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We establish the well-posedness of the boundary-value problems for some class of nonlinear
elliptic equations having exponential nonlinearities in unbounded domains. We consider mixed
boundary conditions and varying exponents of nonlinearity which are different with respect to
various derivatives and we seek for the weak solutions in the corresponding general anisotropic
Lebesgue-Sobolev spaces.
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Uccmenyercss KOpPEKTHOCTD KPAEBBIX 3324 JJIs HEKOTOPOTO KJIACCa HEJIMHENHBIX SJIIUNTH-
YeCKUux ypaBHeHI/Iﬁ CO CTEIIeHHBIMHA HEJIUHENHOCTSIMHA B HEOI'PaHUICHHBIX O6.]'IaCTHX. PaCCManI/I—
BaIOTCA CMEIIaHHbIE€ I'DaHHMYHBIE YCJIOBHUA, KOI'Ja IIOKAa3aTEIn HEeJIUHEUHOCTH — InepeMeHHbIe
1 pa3/IMIHbI€E OTHOCHUTE/IbHO PA3/JIMYHbIX IIPOU3BOAHBIX, W HMILYTCA CJ'[a6I)Ie penaiennda U3 COOT-
BETCBYIOIINX ODODINEHHBIX aHN30TPONMHBIX TTpocTpancTs Jlebera-Cobomnena.

Introduction. The study of boundary problems in anisotropic spaces is motivated by their

applications to physics and mechanics. In particular, such problems describe flows of electro-
rheological fluids, processes of image restoration, filtration through inhomogeneous media,
motion of nonideal electrons in crystalline solid ([1]-]2]). They also appear in anisotropic
generalization of the special relativity theory that use nonlinear differential operators action
on functions from anisotropic spaces.

Boundary problems for static equations were studied in many mathematical publications
(see, for instance, [3]-[10] and the literature cited therein). In particular, H. Brezis presented
in [5] the first example

—Au+ |[ufP?u = f(zr), z€R", p>2,
of an elliptic equation given in unbounded domain such that the corresponding boundary
problems have unique solution without restrictions on its behavior and increasing of initial
data at infinity. Later on, the class of such equations and systems was extended (|7]-[10]).

In this paper we supplement this class with equations having exponential nonlinearities
that vary at x and are different with respect to various derivatives. A typical example of
such an equations is

n
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where () is an unbounded domain, pg,...,p, are measurable functions satisfying the con-
ditions: 1 < p; < 2,4 € {1,...,n}, po > 2 for a.e. z € . We consider mixed boundary
conditions: the Dirichlet boundary condition on one part the of the boundary of the domain
) and the Neumann boundary condition on the other part. Equations of type (1) but with
constant exponents of nonlinearities were considered in |9]-[10]. In addition to one-valued
solvability of the problem in the class of functions with arbitrary behavior at infinity we
consider the question of continuous dependence of the solution on initial data.

1. Preliminaries. Let n be a natural number. We denote by R"™ the arithmetical space of
n ordered arrays of real numbers, i.e. a linear space consisting of elements = (z1,...,x,),
where z; € R, i € {1,...,n}, with the norm |z| = /23 + ... + 22.

All functions considered here are given in the corresponding subsets of the spaces R"
and R™*! and take the values in R. If v(z), z € D, is a given function, then v|p denotes its
restriction to a set D C D.

Let €2 be an unbounded domain in R™ with piece wise regular boundary I’ d:ef(?Q; I' =
T T, where I';, Ty are open sets on 92 (one of them can be empty), 1Ty = @; v is
a unit exterior normal vector to 9. Without loss of generality we will suppose that 0 € €.

For all R > 0 we denote by Qg the connected component of the set QN {x: |z| < R} such
that 0 € Qp. Let Sp = 095 N, Te g © w02, k € {1,2}, R > 0.

Let 7 € Loo10c(R?) and r(z) > 1 for a.e. x € Q. On the space C(Qg) of continuous
functions on g, where R > 0 is an arbitrary number we introduce the norm

vl o) {3 > 0+ peplv/3) < 1. where pra() = [ fo(x)

Let L,(.y(€2r) denote the completion of the linear space C(QR) by this norm (see [12]). The
set Ly.)(Q2g) is a linear subspace of the space L;(2z) and is called the general Lebesgue
space.

Let L,(.)10c(Q2) denote the closure of the space C(Q) in the topology generated by the
system of semi-norms H ||Lr( J(@p), 2> 0. Put

LT( {U € L 106(9) : Zlilg HU’QRHLr(.)(QR) < OO}

Let p; € Lo 10c(2), 7 € {0, ...,n}, with p;(z) > 1,7 € {0,...,n}, for a.e. z € Q. Denote

p‘i:ef(po,pl, ...,pn)- For all R > 0 we define Wpl(.)(QR) to be the Banach space obtained as

the completion of the space C'(Qg) by the norm

def -
ol ol + 3 Il
i=1
It is obvious that W,}(.)(QR) is a subspace of the space {v(z), z € Qr: v € L,y (Qp),
Uy € Lpi((Qr), i € {1,...,n}}.
On the space C*(Q), consider a locally convex linear topology generated by the system
of semi-norms: || - HW1( (@) R >0, and let W, ,.(Q) be the completion of C'(Q) in this
p( )

topology. It is evident that a sequence {v;}%2, is convergent to v in this space if ||uy —
vllwz  @p—20 for all R > 0. Note that V], € Wyy(Qr) for all R > 0 provided v €
p(- — 00

Wpl(-),loc(Q>

~ Let CL(2) be the subspace of the space C''(Q) consisting of the functions with supports in
Q, and C1*(Q) be the subspace of the space C}(Q) consisting of the nonnegative functions.

