Casimir elements of polynomial ring derivations (in Ukrainian)

Author
L.P.Bedratyuk
Khmelnytskyi National University
Abstract
Let $k[X]{:=}\,k[x_1,\ldots ,x_n]$ be a polynomial algebra over a field $k$ of characteristic zero. We offer a general description of a kernel of an arbitrary polynomial derivation $D$ by using a construction which is a commutative analogue of a construction of Casimir elements of Lie algebras of finite dimension.
Keywords
kernel, polynomial derivation, Casimir element, Lie algebra
DOI
doi:10.30970/ms.27.2.115-119
Reference
1. Nowicki A. Polynomial derivation and their Ring of Constants. -- UMK: Torun,1994.

2. van den Essen A. Polynomial automorphisms and the Jacobian conjecture/ Progress in Mathematics.-- V.190. -- Basel, 2000.

3. Freudenburg G. A survey of counterexamples to Hilbert's fourteenth problem// Serdica Math. J.-- 2001.-- P.171--192.

4. Дискмье Ж. Универсальные обертывающие алгебры. -- М.: Мир, 1978. -- 408~c.

5. Daigle D., Freudenburg G. A couterexample to Hilbert's fourtheenth problem in dimension five// J. of Algebra. -- 1999. -- V. 221. -- P. 528--535.

6. Rentschler R. Opérations du groupe additif sur le plan affine// C.R. Acad. Sc., Paris.-- 1968.-- V.267. P.384--387.

Pages
115-119
Volume
27
Issue
2
Year
2007
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue