 cν3 . Thus, reasoning just as in the previous Remark, we derive

a b c ≤ εaν1 + εbν2 + ε1−ν3

ν3
cν3 . (5)

Lemma 1. For every t, s ∈ R the following inequalities hold:

(|s|q−2s− |t|q−2t)(s− t) ≥ 22−q|s− t|q, if q ≥ 2, (6)

0 ≤ (|s|q−2s− |t|q−2t)(s− t) ≤ 22−q|s− t|q, if 1 < q ≤ 2. (7)

Proof. Inequality (6) is proved in [11], and inequality (7) can be easily proved by a similar
argument.
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Lemma 2. Let a ∈ Ap , where p ∈ P∗. For a.e. x ∈ Ω and arbitrary ξ1, ξ2 from R the
following inequalities are valid:

(a0(x, ξ1)− a0(x, ξ2))(ξ1 − ξ2) ≥ K−
0 |ξ1 − ξ2|p0(x), (8)

(ai(x, ξ1)− ai(x, ξ2))(ξ1 − ξ2) ≥ K−
i

(
|ξ1|pi(x)−2ξ1 − |ξ2|pi(x)−2ξ2

)(
ξ1 − ξ2

)
, i ∈ {1, . . . , n}, (9)

(ai(x, ξ1)− ai(x, ξ2))(ξ1 − ξ2) ≤ K+
i (1 + |x|)σi|ξ1 − ξ2|pi(x), i ∈ {1, . . . , n}, (10)

where K−
i (i ∈ {0, . . . , n}), K+

j (j ∈ {1, . . . , n}) are some positive constants.

Proof. First of all let us prove inequality (8). Using first of the inequalities from condition
3) and Lemma 1, we obtain for a.e. x ∈ Ω and arbitrary ξ1, ξ2 ∈ R

(a0(x, ξ1)− a0(x, ξ2))(ξ1 − ξ2) =

(
1∫
0

d a0(x,τξ1+(1−τ)ξ2)
d τ

d τ

)
(ξ1 − ξ2) =

=

(
1∫
0

∂ a0(x,τξ1+(1−τ)ξ2)
∂ ξ

(ξ1 − ξ2) d τ

)
(ξ1 − ξ2) ≥

≥ K0

(
1∫
0

|τξ1 + (1− τ)ξ2|p0(x)−2(ξ1 − ξ2) d τ

)
(ξ1 − ξ2) =

[
s = τξ1 + (1− τ)ξ2

]
=

= K0

(
ξ1∫
ξ2

|s|p0(x)−2 d s

)
(ξ1 − ξ2) = K0

|s|p0(x)−2s
p0(x)−1

s=ξ1∣∣∣
s=ξ2

(ξ1 − ξ2) =

= K0

p0(x)−1
(|ξ1|p0(x)−2ξ1 − |ξ2|p0(x)−2ξ2)(ξ1 − ξ2) ≥ K022−p0(x)

p0(x)−1
|ξ1 − ξ2|p0(x) ≥

≥ K022−p+
0

p+
0 −1

|ξ1 − ξ2|p0(x) = K−
0 |ξ1 − ξ2|p0(x),

where K−
0 = (K02

2−p+
0 )/(p+

0 − 1). Inequalities (9) and (10) can be proved in the same way.

Lemma 3. Let p ∈ P ∗ and a ∈ A∗
p, fi ∈ Lp∗i ( · ), loc(Ω), i ∈ {1, . . . , n}, and for every l ∈ {1, 2}

functions f l
0 ∈ Lp∗0( · ), loc(Ω), ul ∈ Up are such that u1 = u2 on Γ1,R∗ and∫

ΩR∗

{∑n
i=1 ai(x, ul,xi

)vxi
(x) + a0(x, ul)v(x)− f l

0(x)v(x)−
∑n

i=1 fi(x)vxi
(x)
}
d x = 0 (11)

for all v ∈ W 1
p( · ), loc(Ω), v|Γ1,R∗

= 0, supp v is a compact in ΩR∗ , where R∗ > 1 is some
number.