Ly.()(Qr)"

2. The statement of the problem and main results. We denote by P the set of vector-
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functions p = (po, p1,- - -, Pn) such that p; € L 10¢(Q) and p;(z) > 1, i € {0,...,n}, for a.e.
x e Q. For a function p € P, by p* = (pg, pi, ..., p}) we denote the vector-function such that
zﬁ + 5 (w) =1,7€{0,...,n}, for a.e. z € Q (it is obvious that p* € P).

For p € P, we define Ap to be the set of ordered arrays a = (ag,as,...,a,) of n + 1
real-valued functions defined on €2 x R and satisfying the following conditions:
1) for all i € {0,...,n} a;(x,§), (z,§) € 2 xR is a Caratheodory function, i.e. for a.e.
x € § the function a;(z, -) : R — R is continuous and for all £ € R the function a,(-,¢) :
) — R is Lebesgue measurable.
1) a;(z,0) =0, i € {0,...,n}, for a.e. z € Q;
2) for a.e. x € Q there exist the derivatives a‘“ (2 5) ,E#0,ie€{1,...,n}, and the following
inequalities hold:

K¢ =2 < 228 < [(1 + | gm(zH, €40,  ie{l,...,n},

where K; > 0, K; > 0,0, >0,i€{l,...,n}, are some constants;
3) for a.e. x € Q there exists 8a0(:1: &) 5 7é 0, and the following 1nequa11t1es are satisfied

L > Kolgl?, 5#0, and  |ao(z, )| < Kol¢[*@ ! + h(z), €€ER,

where K, KO are some p051tive constants and h is a function from Lpg(~),loc(§)-

Remark 1. The set A, contains the array of functions

(ao(2) [P0 €, ar (@) €71 72E, oo an(x) €72 ),
where a;, i € {0,...,n}, satisfy the condition: |a;(z)| < K}(1 + |x|)°, where K} > 0 is a
constant.

For all p € P, put B, % Ly (1 100(Q) X Lyt (). 10c () X - - X Ly
the Cartesian product locally convex topology

On the space W IOC(Q) define an equivalence relation such that two elements v; and v,
are equivalent if v; = vg on I'y in the sense of traces. We denote by V,, the quotient-space of
VV1 1OC(Q) by this equivalence relation. The space V,, is a locally convex space with respect
to the set of semi-norms: pngz(P) = iIelcfb ||gp||Wz}(l)(QR), ® eV, R>0.Itis easy to see that

i ( Y10c(€2). On F,, we introduce

a sequence {®;}72, is convergent to ® in V,, if and only if there exists ¢ and a sequence
{@r 32, such that ¢ € , ¢, € Oy, k €N, and gpk—>g01nW Q).

For p € P, we denote by U, the linear space W (), 1OC(Q) w1th the following convergence:

), loc

a sequence of elements {v;}7°, is convergent to v in U, if
I{Z(Wk 2 P20, ) (Okay — Va,) + [0k — v|p°(x)} dx— 0.
Q

€T
pi(z)=2 Uk, — |U
’L*l k—>oo

Remark 2. The choice of such a convergence on U, was motivated by the fact that
(el 2ry — |r[P~2r) (ry — T)IH—O; 0 ifandonlyif — r— 7
for all r € R, 7, k € N, and arbitrary p > 1.
Now we formulate the investigated problem. Let P C P and 1& C A, ﬁp C F,, g"p CV,,
U Cc U, forpe P. The main problem PA(AP, IFp, Vp, Up pE IP’) (Problem in Anisotropic
spaces) is to find for every p € Panda € Ap, fe Fp, NS V the set SPA( ., <I>) (Solutions
of Problem in Anisotropic spaces) of functions u € U such that © € ® and the equality

g{{zlﬁ:l a;(z, ug, v, + ao(z, u)v} dr = g{fov + >0 fivxi} dx (2)

holds for all v € WZ}(,)JOC (Q), v|r, =0, suppv is compact.
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Remark 3. Tt is seen from the statement of the investigated problem that the restricting
condition 1’) is not essential. Otherwise, we can introduce new functions

4,0 C ai(@, &) — ai(2,0),  fi@)= fi(w) — ai(,0), i€ {0,...,n},
for a.e. © € Q and rewrite identity (2) with a;(x,&), fi(x), i € {0,...,n}, instead of
a;(x,§), fi(x), 1 € {0,...,n}, respectively, where functions a;(z,&), i € {0,...,n}, satisfy
condition 1’).

