УДК 517.98

O. G. Storozh

IS IT POSSIBLE TO POINT OUT A SIMPLE CRITERION OF MAXIMALITY FOR A NONNEGATIVE LINEAL IN THE SPACE WITH A REGULAR INDEFINITE METRIC?

O. G. Storozh. Is it possible to point out a simple criterion of maximality for a nonnegative lineal in the space with a regular indefinite metric?, Matematychni Studii, **27** (2007) 220. The problem indicated in the headline is formulated.

О. Г. Сторож. Возможно ли сформулировать простой критерий максимальности для неотрицательного линеала в пространстве с регулярной индефинитной метрикой ? // Математичні Студії. − 2007. − Т.27, №2. − С.220.

Сформулирована указанная в заглавии проблема.

Let H be a Hilbert space with inner product $(\cdot \mid \cdot)$. Suppose that G is a linear bounded operator on H such that zero lies in its resolvent set. Put for each x, y belonging to H $[x, y] := (Gx \mid y)$. Lineal $L \subset H$ is called nonnegative if $\forall x \in L \ [x, x] \geq 0$. In this case L is set to be maximal nonnegative if it is not contained in another nonnegative lineal.

Let us consider the situation when (H, G) is Krein space. It means that G = J where $J = J^* = J^{-1}$.

It is easy to see that there exists an orthogonal decomposition $H = H^+ \oplus H^-$ such that $J = P^+ - P^-$ where P^{\pm} is the orthoprojector onto H^{\pm} .

Theorem ([1]). Nonnegative lineal L is the maximal one in (H, J) iff $P^+L = H^+$.

Problem. Can the mentioned theorem be carried over to general situation?

Remark. Applying expansion of identity of self-adjoint operator (specifically, using the existence of square root for self-adjoint operator) it may be shown that there exists a linear bounded operator C on H and operator J satisfying equalities $J = J^* = J^{-1}$ for which $G = CJC^*$. Thus, formally our problem is reduced to one in a Krein space. But finding of C is a very nontrivial thing. That is why it would be interesting to solve this problem without use of spectral theorem and its corollaries.

REFERENCES

1. Азизов Т.Я., Иохвидов И.С. Основы теории линейных операторов в пространствах с индефинитной метрикой. – М.: Наука. – 1986.-352 с.

Lviv Ivan Franko National University

Received 24.12.2006