Then for every R0 > 0,R ≥ 1, R0 < R ≤ R∗, the inequality holds:∫
ΩR0

[∑n
i=1(|u1,xi

|pi(x)−2u1,xi
−|u2,xi

|pi(x)−2u2,xi
)(u1,xi

(x)−u2,xi
(x))+ |u1(x)−u2(x)|p 0(x)

]
d x ≤

≤
(

R
R−R0

)s [
C5R

n−γ + C6

∫
ΩR

|f 1
0 (x)− f 2

0 (x)|p∗0(x) d x
]
, (12)

where s and γ are the same as in Theorem 1, and C5, C6 are positive constants which do
not depend on ul, f

l
0 (l ∈ {1, 2}).
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Proof. Let us put w
def
= u1−u2. Using integral identities derived from (11) for l = 1 and l = 2

respectively, we get∫
ΩR∗

∑n
i=1(ai(x, u1,xi

)− ai(x, u2,xi
))vxi

+ (a0(x, u1)− a0(x, u2))v − (f 1
0 − f 2

0 )v
}
d x = 0 (13)

for arbitrary v ∈ W 1
p( · ), loc(Ω), v|Γ1,R∗

= 0, supp v is a compact set in ΩR∗ .

Let R be any number in the interval [1;R∗]. Let us set in (13) v = wζs, where ζ(x) =
1
R
(R2−|x|2) for |x| < R and ζ(x) = 0 for |x| ≥ R, s > 1 is a sufficiently large number (value

of s will be defined more precisely later). Hence we derive the equality∫
ΩR

∑n
i=1

[
(ai(x, u1,xi

)− ai(x, u2,xi
))wxi

ζs + (a0(x, u1)− a0(x, u2))w ζ
s
]
d x =

=
∫

ΩR

(f 1
0 − f 2

0 )w ζs d x− s
∫

ΩR

∑n
i=1(ai(x, u1,xi

)− ai(x, u2,xi
))w ζs−1ζxi

d x. (14)

Let us estimate each term of (14). By virtue of inequality (8) we have∫
ΩR

(a0(x, u1)− a0(x, u2))w(x) ζs(x) d x ≥ K−
0

∫
ΩR

|w(x)|p 0(x) ζs(x) d x. (15)

Using inequality (4) we deduce∫
ΩR

(f 1
0 (x)− f 2

0 (x))w(x) ζs(x) d x ≤

≤ η1

∫
ΩR

|w(x)|p 0(x) ζs(x) d x+ C7(η1)
∫

ΩR

|f 1
0 (x)− f 2

0 (x)|p∗0(x) ζs(x) d x, (16)

where η1 is an arbitrary number out of (0; 1), C7(η1) =
η
1−p+

0
1

p−0
.

Remark that

1

p∗i(x)
+

1

p 0(x)
< 1, i ∈ {1, . . . , n}, for a.e. x ∈ Ω. (17)

Indeed, as q+
i > 1, i ∈ {1, . . . , n}, then
1

p∗i(x)
+

1

p 0(x)
=
p 0(x)p i(x)− p 0(x) + p i(x)

p 0(x)p i(x)
= 1− 1

q i(x)
≤ 1− 1

q+
i

< 1.

Let x ∈ ΩR be any point such that w(x), p−i ≤ p i(x) ≤ p+
i (i ∈ {0, . . . , n}), aj(x, ul,xj

(x))
(l ∈ {1, 2}, j ∈ {1, . . . , n}) are defined and (17) is valid. Fix i ∈ {1, . . . , n}. Putting in
inequality (5) ν1 = p∗i(x), ν2 = p 0(x), ν3 = q i(x),

a = |ai(x, u1,xi
(x))− ai(x, u2,xi

(x))|(K+
i (1 + |x|)σi)

− 1
p i(x) ζs/ν1(x), b = |w(x)|ζs/ν2(x),

c = (K+
i (1 + |x|)σi)

1
p i(x) |ζxi

(x)|ζs/ν3−1(x), ε = η2 ∈ (0; 1), we obtain

|ai(x, u1,xi
(x))− ai(x, u2,xi

(x))| |w(x)| |ζxi
(x)| ζs−1(x) ≤

≤ η2|ai(x, u1,xi
(x))− ai(x, u2,xi

(x))|p∗i(x)(K+
i (1 + |x|)σi)

− p∗i(x)

p i(x) ζs(x) + η2|w(x)|p 0(x)ζs(x)+

+C8(η2)(K
+
i (1 + |x|)σi)

q i(x)

p i(x) ζ s−qi(x)(x), C8(η2) = max
i∈{1,...,n}

η
1−q+

i
2

q−i
2q+

i . (18)
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In virtue of inequality (10) in Lemma 2, reasoning just as in [9, p. 163], we deduce

|ai(x, u1,xi
)− ai(x, u2,xi

)|p∗i(x)(K+
i (1 + |x|)σi)

− p∗i(x)

p i(x) ζs(x) ≤

≤
(
ai(x, u1,xi

)− ai(x, u2,xi
)
)(
u1,xi

(x)− u2,xi
(x)
)
ζs(x). (19)