Let us say that PA(Ap7 IFp, Vp, U i p € P) solvable (um’que uniquely solvable)
problem if for every p € P and arbitrary a € Ap, fe IF and ® € V the set SPA(  f, <I>) C
U is non-empty (contains at most one element, has exactly one element).

Let us say that PA (AP,FP,VP,UP pE IP) s a weakly well- posed problem if it is uniquely
solvable and for all p € P and arbltrary elements a € Ap, f € IFp, d e V and a sequence
{fFyee, C IF such that fk—> f in Iﬁ‘p, we have U = U in U, , where u;, € SPA(a f*, )
keN, ue SPA( ,f,(b).

It is obvious that problem PA (&p, Fp, @'p, ﬁp ipE ]I~D) can be formally interpreted as
the boundary Value problem for the equation

_Zd (2, ug,) + ao(z,u) = Z@ x € €,

with boundary Condltlons
u(a:) - 30(.%), S Fl>

n
86—“ = E a;(z,uy,; ) cos(v,z;) =0, x€ly,

where a € Ap, fe IF for p € ]P’ @ is an arbltrary element from ¢ € V
We seek for the set P and spaces Ap, IF Vp , P E P such that problem PA (Ap, IE‘]/,7 Vp,
U,:pe ]P’) is unique, uniquely solvable or weakly well-posed. Note that we do not want to

impose any restrictions on increasing of the elements of the sets IAE";],, %71, (pe IF’) at infinity.
Here we make the following choice of the indicated sets.
Let P* be a set of elements p = (po, p1,- .., pn) € P such that

Do f s inf po(x) > 2, o I oss sup po(r) < oo,
_ def . 4 def .
p; =essinfp;(z) > 1, p =esssupp;(z) <2, ie{l,...,n},

the functions ¢;(x) déf%, r e, ie{l,...,n}, belong to the space L..(2),

n—gq; <0, where ¢; défessiélfqi(x), ied{l,...,n}.
xe
For all p € P, define A} as the set of functions arrays a € A, that satisfy the additional
condition:

4) Constants oy, ..., 0, in condition 2) are such that
+
n—q{—i—ai;%<0, where ¢ —esssupqz( ), ie{l,...,n}.
: e

Denote by F7 the subset of F, with elements (fo,0,...,0), i.e. if f € F, then f; = 0,
(S {17 s 7n}7 fO € Lpa(-),loc(Q)'

Theorem 1. The following propositions are valid.
1) The problem PA(A;, F,, V,, U, :pe IP*) is uniquely solvable and for all p € P* and
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a €Ay feF, ® eV, the (unique) function u €SPA(a, f,®) for every Ry > 0, R > 1,
Ry < R, satisfies the inequality

St @)

QRr,

< () {ere o

Qr

P+ 57 file)

p”zm] da+

+Cs [ [lp(@)Po® + 37, R

Qr

u (D)D) dz + Cy [ |h<x>|p5<x’dm}, (3)
Qr

where v = lr%i?n(q; —oq /p; ), 8 > max q; is an arbitrary number, Cy, Cy, C3, Cy are some

positive constants depending only on n,s,p; ,pi (i € {0,...,n}), ¢;, ¢ (1 €{1,...,n}).
2) The problem PA (A;, F5, Vp, Upip € IP*) is weakly well-posed and its solution satisfies
estimate (3) with f; =0,i € {1,...,n}.

3. Auxiliary statements. It is easy to establish that the following proposition is valid (see
[13], p. 312).

Proposition 1. Let R > 0 be an arbitrary number, r € Lo (Q2g), 7~ d:efessgi]nfr(:v) > 1,
FAS 9T

r+ % esssup r(x) < 4o0. Then for every function v € L,(.)(Q2g) the following inequalities
iEEQR

hold

min{ (9 (@), (ra(@) " } < lolls,, (@ < max{ (pra()”

(o)),

. - + - +
mind [0l @ U5 | < prr(®) < max{ 1015 s 0115 @ |-

Remark 4. For all a > 0,b > 0,e > 0, > 1 Young’s inequality [4] (ab < % + (LL:,
L

1) b”". Hence taking into account

v

v* = —£=) implies the inequality: ab < ca” + al% (

that ( )VT < 1 for all v > 1, we obtain

NI LN

ab<ea” + 61;:* LY. (4)

Remark 5. Young’s inequality [4] (abc < % + % + %, a>0,0>0,¢c>0¢e>01 >

Lvy > 1,ug3 > 1, -+ -+ - = 1) simply implies the inequality abc < ea” + &b +
v3 v3 '

g '3 <i> . <i> ” ¢, Thus, reasoning just as in the previous Remark, we derive

v3 V1 12
abe < ea” + eb”? + 511/;33 s, (5)
Lemma 1. For every t,s € R the following inequalities hold:

(|s|972s — |t|772t) (s — t) > 227 9|s — |7, if q>2, (6)

0< (Is|77%s — [t|77%)(s — t) <2279 s —t]7, if 1<qg<2. (7)

Proof. Inequality (6) is proved in [11], and inequality (7) can be easily proved by a similar
argument. O
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Lemma 2. Let a € A,, where p € P*. For a.e. x €  and arbitrary &, & from R the
following inequalities are valid:

(ao(w,&1) — ao(w,£)) (& — &) > Ky [& — &l (8)

(ai(z,&) — ai(2,6))(& — &) > K; (J& @726 — &

Pi(fﬂ)—2€2) (51 — 52), i€{l,...,n}, (9)

(ai(z,&1) — ai(2,&))(& — &) < K (14 [2)7 |6 — &™), i€ {1,....n}, (10)
where K (i € {0,...,n}), KJ (j € {1,...,n}) are some positive constants.

