УДК 519.512

I. V. PROTASOV

RAY-LIKE GRAPHS

I.V. Protasov. Ray-like graphs, Matematychni Studii, 27 (2007) 19–29.

We prove that a graph Γ is coarsely equivalent to ray if and only if Γ is uniformly spherically bounded. We introduce and study some other classes of graphs asymptotically close to ray.

И.В. Протасов. Лучеподобные графы // Математичні Студії. – 2007. – Т.27, №1. – С.19–29.

Доказывается, что граф Г грубо эквивалентен лучу тогда и только тогда, когда Г равномерно сферически ограничен. Мы вводим и исследуем некоторые другие классы графов, асимптотически близких лучу.

1. INTRODUCTION. A ray is a (non-directed) graph I with the set of vertices $\omega = \{0, 1, ...\}$ and the set of edges $\{(i, i + 1) : i \in \omega\}$. We are going to characterize some types of graphs that asymptotically look like ray. To make the adverb "asymptotically" precise we start with some general approach to asymptology.

A ball structure is a triple $\mathcal{B} = (X, P, B)$ where X, P are non-empty sets, and for all $x \in X$ and $\alpha \in P$, $B(x, \alpha)$ is a subset of X which is called a ball of radius α around x. It is supposed that $x \in B(x, \alpha)$ for all $x \in X$, $\alpha \in P$. The set X is called the support of \mathcal{B} , P is called the set of radiuses.

Given any $x \in X, A \subseteq X, \alpha \in P$, we put

$$B^*(x,\alpha) = \{y \in X : x \in B(y,\alpha)\}, \ B(A,\alpha) = \bigcup_{a \in A} B(a,\alpha).$$

A ball structure $\mathcal{B} = (X, P, B)$ is called

• lower symmetric if, for any $\alpha, \beta \in P$ there exists $\alpha', \beta' \in P$ such that, for any $x \in X$,

$$B^*(x, \alpha') \subseteq B(x, \alpha), \ B(x, \beta') \subseteq B^*(x, \beta);$$

• upper symmetric if for any $\alpha, \beta \in P$ there exists $\alpha', \beta' \in P$ such that, for any $x \in X$,

$$B(x, \alpha) \subseteq B^*(x, \alpha'), \ B^*(x, \beta) \subseteq B(x, \beta');$$

• lower multiplicative if for any $\alpha, \beta \in P$ there exists $\gamma \in P$ such that, for any $x \in X$,

$$B(B(x,\gamma),\gamma) \subseteq B(x,\alpha) \cap B(x,\beta);$$

• upper multiplicative if for any $\alpha, \beta \in P$ there exists $\gamma \in P$ such that, for any $x \in X$,

$$B(B(x,\alpha),\beta)\subseteq B(x,\gamma).$$

2000 Mathematics Subject Classification: 22A05, 54E15, 54D35.

© I. V. Protasov, 2007

Let $\mathcal{B} = (X, P, B)$ be a lower symmetric and lower multiplicative ball structure. Then the family

$$\bigcup_{x \in X} B(x, \alpha) \times B(x, \alpha) : \alpha \in P$$

is a base of entourages for some (uniquely determined) uniformity on X. On the other hand, if $\mathcal{U} \subseteq X \times X$ is a uniformity on X, then the ball structure (X, \mathcal{U}, B) is lower symmetric and lower multiplicative, where $B(x, U) = \{y \in X : (x, y) \in \mathcal{U}\}$. Thus, the lower symmetric and lower multiplicative ball structures can be identified with uniform topological spaces.

A ball structure is said to be *ballean* if it is upper symmetric and upper multiplicative. The balleans arouse in asymptotic geometry [6], asymptotic topology [1] under name of coarse structures, and later (but independently) in combinatorics [5].

Now we describe some types of morphisms of balleans. A mapping $f: X \to X$ is called a \prec -mapping if, for every $\alpha \in P_1$, there exists $\beta \in P_2$ such that, for every $x \in X_1$,

$$f(B_1(x,\alpha))) \subseteq B_2(f(x),\beta).$$

By this definition, \prec -mappings can be considered as asymptotic counterparts of uniformly continuous mappings between uniform topological spaces.

A mapping $f: X_1 \to X_2$ is called a \succ -mapping if, for every $\beta \in P_2$, there exists $\alpha \in P_1$ such that, for every $x \in X_1$,

$$B_2(f(x),\beta) \subseteq f(B_1(x,\alpha)).$$

By this definition, \succ -mappings can be considered as asymptotic counterparts of uniformly open mappings between uniform topological spaces.

If $f: X_1 \to X_2$ is a bijection such that f is a \prec -mapping and f is a \succ -mapping, we say that f is an *asymorphism* between \mathcal{B}_1 and \mathcal{B}_2 . Given an arbitrary ballean $\mathcal{B} = (X, P, B)$, we can replace every ball $B(x, \alpha)$ to $B(x, \alpha) \cap B^*(x, \alpha)$ for all $x \in X$, $\alpha \in P$.

More generally, a pair (f_1, f_2) of \prec -mappings $f_1 : X_1 \to X_2$, $f_2 : X_2 \to X_1$ is called a quasi-asymorphism between \mathcal{B}_1 and \mathcal{B}_2 if there exists $\alpha \in P_1$, $\beta \in P_2$ such that, for all $x \in X_1, y \in X_2$,

$$f_2 f_1(x) \in B_1(x, \alpha), f_1 f_2(y) \in B_2(y, \beta).$$

In terminology of [6], quasi-asymorphic balleans are called *coarsely equivalent*.

Every metric space (X, d) determines the ballean $\mathcal{B}(X, d) = (X, \mathbb{R}^+, B_d)$, where \mathbb{R}^+ is the set of non-negative integers, $B_d(x, r) = \{y \in X : d(x, y) \leq r\}$.

A ballean is called *metrizable* if \mathcal{B} is asymorphic to $\mathcal{B}(X, d)$ for some metric space (X, d). A criterion of metrizability of balleans can be found in [5, Theorem 9.1]. This criterion shows that every ballean quasi-asymorphic to metrizable ballean is metrizable. We note also that every quasi-isometry between metric spaces [3,Chapter 4] is a quasi-asymorphism between corresponding balleans.

From some point of view, the ballean $\mathcal{B}(\mathbb{R}^+, d)$, where d(x, y) = |x - y|, can be considered as asymptotic counterpart of the interval [0,1] with natural topology. If this so, we get the problem of characterization of balleans quasi-asymorphic to $\mathcal{B}(\mathbb{R}^+, d)$. Which language is appropriate for this goal?

Let Γ be connected graph with the set of vertices $V(\Gamma)$ and the set of edges $E(\Gamma)$. Given any $u, v \in V(\Gamma)$, we denote d(u, v) the length of a shortest path between u and v. We denote by $\mathcal{B}(\Gamma)$ the metric ballean $\mathcal{B}(V(\Gamma), d)$. A ballean \mathcal{B} is called a graph ballean if \mathcal{B} is asymorphic to $\mathcal{B}(\Gamma)$ for some graph Γ . A criterion of graph balleans can be found in [5, Theorem 9.2]. It follows from this criterion that every ballean quasi-asymorphic to graph ballean is a graph ballean.

Let $f_1 : \omega \to \mathbb{R}^+$ be the canonical embedding, $f_2(x) = [x]$. Clearly, (f_1, f_2) is a quasiasymorphism between $\mathcal{B}(\mathbb{I})$ and $\mathcal{B}(\mathbb{R}^+, d)$, so in the original problem we can replace $\mathcal{B}(\mathbb{R}^+, d)$ to $\mathcal{B}(\mathbb{I})$.

The main result of this paper characterizes all graphs Γ such that $\mathcal{B}(\Gamma)$ is quasi-asymorphic to $\mathcal{B}(\mathbb{I})$. Besides, we introduce and study some wider classes of graphs asymptotically close to \mathbb{I} .

2. EMBEDDINGS. Let $\mathcal{B} = (X, P, B)$ be a ballean, Y be a nonempty subset of X. The ballean $\mathcal{B}_Y = (Y, P, B_Y)$, where $B_Y(y, \alpha) = B(y, \alpha) \cap Y$, is called a *subballean* of X.

A subset $Y \subseteq X$ is called *bounded* if there exists $x \in X$, $\alpha \in P$ such that $Y \subseteq B(x, \alpha)$. A ballean is called bounded if its support is bounded.

A family Im of subsets of X is called *uniformly bounded* in \mathcal{B} if there exists $\alpha \in P$ such that, for every $F \in \text{Im}$, $F \subseteq B(x, \alpha)$ for some $x \in X$. Equivalently, Im is uniformly bounded if there exists $\beta \in P$ such that, for every $F \in \text{Im}$, $F \subseteq B(x, \beta)$ for every $x \in F$.

Let Im be a uniformly bounded partition of X. Given any $F \in \text{Im}$ and $\alpha \in P$, we put $B_{\text{Im}}(F, \alpha) = \{F' \in \text{Im} : F' \subseteq B(F, \alpha)\}$. It is easy to check that the ball structure \mathcal{B}/Im is a ballean which is called a *factor-ballean* of \mathcal{B} . We note also that \mathcal{B}/Im is the smallest (by \prec) ballean on Im such that the projection $pr : X \to \text{Im}$ is a \prec -mapping, where pr(x) = F if and only if $x \in F$.

Let $\mathcal{B}_1 = (X_1, P_1, B_1)$, $\mathcal{B}_2 = (X_2, P_2, B_2)$ be balleans, $f : X_1 \to X_2$. Clearly, f is a \prec mapping if and only if, for every uniformly bounded family Im of subsets of X_1 , the family $f(\text{Im}) = \{f(F) : F \in \text{Im}\}$ is uniformly bounded in \mathcal{B}_2 . We assume that f is a \prec -mapping and consider the partition kerf of X_1 determined by the equivalence: $x \sim y$ if and only if f(x) = f(y). If the partition kerf is uniformly bounded, we get the canonical decomposition $f = i_f \circ pr_f, pr_f : X_1 \to kerf, i_f : kerf \to X_2$. In this case pr_f is a surjective \prec -mapping of \mathcal{B}_1 onto $\mathcal{B}_1/kerf$, i_f is an injective \prec -mapping of $\mathcal{B}_1/kerf$ into \mathcal{B}_2 .

A mapping $f : X_1 \to X_2$ is called an *asymorphic embedding* of \mathcal{B}_1 into \mathcal{B}_2 if f is an asymorphism between \mathcal{B}_1 and the subballean of \mathcal{B}_2 determined by the subset $f(X_1)$ of X_2 .

A \prec -mapping $f : X_1 \to X_2$ is called *quasi-asymorphic embedding* of \mathcal{B}_1 into \mathcal{B}_2 if, for every $\beta \in P_2$ there exists $\alpha \in P_1$ such that, for all $x_1, x_2 \in X_1$, $f(x_1) \in B_2(f(x_2), \beta)$ implies $x_1 \in B_1(x_2, \alpha)$. Equivalently, a mapping $f : X_1 \to X_2$ is a quasi-asymorphic embedding if, for every uniformly bounded family Im₁ of subsets of X_1 , the family $f(\text{Im}_1)$ is uniformly bounded in \mathcal{B}_2 , and, for every uniformly bounded family Im₂ of subsets of X_2 , the family $f^{-1}(\text{Im}_2) = \{f^{-1}(F) : F \in \text{Im}_2\}$ is uniformly bounded in \mathcal{B}_1 . We note also that a quasiisomorphic embedding f is an asymorphic embedding if and only if f is injective. For the case of metric ballean the notion of quasi-asymorphic embedding was introduced by Gromov [2] under name uniform embedding.

Let $f: X_1 \to X_2$ be a quasi-asymorphic embedding of \mathcal{B}_1 into \mathcal{B}_2 . Then the partition kerf is uniformly bounded and the mapping $i_f: kerf \to X_2$ from the canonical decomposition $f = i_f \circ pr_f$ is an asymorphic embedding of $\mathcal{B}_1/kerf$ into \mathcal{B}_2 . On the other hand, if some factor-ballean of \mathcal{B}_1 admits an asymorphic embedding into \mathcal{B}_2 , then \mathcal{B}_1 admits a quasiasymorphic embedding into \mathcal{B}_2 .

Let $\mathcal{B} = (X, P, B)$ be a ballean. A subset $Y \subseteq X$ is called *large* if there exists $\alpha \in P$ such that $X = B(Y, \alpha)$.

I. V. PROTASOV

Now we describe interrelation between quasi-asymorphisms and quasi-asymorphic embeddings. Let $f_1 : X_1 \to X_2$ be a quasi-asymorphic embedding of \mathcal{B}_1 into \mathcal{B}_2 such that the subset $f(X_1)$ is large in \mathcal{B}_2 . We construct a mapping $f_2 : X_2 \to X_1$ such that the pair (f_1, f_2) is a quasi-asymorphism between \mathcal{B}_1 and \mathcal{B}_2 . For every $y \in f(X_1)$, we choose some element $g(y) \in f^{-1}(y)$, so we have the mapping $g : f(X_1) \to X_1$. Since $f(X_1)$ is large in \mathcal{B}_2 , there exists $\beta \in P_2$ such that $B_2(f(X_1), \beta) = X_2$. To define the mapping $f_2 : X_2 \to X_1$ we take an arbitrary $z \in X_2$, choose $y \in f(x_1)$ such that $z \in B(y, \alpha)$ and put $f_2(z) = g(y)$.

On the other hand, if (f_1, f_2) is a quasi-asymorphism between \mathcal{B}_1 and \mathcal{B}_2 , then f_1 is quasiasymorphic embedding and $f_1(X_1)$ is large in \mathcal{B}_2 . Hence, \mathcal{B}_1 and \mathcal{B}_2 are quasi-asymorphic if and only if there exists a quasi-asymorphic embedding $f : X_1 \to X_2$ such that $f(X_1)$ is large in \mathcal{B}_2 .

The rest of this section is to interprete all the above notions for the case of graph balleans. In what follows all graphs under consideration are supposed to be connected.

Proposition 1. Let Γ_1 , Γ_2 be graphs, $f : V(\Gamma_1) \to V(\Gamma_2)$. Then the following statements are equivalent:

- (i) f is a \prec -mapping of $\mathcal{B}(\Gamma_1)$ to $\mathcal{B}(\Gamma_2)$;
- (ii) there exists a natural number k such that $f(B_1(v, 1)) \subseteq B_2(f(v), k)$ for every $v \in V(\Gamma_1)$, where B_1 and B_2 are balls in Γ_1 and Γ_2 ;
- (iii) there exists a natural number k such that $d_2(f(v), f(u)) \leq kd_1(v, u)$ for all $u, v \in V(\Gamma_1)$, where d_1, d_2 are the path metrics in Γ_1 and Γ_2 .

Proof. $(i) \Longrightarrow (ii)$ follows directly from definition of \prec -mapping.

(ii) => (iii) If $d_1(v, u) = 1$, then $u \in B(v, 1)$ so $d_2(f(u), f(v)) \leq k$. Given any $v, u \in V(\Gamma_1)$, we fix the shortest path $v = v_0, v_1, ..., v_n = u$ between u and v. Since $d_2(f(v_i), f(v_{i+1})) \leq k$ for every $i \in \{0, 1, ..., n-1\}$, then $d_2(f(v), f(v)) \leq kn = d_1(v, u)$.

(iii) => (i). It is suffices to note that (iii) is equivalent to $f(B_1(v,n)) \subseteq B_2(f(v),kn)$ for every $v \in V(\Gamma_1)$.

In other words Proposition 1 states that, in the case of graph balleans, \prec -mappings are exactly lipschitz mappings of corresponding metric spaces. We say that $f(V(\Gamma_1)) \to V(\Gamma_2)$ is a \prec -mapping of scale k if $f(B_1(v, 1)) \subseteq B_2(f(v), k)$ for every $v \in V(\Gamma_1)$.

Let Γ_1, Γ_2 be graphs, m be a natural number, $f: V(\Gamma_1) \to V(\Gamma_2)$. Clearly, if

$$d_1(v_1, v_2)/m \le d_2(f(v_1), f(v_2)) \le m d_1(v_1, v_2)$$

for any $v_1, v_2 \in V(\Gamma_1)$, then f is a quasi-asymorphic embedding of \mathcal{B}_1 into \mathcal{B}_2 . Following example shows that the above inequality is not necessary for f to be a quasi-asymorphic embedding, but if the subset $f(V(\Gamma_1))$ is large in $\mathcal{B}(\Gamma_2)$, this is so (Proposition 2).