Taking account of |ζ(x)| ≤ R, x ∈ Rn and R ≥ 1 we obtain for s > qi(x)

(K1
i (1 + |x|)σi)

q i(x)

p i(x) ζ s−qi(x)(x) ≤ C9

∑n
i=1R

s−q i(x)+σi
q i(x)

p i(x) , (20)

where C9 is some positive constant.
Inequalities ()�(20) hold for arbitrary i ∈ {1, . . . , n} and a.e. x ∈ ΩR. Consequently

assuming that s > max
1≤i≤n

q+
i , from (14) according to (15)�(20) with sufficiently small values

η1, η2, we get∫
ΩR

{∑n
i=1(ai(x, u1,xi

)− ai(x, u2,xi
))(u1,xi

(x)− u2,xi
(x)) + |w(x)|p 0(x)

}
ζs(x) d x ≤

≤ C10

∫
ΩR

∑n
i=1R

s−q i(x)+σi
q i(x)

p i(x) d x+ C11

∫
ΩR

|f 1
0 (x)− f 2

0 (x)|p∗0(x) ζs(x) d x, (21)

where s > max
1≤i≤n

q+
i is an arbitrary constant, C10, C11 are some positive constants.

Note that s− q i(x) + σi
q i(x)
p i(x)

≤ s− q−i + σi
q+
i

p−i
for a.e. x ∈ Ω, i ∈ {1, . . . , n}. It is easy to

verify that 0 ≤ ζ(x) ≤ R when x ∈ Rn, and ζ(x) ≥ R−R0 if |x| ≤ R0, where R0 ∈ (0, R) is
any number. Taking into account stated above and, in particular, that R ≥ 1, in virtue of
inequality (9) from (21) we conclude∫

ΩR0

[∑n
i=1(|u1,xi

|pi(x)−2u1,xi
− |u2,xi

|pi(x)−2u2,xi
)(u1,xi

(x)− u2,xi
(x)) + |w(x)|p 0(x)

]
d x ≤

≤
(

R
R−R0

)s[
C12

∑n
i=1R

n−q−i +σi
q+
i

p−
i + C13

∫
ΩR

|f 1
0 (x)− f 2

0 (x)|p∗0(x) d x
]
, (22)

where C12, C13 are positive constants depending only on n, s, p−i , p
+
i (i ∈ {0, . . . , n}), q−i , q+

i

(i ∈ {1, . . . , n}).
Observing in (22) that n−q−i +σi

q+
i

p−i
≤ n−γ (i ∈ {1, . . . , n}), where γ = min

1≤i≤n

{
q−i − σi

q+
i

p−i

}
,

we obtain inequality (12).

Lemma 4. Let p ∈ P ∗ and a ∈ A∗
p , f ∈ Fp , u ∈ Up are such that

∫
ΩR∗

{∑n
i=1 ai(x, uxi

)vxi
(x) + a0(x, u)v(x)− f0(x)v(x)−

∑n
i=1 fi(x)vxi

(x)
}
d x = 0 (23)

for arbitrary v ∈ W 1
p( · ), loc(Ω), v|Γ1,R∗

= 0, supp v is a compact set in ΩR∗ , where R∗ > 1 is
some number.

Then for every numbers R0 > 0,R ≥ 1, R0 < R ≤ R∗, estimate (3) holds, where ϕ is
any function from Up such that u = ϕ on Γ1,R∗ .
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Proof. Let R be any number in the interval [1;R∗]. Put in (23) v = (u − ϕ)ζs, where ζ is
defined in Lemma 3. After simple transformations we get∫

ΩR

[∑n
i=1 ai(x, uxi

)uxi
+ a0(x, u)u

]
ζs d x =

∫
ΩR

[
f0(u− ϕ) +

∑n
i=1 fi(u− ϕ)xi

]
ζs d x+

+
∫

ΩR

[∑n
i=1 ai(x, uxi

)ϕxi
+ a0(x, u)ϕ

]
ζs d x+

+s
∫

ΩR

∑n
i=1 fi(u− ϕ) ζs−1ζxi

d x− s
∫

ΩR

∑n
i=1 ai(x, uxi

)(u− ϕ) ζs−1ζxi
d x. (24)

Now estimate each term of (24). Applying first inequality (4) and using condition 1′), by
a reasoning similar to that from the proof of (19), we deduce∫