Proof. First of all let us prove inequality (8). Using first of the inequalities from condition
3) and Lemma 1, we obtain for a.e. x € {2 and arbitrary &;,& € R

1
(Go(fl?, fl) - 00(95752))(51 - 52) = (f daO(w’TEZt(l_T)&) dT) (fl - 52) =

0

_ (f“““fl“ D) (¢, _ g))d ) (6 - &) >

0

Ko (bf 761 4 (1 = 7)&|PP 2 (& — &) d7> (&1 —&) = [5 =76+ (1 - 7')52] =

8251
&1 e
0 (flomersas) 6 - = i |- -
2 o—ta
r)— z)— 2-p (Z) z
Ko ([&|Po@)72g) — &0l 726,) (& — &) > Kgf 018y — Ey[Po@) >
K02 p0 ‘51 52‘]70(1’) — Kﬂ& . §2‘p0

where K, = ([(022_1”3)/(195r — 1). Inequalities (9) and (10) can be proved in the same way.
[l

Lemma 3. Let p € P* anda € A, f; € Lp;(.)’loc(ﬁ), i€ {l,...,n}, and for every | € {1,2}
functions f(l) € Lpg(.)yloc(ﬁ), u; € U, are such that u; = uy on I'y g, and

S e ) (0) ol () = i) = I S (@)} de =0 (1)

for all v € W )Ioc(ﬁ), v|p, ., = 0, suppv is a compact in Qp., where R, > 1 is some
number.
Then for every Ry > 0,R > 1, Ry < R < R,, the inequality holds:

S 2

Qg

P20y g — (g, [P P n ) (U, (2) — 10, (2)) - () — iz (@) [P0 | d i <

< (#5) [CaRn+ Cs | 173(@) = ()P da, (12)

where s and v are the same as in Theorem 1, and C5, Cg are positive constants which do
not depend on wuy, fi (1 € {1,2}).
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Proof. Let us put w d:eful — ug. Using integral identities derived from (11) for { =1 and [ = 2
respectively, we get

J S, ) = 00, ), + (a0l ) — aglw, u))o — (3 — 2o} de =0 (13)

Qr,

for arbitrary v € Wpl(~),loc (), vlr,,, =0, suppuv is a compact set in Qg, .

Let R be any number in the interval [1; R,]. Let us set in (13) v = w(®, where ((z) =
+(R?—|z|?) for |z| < Rand ((z) = 0 for [z| > R, s > 1 is a sufficiently large number (value
of s will be defined more precisely later). Hence we derive the equality

I > |:<a7:(‘1.7u1:37i) — a;(T, U a,)) W, ¢° + (ao(z,u1) — ao(w,uz)) w(®| do =
Qr

= [ (fo = fwede—s [ 30 (ai(x,u10,) = ai®, tag,) w6, d . (14)
Qr
Let us estimate each term of (14). By virtue of inequality (8) we have

J (ao(z, w1) = ao(z, up)) w(z) ¢*(z) dx > K()_Qf (@) ¢ () d . (15)

Qr

Using inequality (4) we deduce
J (fo (@) = f5(2)) w(z) ¢*(z) do <

Qr
< [ Jw(@)[Pe® ¢(a) da + Cr(m) [ |fo(x) = f3(2)[Po) ¢ () da, (16)
Qr Qr
1—p3—
where 7, is an arbitrary number out of (0;1), C7(n;) = mp, :
0
Remark that
! + ! <1, ie{l b, €N (17)
, ,...,n}, forae x :
pi(x)  polx)
Indeed, as ¢ > 1,4 € {1,...,n}, then
1 1 po(@)pi(z) —polz) +pilz) _ -1 <1_ i+ -1

pi(z)  polr) po()pi(z) qi(z) ;
Let # € Qp be any point such that w(z), p; < pi(z) < p (i € {0,...,n}), a;j(x, v, (x))
(I € {1,2}, j € {1,...,n}) are defined and (17) is valid. Fix ¢ € {1,...,n}. Putting in
inequality (5) v1 = pi(x), vo = po(z), v3 = qi(x), 1
a = |ai(z, urq, () = @i(@, Uz, (2)|(KF (1 2])7) 7@ ¢ (@), b= |w(@)[¢ (),
¢ = (KH(1 + [2)7) 7@ |C,, (2)[¢¥ 1 (2), & = 1 € (0;1), we obtain

0,1, 0)) = 42, () 02 G ()] €7 (0) <
PO (1 +1al)) 50 ¢0) + mobw(@) PO @)+

< 7]2’ai(x> ul,wi(x)) - ai(l’, u2,$i(x))

ai(z) v
+Cs(m) (K (14 [a)™) @ ¢ @ (@), Cs(pp) = max 294", (18)
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In virtue of inequality (10) in Lemma 2, reasoning just as in [9, p. 163], we deduce