Example 1. We consider the ray \mathbb{I} and, for every natural number n, identify the vertices $2^n, 2^{n+1}$ of \mathbb{I} with the end-vertices of \mathbb{I}_n . Here \mathbb{I}_n is a graph with the set of vertices $\{0, 1, ..., n\}$ and the set of edges $\{(i, i + 1) : i \in \{0, ..., n - 1\}\}$. Denote by Γ the resulting graph. Fix a natural number k. If a natural number n is sufficiently large, the distance between the vertices $n, n + k \in \omega$ in Γ is k. It follows that the identity mapping $i : \omega \to V(\Gamma)$ is a quasi-asymorphic embedding of $\mathcal{B}(\mathbb{I})$ into $\mathcal{B}(\Gamma)$. On the other side, the distance between the vertices $2^n, 2^{n+1}$ in Γ is n, but the distance between $2^n, 2^{n+1}$ in \mathbb{I} is 2^n . Hence, the left part of above inequality fails.

RAY-LIKE GRAPHS

Proposition 2. Let Γ_1 , Γ_2 be graphs, k, l be natural numbers, $f : V(\Gamma_1) \to V(\Gamma_2)$ be a \prec mapping of scale k, $B_2(f(V(\Gamma_1)), l) = V(\Gamma_2)$. Then the following statements are equivalent:

(i) the family $\{f^{-1}(B_2(u, 2l+1)) : u \in V(\Gamma_1)\}$ is uniformly bounded;

(ii) there exists a natural number m such that, for all $v_1, v_2 \in V(\Gamma_1)$,

$$d(v_1, v_2)/m \le d_2(f(v_1), f(v_2)) \le md_1(v_1, v_2).$$

Proof. (ii) => (i) is evident.

(i) => (ii). By (i), there exists a natural number m' such that $d_2(f(v_1), f(v_2)) \leq 2l + 1$ implies $d_1(v_1, v_2) \leq m'$. We put $m = max\{m', k\}$. Since f is a \prec -mapping of scale k, we have

$$d_2(f(v_1), f(v_2)) \le k d_1(v_1, v_2) \le m d_1(v_1, v_2).$$

Let $d_2(f(v_1), f(v_2)) = t$. We choose the shortest path $w_0, w_1, ..., w_t, w_0 = f(v_1), w_t = f(v_2)$ between $f(v_1)$ and $f(v_2)$. Since $B_2(f(V(\Gamma_1)), l) = V(\Gamma_2)$, there exists $u_1, u_2, ..., u_{t-1} \in V(\Gamma_1)$ such that $f(u_i) \in B_2(w_i, l), i \in \{1, ..., t-1\}$. Then

 $\begin{aligned} &d_2(f(v_1), f(u_1)) \leq l+1, d_2(f(u_{t-1}), f(v_2)) \leq l+1, d_2(f(u_i), f(u_{i+1})) \leq 2l+1, i \in \{1, ..., t-1\}. \\ &\text{By the choice of } m', \text{ we have } d_1(v_1, u_1) \leq m', d_1(u_{t-1}, v_2) \leq m', d_1(u_i, u_{i+1}) \leq m', \\ &i \in \{1, ..., t-1\}. \text{ Hence, } d_1(v_1, v_2) \leq m't \leq mt = d_2(f(v_1), v_2). \end{aligned}$

Proposition 3. Let Γ_1, Γ_2 be graphs, $f : V(\Gamma_1) \to V(\Gamma_2)$. Then the following statements are equivalent:

- (i) f is a \prec -mapping of $\mathcal{B}(\Gamma_1)$ to $\mathcal{B}(\Gamma_2)$;
- (ii) there exists a natural number k such that $B_2(f(v), 1) \subseteq f(B_1(v, k))$ for every $v \in V(\Gamma_1)$; (iii) there exists a natural number k such that $B_2(f(v), n) \subseteq f(B_1(v, kn))$ for all $v \in V(\Gamma_1)$, $n \in \omega$.