ΩR

∑n
i=1 ai(x, uxi

)ϕxi
ζs d x ≤ ε1

∫
ΩR

∑n
i=1 |ai(x, uxi

)|p∗i (x)(K+
i (1 + |x|)σi)

− p∗i (x)

pi(x) ζs d x+

+C14(ε1)
∫

ΩR

∑n
i=1 |ϕxi

(x)|pi(x)(K+
i (1 + |x|)σi)

pi(x)

pi(x) ζs d x ≤

≤ ε1

∫
ΩR

∑n
i=1 ai(x, uxi

)uxi
ζs d x+ C15(ε1)

∫
ΩR

∑n
i=1R

σi|ϕxi
(x)|pi(x) ζs d x, (25)

where ε1 ∈ (0; 1) is an arbitrary number and C14(ε1), C15(ε1) are some positive constants.
Next use the inequality

|a± b|ν ≤ Cν(a
ν + bν), a, b ≥ 0, ν > 1, (26)

where Cν is a constant depending only on ν.
Combining inequality (4), condition 3) and inequality (26) we get∫

ΩR

a0(x, u)ϕ ζ
s d x ≤ ε2

∫
ΩR

|a0(x, u)|p
∗
0(x) ζs d x+ C16(ε2)

∫
ΩR

|ϕ(x)|p0(x) ζs d x ≤

≤ ε2C17

∫
ΩR

|u(x)|p0(x) ζs d x+ ε2C18

∫
ΩR

|h(x)|p∗0(x) ζs d x+ C16(ε2)
∫

ΩR

|ϕ(x)|p0(x) ζs d x, (27)

where ε2 ∈ (0; 1) is an arbitrary number, and C16(ε2), C17, C18 are some positive constants.
Reasoning just as when obtaining inequality (16) and applying inequality (26), we conclude∫

ΩR

f0(x)(u− ϕ) ζs d x ≤ ε3C19

∫
ΩR

|u(x)|p0(x) ζs d x+ ε3C19

∫
ΩR

|ϕ(x)|p0(x) ζs d x+

+C20(ε3)
∫

ΩR

|f0(x)|p
∗
0(x) ζs d x, (28)

∫
ΩR

∑n
i=1 fi(x)(u− ϕ)xi

ζs d x ≤ ε4C21

∫
ΩR

∑n
i=1 |uxi

(x)|pi(x) ζs d x+

+ε4C21

∫
ΩR

∑n
i=1 |ϕxi

(x)|pi(x) ζs d x+ C22(ε4)
∫

ΩR

∑n
i=1 |fi(x)|p

∗
i (x) ζs d x, (29)

where ε3, ε4 ∈ (0; 1) are arbitrary numbers, C19, C20(ε3), C21, C22(ε4) are some positive
constants.

Arguing the same way as in proof of Lemma 3 (see ()�(20)) and applying inequality (26)
we derive

s
∫

ΩR

∑n
i=1 fi(u− ϕ) ζs−1ζxi

d x ≤ ε5C23

∫
ΩR

|u(x)|p0(x) ζs d x+ ε5C23

∫
ΩR

|ϕ(x)|p0(x) ζs d x+

+ε5

∫
ΩR

∑n
i=1 |fi(x)|p

∗
i (x) ζs d x+ C24(ε5)

∫
ΩR

∑n
i=1 |ζxi

(x)|qi(x) ζs−qi(x) d x, (30)



86 M. M. BOKALO, O. V. DOMANSKA

−s
∫

ΩR

∑n
i=1 ai(x, uxi

)(u− ϕ) ζs−1 ζxi
d x ≤ ε6C25

∫
ΩR

[
|u(x)|p0(x) + |ϕ(x)|p0(x)

]
ζs d x+

+ε6

∫
ΩR

∑n
i=1 ai(x, uxi

)uxi
ζsd x+ C26(ε6)

∫
ΩR

∑n
i=1 |ζxi

(x)|qi(x)(K1
i (1 + |x|)σi)

qi(x)

pi(x) ζs−qi(x) d x,(31)

where ε5, ε6 ∈ (0; 1) are the arbitrary numbers, C23, C24(ε5), C25, C26(ε6) are some positive
constants.