P’ ()

P(KH (1 -+ [2])7) 70 () <

|ai(2, u1,2,) = ai(2; uze,)

< (e w0) = (@, w2,) ) (1.0, (2) = 120, () ) (@), (19)
Taking account of |((z)] < R, x € R® and R > 1 we obtain for s > ¢;(z)

ai(z)

i(z) () o L
(K1 + [2])7) 70 ¢~ (2) < Cy S0 RT3 (20)

where Cy is some positive constant.
Inequalities ()—(20) hold for arbitrary ¢ € {1,...,n} and a.e. x € Qg. Consequently
assuming that s > max q;, from (14) according to (15)-(20) with sufficiently small values

M, N2, We get
J {0 ) = )0, ) = o (2)) (@) ()| () <

7o) (o () dx, (21)

s—qqi(x Uim
< Cho [ X0 RTINS da - Oy [ | fi(2) - fi(@)
QR QR

where s > max ¢ is an arbitrary constant, Cy, Cy; are some positive constants.
1<i<n

+
Note that s — q;(x) + Ui;ffgig <s—gq + JZ-Z% for a.e. x € Q, 7€ {1,...,n}. It is easy to
verify that 0 < ((z) < R when z € R", and ((z) > R — Ry if |z| < Ry, where Ry € (0, R) is
any number. Taking into account stated above and, in particular, that R > 1, in virtue of

inequality (9) from (21) we conclude

YD (P

pi(x)_QuLwi - ’u27xi|pi(x)_2u2,$i)(u17$i (z) — U2, (7)) + |w(x)|p0(x)] dr <

Qr,
S — qjk
n n—q, +oi * (o
: (ﬁ) [Cr X R ot 013Qf |fo (x) = f3 ()50 d =], (22)
R
where Cyy, Cy3 are positive constants depending only on n, s, p; ,p; (i € {0,...,n}),q; ,q"

(ie{l,...,n}).
+ +
Observing in (22) that n—q[+ai;% <n—vy (i €{l,...,n}), wherey = 1r£1i<r1 {q{ - Jif)%} :

we obtain inequality (12). O

Lemma 4. Let p € P* anda € A}, [ € F,, u € U, are such that

S S i, e, () + a0l w)o(@) = folw)o(x) = S file)on () bdz =0 (23)

QR*

for arbitrary v € W,
some number.

10e(2), vlr, o, = 0, suppwv is a compact set in Qp., where R, > 1 is

Then for every numbers Ry > 0,R > 1, Ry < R < R,, estimate (3) holds, where ¢ is
any function from U, such that w = ¢ on I'y g, .



BOUNDARY PROBLEMS FOR ELLIPTIC EQUATIONS IN ANISOTROPIC SPACES 85

Proof. Let R be any number in the interval [1; R,]. Put in (23) v = (u — ¢)(®, where ( is
defined in Lemma 3. After simple transformations we get

[ [y aie o, + ol w)] ¢ do = [ [folu =) + X0 filu =)o ] ¢ da+
Qr

Qr
+ f [ i1 @i, U, )P, + ao(, u) } Cdx+
+SQf Z?:l fl U= 80) CS_ICM dr — SQf Z?:l Cli(l', ufﬂz)(u - 90) Cs_lgri dzx. (24)

Now estimate each term of (24). Applying first inequality (4) and using condition 1’), by
a reasoning similar to that from the proof of (19), we deduce

. e
J 2 ai(w,ug,) e, ¢Cda < e [ 300 fai(, ug,) [PEON(KGE (L [2|)7) 7@ (*dat
Qr Qr
+Ol4(51) f Z?:l |90xz (27)
Qr

S €1 f Z?:l a’i(‘rv umz)urz CS dx + 015(51) f Z?:l R7i
Qr

Qr

pi(r)
P (I (14 Jal)7) 0 ¢ d o <

@z, (T)

@) (3 d g, (25)

where 1 € (0;1) is an arbitrary number and Cy4(e;), C15(g1) are some positive constants.
Next use the inequality

la £ 0" < C,(a” + 1), a,b>0, v>1, (26)

where C, is a constant depending only on v.
Combining inequality (4), condition 3) and inequality (26) we get

[ ag(z, u)p s dx<52f lag(z,u)[Po®) ¢5dx + Cy(e f lo(x)|P@ ¢ dx <
Qr

<€2017f \u ’po () <5d$+€2018 f |h Py () Csdx+016(52) f |g0(x)|p°(1’) gsdl’, (27)
Qr

where 5 € (0;1) is an arbitrary number, and Cig(e3), C17, Chg are some positive constants.
Reasoning just as when obtaining inequality (16) and applying inequality (26), we conclude
[ fol@)(u—¢) ¢ da < e3Ch9 f lu(z)[Po@ (s da +e3Cig [ |o(x)Po@ ¢ da+
QR QR
+Ca(e3) f | fo(x) [P ¢* d (28)

pi(x) Cda+

Qf Yoy i) (u—@)e, ¢Cdw < 640219f > i |tz ()

+e4Co1 [ 30 a, (2) pi(=)
Qr

¢Cda+ Cnles) [ X0 | fix)"@ ¢ da, (29)
Qr

where e3,e4 € (0;1) are arbitrary numbers, Cig, Cog(e3), Co1,Caa(g4) are some positive
constants.

Arguing the same way as in proof of Lemma 3 (see ()—(20)) and applying inequality (26)
we derive

s [0 filu—9) G, da < e5Co f Ju(z)|Po@) (5 d a4 e5C0s3 f lo(2)[Po@) ¢ d o+
Qr

+€5 f Zizl | fi( x)‘pi(:ﬁ ¢Cdr+ 024 (€5) f Zi:1 |, ()] @) CS_QZ(I dz, (30)
Qr Qg
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—s [ 2 ai(@ ue,)(u— 9) 7 Gda < e6Cos [ [Ju(@)P) + ()] ¢ da+
Qr Qr

()
qi(x)(Kil(]_ + |z|)o) Pt ¢s—4i(®) dx,(31)

+€6 f Z?:l CLZ'(ZL‘, uh)umcsdw + 026(56) f Z?:l |Cz1 (‘T)
Qr Qg

where 5,66 € (0;1) are the arbitrary numbers, Cos, Coy(es), Cas, Cog(c¢) are some positive
constants.
It is obvious that

_ g
n+s—q; +o;—=

(@) 4o, 1) ~
[ S Rea@ gy < [ S0 RO nodr < O SR v da, (32)
Qr

Qr

where 51 is some positive constant.
From (24) on the basis of (25)—(32) with sufficiently small values &1, ...,e5 we have

J{ S @P O ¢ u(o)pe@} ¢) o <

o~ n s—qqi(x Uim pa
<C [ YL RIS da+ G [ | folw)
Qr

Qr

o)+ 370 | filz)

Pi@] (¢ (z)dz+

+asﬂf [lo(@)[o@ + 0 (1 + |z])
R

B (z)d, (33)

u, () [P@)] ¢ () d e + 64Qf |h(z)

where s > max ¢ is an arbitrary number; C, Cy, C3, Cy are some positive constants
1<i<n

depending only on n,s,p; ,pi (i € {0,...,n}),q; ,¢", (i €{1,...,n}).
Proceeding just as in the proof of Lemma 3 (see (22)), we obtain the estimate (3). O

4. Proof of Theorem 1.
Solvability of problem PA(A;;, F,, V,, U,:p¢€ IP*). Leta€ Aj, f €F,, P €V, for

some p € P*, ¢ € ® and k is an arbitrary natural number. Put f; d:effixk, i €40,...,n},

O d:efgpxk, where x;, € C*(2), 0 < xx <Llon Q, x5 =1 on Q_3/4, xp =0 on Q\Qy_12.
Define U, as the subspace of the space W;(,)(Qk) consist of functions satisfying the
condition v|r, ,us, = 0 in a sense of trace. Let U} denote the adjoint to Uy space and (-, ),
denotes the inner product of U} x Us.
Define the operator Ly : U, — U; as follows:
n
(Lrw, v)g aof / {Z a;(x, (W ~+ Yz, ) Vs, + ao(x,w + gpk)v} dz, w,ve U
Q Vi=1
It is easy to Verif; that the operator L; : U, — Uj is strictly monotone, bounded,
coercive and hemi-continuous. This fact can be proved by analogy to the case of constant
exponent of nonlinearity with the aid of inequalities in Proposition 1.
We seek for a function wy € Uy satisfying the inequality

(Lywg, v)p = f{fo,k(@v(x) + i fi,k(x>vxi(ip)} dx (34)

Qp

for all v € Uy. The existence of a function wy, € Uy, satisfying identity (34) can be proved by
Galerkin’s method (see, for instance, |3, p. 22|). Uniqueness of a function wy follows from
strictly monotonicity of the operator Lj.
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Given functions wy, for all £ € N, define the function u, = wy + ¢ and extend it by zero
on €). Keep the notation u, for this extension.

We claim that the sequence {u}7, contains the subsequence converging to
u € SPA(a,f, CID) in some sense. Indeed, let k£ and [ be arbitrary natural numbers and
1 < k < l; Ry, R are arbitrary real numbers such that 0 < Ry < R < k—1, R > 1. Take
into account that f;r = fi;, ¢ € {0,...,n}, on Q1. Then in virtue of Lemma 3, taking
R, =k —1, we get

J [ i -2

QR

P20 4 ) (U, (1) = e, () + Jug (@) — wy(2) [P0 da <

uk,xi - ‘ ul,(ti

<05< ) R, (35)

R—Ry

where C5 > 0, s > 0 are constants not depending on k, [, Ry and R, ~ is such that n — vy < 0
(it can be assigned in such a way on the basis of Theorem 1 assertion).