It is obvious that

∫
ΩR

∑n
i=1R

s−qi(x)d x ≤
∫

ΩR

∑n
i=1R

s−qi(x)+σi
qi(x)

pi(x)d x ≤ C̃1

∑n
i=1R

n+s−q−i +σi
q+
i

p−
i d x, (32)

where C̃1 is some positive constant.
From (24) on the basis of (25)�(32) with sufficiently small values ε1, . . . , ε6 we have∫

ΩR

{∑n
i=1 |uxi

(x)|pi(x) + |u(x)|p 0(x)
}
ζs(x) d x ≤

≤ Ĉ1

∫
ΩR

∑n
i=1R

s−q i(x)+σi
q i(x)

p i(x) d x+ Ĉ2

∫
ΩR

[
|f0(x)|p

∗
0(x) +

∑n
i=1 |fi(x)|p

∗
i(x)
]
ζs(x)d x+

+Ĉ3

∫
ΩR

[
|ϕ(x)|p0(x) +

∑n
i=1(1 + |x|)σi|ϕxi

(x)|pi(x)
]
ζs(x)d x+ Ĉ4

∫
ΩR

|h(x)|p∗0(x)ζs(x)d x, (33)

where s > max
1≤i≤n

q+
i is an arbitrary number; Ĉ1, Ĉ2, Ĉ3, Ĉ4 are some positive constants

depending only on n, s, p−i , p
+
i (i ∈ {0, . . . , n}), q−i , q+

i , (i ∈ {1, . . . , n}).
Proceeding just as in the proof of Lemma 3 (see (22)), we obtain the estimate (3).

4. Proof of Theorem 1.
Solvability of problem PA

(
A∗

p, Fp, Vp, Up : p ∈ P∗). Let a ∈ A∗
p, f ∈ Fp , Φ ∈ Vp for

some p ∈ P∗ , ϕ ∈ Φ and k is an arbitrary natural number. Put fi,k
def
= fiχk, i ∈ {0, . . . , n},

ϕk
def
= ϕχk, where χk ∈ C∞(Ω), 0 ≤ χk ≤ 1 on Ω, χk ≡ 1 on Ωk−3/4, χk ≡ 0 on Ω\Ωk−1/2.
Define Uk as the subspace of the space W 1

p( · )(Ωk) consist of functions satisfying the

condition v|Γ1,k∪Sk
= 0 in a sense of trace. Let U∗

k denote the adjoint to Uk space and 〈·, ·〉k
denotes the inner product of U∗

k × Uk.
Define the operator Lk : Uk −→ U∗

k as follows:

〈Lkw, v〉k
def
=
∫
Ωk

{ n∑
i=1

ai(x, (w + ϕk)xi
)vxi

+ a0(x,w + ϕk)v
}
d x, w, v ∈ Uk.

It is easy to verify that the operator Lk : Uk −→ U∗
k is strictly monotone, bounded,

coercive and hemi-continuous. This fact can be proved by analogy to the case of constant
exponent of nonlinearity with the aid of inequalities in Proposition 1.

We seek for a function wk ∈ Uk satisfying the inequality

〈Lkwk, v〉k =
∫
Ωk

{
f0,k(x)v(x) +

∑n
i=1 fi,k(x)vxi

(x)
}
d x (34)

for all v ∈ Uk. The existence of a function wk ∈ Uk satisfying identity (34) can be proved by
Galerkin's method (see, for instance, [3, p. 22]). Uniqueness of a function wk follows from
strictly monotonicity of the operator Lk.
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Given functions wk for all k ∈ N, define the function uk = wk +ϕk and extend it by zero
on Ω. Keep the notation uk for this extension.

We claim that the sequence {uk}∞k=1 contains the subsequence converging to
u ∈ SPA

(
a, f,Φ

)
in some sense. Indeed, let k and l be arbitrary natural numbers and

1 < k < l; R0, R are arbitrary real numbers such that 0 < R0 < R ≤ k − 1, R ≥ 1. Take
into account that fi,k = fi,l, i ∈ {0, . . . , n}, on Ωk−1. Then in virtue of Lemma 3, taking
R∗ = k − 1, we get∫

ΩR0

[∑n
i=1(|uk,xi

|pi(x)−2uk,xi
− |ul,xi

|pi(x)−2ul,xi
)(uk,xi

(x)− ul,xi
(x)) + |uk(x)− ul(x)|p 0(x)

]
d x ≤

≤ C5

(
R

R−R0

)s

Rn−γ, (35)

where C5 > 0, s > 0 are constants not depending on k, l, R0 and R, γ is such that n− γ < 0
(it can be assigned in such a way on the basis of Theorem 1 assertion).