Let € > 0 be an arbitrary number. Fix any value of Ry > 0 and take R > max{1; R} large
enough to make right-hand side of inequality (35) be less than e. Then for every kK > R+ 1
and [ > k the left-hand side of inequality (35) is less than e. It means that the sequence
{uk|Q }k | is fundamental in L,,(.)(€2R,). Since Ry is an arbitrary positive number, there

exists a function u € Ly(.) 10c(€2) such that

up— u  strongly in Lpo(-).10c (). (36)

k—o0

Show that the sequences {uk}ZO:l, {ao(- uk())}zozl, {a;(-, wez, (- }k p el ... n},
are bounded in W )loc(§)7 Lys(,100(), Lpr(),10c(Q), i € {1,...,n} respectively. Indeed7
let Ry, R be some real numbers such that 0 < Ry < R, R > 1. According to Lemma 4 for
every k > R+ 1 we conclude

f [22;1 |tk z; () pi(z)

Qg

+ |Uk($)‘p0($)} dr < R_RRO>S {Cl .
+Cy [ [|fo,k(:r)|p6(x) 3 |fi’k(x)|p*;(a:)] dot
Qr
G J llen(@)lP*® + X B i (@) P0] da+ Ca J \h(:c>|zf6<x>d:c}- (37)
QR

QR

Taking into account condition 2), inequality (10) in Lemma 2, Remark 1 and estimation
(37) we have

[ lao(z, up(x)) [Po@ dx < Chy [ Jug(2)[o@da + Cis [ [h(2) i@ da < Ci5(Ry), (38)

Qg Qp, Qp,

J s (@, e (@) [P @ < [ (B (14 [Ro|7)" g, (2) PO d < Cr(Ro),  (39)

QRr, Qg

i € {1,...,n}, where Ci5(Ry) > 0,Ci6(Ry) > 0 are constants not depending on k but
probably depending on Rj.
Condition 1), (36)—(39), the reflexivity of the spaces L,:(.\(Qgr,) and Ly, .y(Qg,), 1

[e.e]

{1,...,n}, Ry > 0 yield the existence of a subsequence {uk } of the sequence {uk}kzl

=1
and functions v € W( )IOC(Q), Xo € Lpz(,100(Q), xi € Lpi(-),loc(§)7 i € {1,...,n}, such
that

up, — v weakly in W) (Q), (40)

7 o0 p(-),loc
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Up, 2% 2. 0D Q, (41)

ao(',ukj('))]—og Xo(+) weakly in LpB(~),loC(ﬁ)7 (42)

ao(z, u, (:U))J:; ao(z,u(z)) ae on x € (43)
a;( ug e, (1) — xi(+)  weakly in Lp(0e(), i€{l,....n}. (44)

]—)OO

From (40)—(43) and Lemma 1.3 in [3, p.25] we deduce that
v =u, (45)

Xo(+) = ao(-u(+)). (46)
Show that
Xi(-):ai(-,um(-)), ie{l,...,n}. (47)

By virtue of inequality (9) in Lemma 2 we derive
/> (a,-(:z:, Up, ) — (2, wx)) (ukﬂ — wxi) wdx >0 (48)
Qi=1

for all j € N, w € W) ) 1,.(Q), ¢ € CHH(Q).
Take into account that for every j € N the equality

f {Z?:l &i<x7 ukj@i)”l“i + a0<x7 ukj)v - fO,ij - Z?:l fi:kjvxi} dz =0 (49)
O,

holds for all v € Wz}(-),c(ﬁ)’ U|1"1’kjuskj = 0, suppv is a compact set in ﬁk].. Let us take
v = (w, — ¢r,) ¥, where ¥ € CHT(Q). Combining the obtained equality and (48), we
conclude

f{ao(x, Ukj)(ukj - S%) Y — fo,kj (Ukj - S%) Y — Z?:1 fi,kj (Ulcj - Qij)xi P —

Q

- i (T, Uk ) Phy e+ D iy @i Uy ) (Ui — Py )Wy — Dy fiky () (u; — S%Wxi}dﬂﬁ

+ [ zn: (ai(@, wpy 2 )W, + @i (2, wy,) (g 2 — Wy,)) Y daz <0 (50)
Q i=1

for arbitrary w € W) ) ,,.(Q), ¥ € CoH(Q).
Passing to the hrmt in (50) and keeping in mind the definition of ¢y, fix;, (36), (40)
and (45), (42), (46) and (44), we derive

[ { a0l w)(u = @) ¥ = fo (u= @) ¥ = S0y fi (= @)ay ¥ = Xy i 0¥+ Ly i (1= ) U=

Q
n

_Z:‘L:1 fz( ¢mz} dx +({Z XiWg;, + ai(x7wxi)(u$i - wwl)) ¢d$ <0 (51)

=1

for all w € W) ), 0e(Q), ¥ € CHH(Q).
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Let ¢ € C1F(Q) be an arbitrary function and j, € N be such that supp ¢ C - Putting
in equality (49) v = (u — ¢) 1 and passing to the limit as j — oo, we conclude

_K{Z?ﬁ quwzwdfl? = f{a0($7u>(u_ ()0)1/} - fO (u_ 90)¢ - Z?:l fz (’U,— @)xlz/}_

Q

_Zngpxlw"i_ZXz(u_ 1/}901 Zfz Uu—g ¢xl} . (52)
i=1 =1

From (51) and (52) it follows that

n

g{z ai(, wg,) — Xi) (Ug, — Wwy,) Ydx <0 (53)

for all w € W, 10c(Q), ¥ € CH(Q). Taking in (53) w =u—Ag, A >0, g € Wy
we deduce .
lemi(xa(U—)\g)xi)—Xz')gxﬂﬁdl’SO VgGW( )1oc(Q)
Q i=
Let us tend A to 0, keeping in mind that the operator L; is hemi-continuous, we get

(ﬁ) ’

-), loc

S{; (ai(x7u33i) - Xl) Ya; Ypde <0 Vge Wpl(~),10c(ﬁ)' (54)

Since (54) holds for any g € W 1Oc(ﬁ), assigning first g(x) = z;, [ € {1,...,n}, then
g(z) = —x, L €{l,...,n}, we obtam

xi(+) = ai(,ug,(+)), i€{l,...,n} (55)

From (55) and (44) we have (47). B
Let v € Wpl(-),loc<Q)7 v|lr, = 0, and suppv is a compact set in €. For all j > jo, where

Jo € N is such that suppv C ﬁ;%, according to definition of uy, we deduce
STt a0 () o, o) = folaoe) = Sy S (@)} e = 0. (56)
kj

Let us pass to the limit in (56) as j — 400 and take into account (42) and (46), (44) and
(47). As a result we obtain (2) for the given function v. As v is an arbitrary function and
0 = ug; —x; — u— @ on 'y, we proved that u GSPA(a, !, CI>).

Uniqueness of problem PA(A;,IFP,VP,[UP i p € IP*). Let a € A}, f € F,, ® €V, for
some p € P*. We claim that the set SPA (a, f, (IJ) contains at most one element. Arguing by
contradiction, we assume that there are two (different) elements u;, uy from SPA (a, 7, <I>).
By Lemma 3 (R, is an arbitrary number) we conclude

J [Z?zl(\ul,xi (@) 20 4, (2) = [, (@) 2us g, (2)) (U0, (7) — U2z, () +

QR
Flua () — us(2) [P0 ﬂ da < Cy (R - ) R", (57)

where Ry, R are some constants such that 0 < Ry < R, R > 1, v > 0 is such that n—~ <0,
and C5 > 0, s are the constants not depending on Ry and R. Fix Ry > 0 and pass to the
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limit in (57) as R — +o00. As a result we obtain that u; = uy on Qg,. Since Ry > 0 is an
arbitrary number, u; = us a.e. on Q.

Weakly well-posedness of problem PA (A,F*V, U, : p € P*).
Problem PA (A;,F;,VP,UP ipE IP’*) is a particular case of problem PA (A;,FP,VP, U,:pe
IP’*), therefore its unique solvability follows from unique solvability of problem P A (A;,IFP,VP,Up :
p € P¥).

Let us finish the proof of weak well-posedness of problem PA (A;,F;,VP,UP 'p € IP’*). Let
a €A, fle—ogf in ), ® €V, and u € SPA(a, 7, CD), uy € SPA(a, fk,q)), k € N. On the

basis of definition of functions u and uy, k € N, it is valid that

f{ZZL:l a;i (T, Uy, )V, + ag(x, u)v — fov} dxz =0, (58)
)

| {2?21 a; (T, Uk g, )Us; + ao(T, ug)v — fo,kv} dx =0, (59)
Qp

where v € W}}(.)Joc(ﬁ), vlr, = 0, suppv is a compact set in Q. Let ky > 2 be some fixed
natural number, Ry and R be arbitrary constants such that 0 < Ry < R, R > 1. From (58)
and (59) by virtue of Lemma 3, taking R, = ko — 1, we deduce for arbitrary k > kg

f [Z?:lquk,zi (ZL’) pi(x)_2uk,$i (ZE) - |urz (ZL’) pi(x)—2u$i (ZE))( k,ﬂ?z(x> — Ug; (ZL‘))—|—

Qg

Hun(o) = (@) do < () [CoR 7 +Co [ Uoale) = o)l da]. (60

Let € > 0 be an arbitrary however small number. Fix arbitrary selected Ry, > 0 and pick
R > max{1;2Ry} so large that

Cs (#whe) B™7 <3, (61)

_RO

and fix this value.

Observing that Hf(),k — fo — 0, derive that the left-hand side of (60) tends to

||Lp6(')(QR) k—o0
zero when k — co. Because of + _RRO <1+ R}j(;%o < 2, all said above yields the existence of a
natural number k; > kg such that

Co () I 1oa(e) = fol@)rit do < 5 (©2
Qg

for all k£ > k. Taking into account (61) and (62) from (60) we obtain
J [Z?zlﬂuk,xi ()P 2 o () = [t (2) [P0, (2)) (o, () — 20, () +

Qr,

+ug(z) — u(m)|p0(”)] dr<e

for all k& > k;. Hence it follows that uy — v in  U,. Thus we have proved the well-

k—o0

posedness of the problem PA (A;,F;,VP,UP 'p € IP’*). O
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