Let ε > 0 be an arbitrary number. Fix any value of R0 > 0 and take R > max{1;R0} large
enough to make right-hand side of inequality (35) be less than ε. Then for every k ≥ R + 1
and l > k the left-hand side of inequality (35) is less than ε. It means that the sequence{
uk

∣∣
ΩR0

}∞
k=1

is fundamental in Lp 0( · )(ΩR0). Since R0 is an arbitrary positive number, there

exists a function u ∈ Lp 0( · ), loc(Ω) such that

uk−→
k→∞

u strongly in Lp 0( · ), loc(Ω). (36)

Show that the sequences
{
uk

}∞
k=1

,
{
a0(·, uk( · ))

}∞
k=1

,
{
ai(·, uk,xi

( · ))
}∞

k=1
, i ∈ {1, . . . , n},

are bounded in W 1
p( · ), loc(Ω), Lp ∗0( · ), loc(Ω), Lp ∗i ( · ), loc(Ω), i ∈ {1, . . . , n} respectively. Indeed,

let R0, R be some real numbers such that 0 < R0 < R, R ≥ 1. According to Lemma 4 for
every k > R + 1 we conclude∫

ΩR0

[∑n
i=1 |uk,xi

(x)|pi(x) + |uk(x)|p 0(x)
]
d x ≤

(
R

R−R0

)s
{
C1R

n−γ+

+C2

∫
ΩR

[
|f0,k(x)|p

∗
0(x) +

∑n
i=1 |fi,k(x)|p

∗
i(x)
]
d x+

+C3

∫
ΩR

[
|ϕk(x)|p 0(x) +

∑n
i=1R

σi|ϕk,xi
(x)|p i(x)

]
d x+ C4

∫
ΩR

|h(x)|p∗0(x) d x

}
. (37)

Taking into account condition 2), inequality (10) in Lemma 2, Remark 1 and estimation
(37) we have∫

ΩR0

|a0

(
x, uk(x)

)
|p∗0(x) d x ≤ C14

∫
ΩR0

|uk(x)|p0(x)d x+ C15

∫
ΩR0

|h(x)|p∗0(x)d x ≤ C̃15(R0), (38)

∫
ΩR0

|ai

(
x, uk,xi

(x)
)
|p∗i (x)dx ≤

∫
ΩR0

(
K+

i (1 + |R0|σi)
)p∗i (x) |uk,xi

(x)|pi(x)dx ≤ C16(R0), (39)

i ∈ {1, . . . , n}, where C̃15(R0) > 0, C16(R0) > 0 are constants not depending on k but
probably depending on R0.

Condition 1), (36)�(39), the reflexivity of the spaces Lp ∗0( · )(ΩR0) and Lpi( · )(ΩR0), i ∈
{1, . . . , n}, R0 > 0 yield the existence of a subsequence

{
ukj

}∞
j=1

of the sequence
{
uk

}∞
k=1

and functions v ∈ W 1
p( · ), loc(Ω), χ0 ∈ Lp ∗0( · ), loc(Ω), χi ∈ Lp∗i( · ), loc(Ω), i ∈ {1, . . . , n}, such

that
ukj

−→
j→∞

v weakly in W 1
p( · ), loc(Ω), (40)
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ukj
−→
j→∞

u a.e. on Ω, (41)

a0

(
·, ukj

( · )
)
−→
j→∞

χ0( · ) weakly in Lp∗0( · ), loc(Ω), (42)

a0

(
x, ukj

(x)
)
−→
j→∞

a0

(
x, u(x)

)
a.e. on x ∈ Ω. (43)

ai

(
·, ukj ,xi

( · )
)
−→
j→∞

χi( · ) weakly in Lp∗i( · ), loc(Ω), i ∈ {1, . . . , n}. (44)

From (40)�(43) and Lemma 1.3 in [3, p.25] we deduce that

v = u, (45)

χ0( · ) = a0

(
·, u( · )

)
. (46)

Show that

χi( · ) = ai

(
·, uxi

( · )), i ∈ {1, . . . , n}. (47)

By virtue of inequality (9) in Lemma 2 we derive

∫
Ω

n∑
i=1

(
ai(x, ukj ,xi

)− ai(x,wxi
)
)(
ukj ,xi

− wxi

)
ψ dx ≥ 0 (48)

for all j ∈ N, w ∈ W 1
p( · ), loc(Ω), ψ ∈ C1,+

c (Ω).
Take into account that for every j ∈ N the equality∫

Ωkj

{∑n
i=1 ai(x, ukj ,xi

)vxi
+ a0(x, ukj

)v − f0,kj
v −

∑n
i=1 fi,kj

vxi

}
d x = 0 (49)

holds for all v ∈ W 1
p( · ), c(Ω), v|Γ1,kj

∪Skj
= 0, supp v is a compact set in Ωkj

. Let us take

v = (ukj
− ϕkj

)ψ, where ψ ∈ C1,+
c (Ω). Combining the obtained equality and (48), we

conclude∫
Ω

{
a0(x, ukj

)(ukj
− ϕkj

)ψ − f0,kj
(ukj

− ϕkj
)ψ −

∑n
i=1 fi,kj

(ukj
− ϕkj

)xi
ψ−

−
n∑

i=1

ai(x, ukj ,xi
)ϕkj ,xi

ψ +
∑n

i=1 ai(x, ukj ,xi
)(ukj

− ϕkj
)ψxi

−
∑n

i=1 fi,kj
(x)(ukj

− ϕkj
)ψxi

}
d x+

+
∫
Ω

n∑
i=1

(
ai(x, ukj ,xi

)wxi
+ ai(x,wxi

)(ukj ,xi
− wxi

)
)
ψ dx ≤ 0 (50)

for arbitrary w ∈ W 1
p( · ), loc(Ω), ψ ∈ C1,+

c (Ω).

Passing to the limit in (50) and keeping in mind the definition of ϕkj
, fi,kj

, (36), (40)
and (45), (42), (46) and (44), we derive∫

Ω

{
a0(x, u)(u− ϕ)ψ − f0 (u− ϕ)ψ −

∑n
i=1 fi (u− ϕ)xi

ψ −
∑n

i=1 χi ϕxi
ψ +

∑n
i=1 χi (u− ϕ)ψxi

−

−
∑n

i=1 fi (u− ϕ)ψxi

}
d x+

∫
Ω

n∑
i=1

(χiwxi
+ ai(x,wxi

)(uxi
− wxi

)) ψ dx ≤ 0 (51)

for all w ∈ W 1
p( · ), loc(Ω), ψ ∈ C1,+

c (Ω).
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Let ψ ∈ C1,+
c (Ω) be an arbitrary function and j0 ∈ N be such that suppψ ⊂ Ωkj0

. Putting
in equality (49) v = (u− ϕ)ψ and passing to the limit as j →∞, we conclude

−
∫
Ω

∑n
i=1 χi uxi

ψ dx =
∫
Ω

{
a0(x, u)(u− ϕ)ψ − f0 (u− ϕ)ψ −

∑n
i=1 fi (u− ϕ)xi

ψ−

−
n∑

i=1

χi ϕxi
ψ +

n∑
i=1

χi (u− ϕ)ψxi
−

n∑
i=1

fi (u− ϕ)ψxi

}
d x. (52)

From (51) and (52) it follows that

∫
Ω

n∑
i=1

(ai(x,wxi
)− χi) (uxi

− wxi
) ψ dx ≤ 0 (53)

for all w ∈ W 1
p( · ), loc(Ω), ψ ∈ C1,+

c (Ω). Taking in (53) w = u − λg, λ > 0, g ∈ W 1
p( · ), loc(Ω),

we deduce ∫
Ω

n∑
i=1

(ai(x, (u− λg)xi
)− χi) gxi

ψ dx ≤ 0 ∀g ∈ W 1
p( · ), loc(Ω).

Let us tend λ to 0, keeping in mind that the operator Lk is hemi-continuous, we get∫
Ω

n∑
i=1

(ai(x, uxi
)− χi) gxi

ψ dx ≤ 0 ∀g ∈ W 1
p( · ), loc(Ω). (54)

Since (54) holds for any g ∈ W 1
p( · ), loc(Ω), assigning first g(x) = xl, l ∈ {1, . . . , n}, then

g(x) = −xl, l ∈ {1, . . . , n}, we obtain

χi( · ) = ai(·, uxi
( · )), i ∈ {1, . . . , n}. (55)

From (55) and (44) we have (47).
Let v ∈ W 1

p( · ), loc(Ω), v|Γ1 = 0, and supp v is a compact set in Ω. For all j ≥ j0, where

j0 ∈ N is such that supp v ⊂ Ωkj0
, according to definition of ukj

we deduce

∫
Ωkj

{∑n
i=1 ai(x, ukj ,xi

)vxi
(x) + a0(x, ukj

)v(x)− f0(x)v(x)−
∑n

i=1 fi(x)vxi
(x)
}
d x = 0. (56)

Let us pass to the limit in (56) as j → +∞ and take into account (42) and (46), (44) and
(47). As a result we obtain (2) for the given function v. As v is an arbitrary function and
0 = ukj

− ϕkj
→ u− ϕ on Γ1, we proved that u ∈SPA

(
a, f,Φ

)
.

Uniqueness of problem PA
(
A∗

p,Fp,Vp,Up : p ∈ P∗). Let a ∈ A∗
p, f ∈ Fp , Φ ∈ Vp for

some p ∈ P ∗. We claim that the set SPA
(
a, f,Φ

)
contains at most one element. Arguing by

contradiction, we assume that there are two (different) elements u1, u2 from SPA
(
a, f,Φ

)
.

By Lemma 3 (R∗ is an arbitrary number) we conclude∫
ΩR0

[∑n
i=1(|u1,xi

(x)|pi(x)−2u1,xi
(x)− |u2,xi

(x)|pi(x)−2u2,xi
(x))(u1,xi

(x)− u2,xi
(x))+

+|u1(x)− u2(x)|p 0(x)
]
d x ≤ C5

(
R

R−R0

)s

Rn−γ, (57)

where R0, R are some constants such that 0 < R0 < R, R ≥ 1, γ > 0 is such that n−γ < 0,
and C5 > 0, s are the constants not depending on R0 and R. Fix R0 > 0 and pass to the
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limit in (57) as R → +∞. As a result we obtain that u1 = u2 on ΩR0 . Since R0 > 0 is an
arbitrary number, u1 = u2 a.e. on Ω.

Weakly well-posedness of problem PA
(
A∗

p,F∗
p,Vp,Up : p ∈ P∗).

Problem PA
(
A∗

p,F∗
p,Vp,Up : p ∈ P∗) is a particular case of problem PA

(
A∗

p,Fp,Vp, Up : p ∈
P∗), therefore its unique solvability follows from unique solvability of problemPA

(
A∗

p,Fp,Vp,Up :

p ∈ P∗).
Let us finish the proof of weak well-posedness of problem PA

(
A∗

p,F∗
p,Vp,Up : p ∈ P∗). Let

a ∈ A∗
p, f

k−→
k→∞

f in F∗
p, Φ ∈ Vp and u ∈ SPA

(
a, f,Φ

)
, uk ∈ SPA

(
a, fk,Φ

)
, k ∈ N. On the

basis of definition of functions u and uk, k ∈ N, it is valid that∫
Ω

{∑n
i=1 ai(x, uxi

)vxi
+ a0(x, u)v − f0v

}
d x = 0, (58)

∫
Ωk

{∑n
i=1 ai(x, uk,xi

)vxi
+ a0(x, uk)v − f0,kv

}
d x = 0, (59)

where v ∈ W 1
p( · ), loc(Ω), v|Γ1 = 0, supp v is a compact set in Ω. Let k0 ≥ 2 be some fixed

natural number, R0 and R be arbitrary constants such that 0 < R0 < R, R ≥ 1. From (58)
and (59) by virtue of Lemma 3, taking R∗ = k0 − 1, we deduce for arbitrary k > k0∫

ΩR0

[∑n
i=1(|uk,xi

(x)|pi(x)−2uk,xi
(x)− |uxi

(x)|pi(x)−2uxi
(x))(uk,xi

(x)− uxi
(x))+

+|uk(x)− u(x)|p 0(x)
]
d x ≤

(
R

R−R0

)s [
C5R

n−γ + C6

∫
ΩR

|f0,k(x)− f0(x)|p
∗
0(x) d x

]
. (60)

Let ε > 0 be an arbitrary however small number. Fix arbitrary selected R0 > 0 and pick
R ≥ max{1; 2R0} so large that

C5

(
R

R−R0

)s

Rn−γ < ε
2
, (61)

and fix this value.

Observing that
∥∥f0,k− f0

∥∥
Lp ∗0( · )(ΩR)

−→
k→∞

0, derive that the left-hand side of (60) tends to

zero when k →∞. Because of R
R−R0

≤ 1 + R0

R−R0
≤ 2, all said above yields the existence of a

natural number k1 > k0 such that

C6

(
R

R−R0

)s ∫
ΩR

|f0,k(x)− f0(x)|p
∗
0(x) d x < ε

2
(62)

for all k ≥ k1. Taking into account (61) and (62) from (60) we obtain∫
ΩR0

[∑n
i=1(|uk,xi

(x)|pi(x)−2uk,xi
(x)− |uxi

(x)|pi(x)−2uxi
(x))(uk,xi

(x)− uxi
(x))+

+|uk(x)− u(x)|p 0(x)
]
d x ≤ ε

for all k ≥ k1. Hence it follows that uk −→
k→∞

u in Up. Thus we have proved the well-

posedness of the problem PA
(
A∗

p,F∗
p,Vp,Up : p ∈ P∗). �
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