Proof. The implications $(i) \Rightarrow (ii)$ and $(iii) \Rightarrow (i)$ are evident. $(ii) \Rightarrow (iii)$. Fix any $v \in V(\Gamma_1), n \in \omega$. For every element $u \in B_2(f(v), n)$ we can choose the shortest path $u_0, ..., u_t, u_0 = f(v), u_t = u, t \leq n$ between f(v) and u. By (ii), there exist $v_0, ..., v_t \in V(\Gamma_1), v_0 = v$ such that $v_{i+1} \in B_2(v_i, k), i \in \{0, ..., t-1\}$ and $f(v_1) = u_1, f(v_2) = u_2, ..., f(v_t) = u_t = u$. It follows that $v_t \in B_2(v, kt) \subseteq B_1(v, kn)$ and $u \in f(B_1(v, kn))$.

3. QUASI-RAYS. We say that a graph Γ is a *quasi-ray* if $\mathcal{B}(\Gamma)$ is quasi-asymorphic to $\mathcal{B}(\mathbb{I})$. Let Γ be an arbitrary graph, $v \in V(\Gamma)$, $n \in \omega$. We put

$$S(v, n) = \{ u \in V(\Gamma) : d(u, v) = n \}.$$

Let r be a natural number. We say that a sequence $(a_n)_{n\in\omega}$ of vertices of Γ is an r-arrow if $d(a_i, a_{i+1}) = 1$ and $a_i \in S(a_0, i)$ for every $i \in \omega$. In the case r = 1, $(a_n)_{n\in\omega}$ is called an arrow. A graph Γ is called *locally finite* if $\rho(v)$ is finite for every $v \in V(\Gamma)$, where $\rho(v) = |B(v, 1)| - 1$. By Køning lemma, for every locally finite graph and every $v \in V(\Gamma)$, there exists an arrow starting at v.

A graph Γ is called *unbounded* if the ballean $\mathcal{B}(\Gamma)$ is unbounded (i.e. $S(v, n) \neq \emptyset$ for all $v \in V(\Gamma), n \in \omega$).

Theorem 1. Let Γ be an unbounded graph, $v_0 \in V(\Gamma)$. Then the following statements are equivalent:

(i) Γ is a quasi-ray;

- (ii) the family $\{S(v_0, n) : n \in \omega\}$ is uniformly bounded in $\mathcal{B}(\Gamma)$;
- (iii) there exist natural numbers r, s and an r-arrow $a(_n)_{n \in \omega}$ such that $a_0 = v_0$ and $V(\Gamma) = B(A, s)$, where $A = \{a_n : n \in \omega\}$.

Proof. (i) => (ii). Let $f: V(\Gamma) \to \omega$ be a quasi-asymorphic embedding of $\mathcal{B}(\Gamma)$ into $\mathcal{B}(\mathbb{I})$ such that the subset $f(V(\Gamma))$ is large in $\mathcal{B}(\mathbb{I})$. By Proposition 2, there exists a natural number m such that

$$d(u, v)/m \le |f(u) - f(v)| \le md(u, v),$$
(*)

where d is the path metric on $V(\Gamma)$.

If the family $\{S(v,n) : n \in \omega\}$ is uniformly bounded in $\mathcal{B}(\Gamma)$ for some $v \in V(\Gamma)$, the family $\{S(u,n) : n \in \omega\}$ is uniformly bounded for every $u \in V(\Gamma)$. Hence, we may suppose that $f(v_0) = \min\{f(v) : v \in V(\Gamma)\}$ and, moreover, $f(v_0) = 0$.

We fix an arbitrary natural number n and show that $f(S(v_0, n)) \subseteq [i(n) - m, i(n) + m]$ for some $i(n) \in \omega$, where [a, b] is a segment in ω with [a, b] = [0, b] if a < 0. Since the family $\{[i-m, i+m] : i \in \omega\}$ is uniformly bounded in $\mathcal{B}(\mathbb{I})$ and f is a quasi-asymorphic embedding, the family $\{f^{-1}([i-m, i+m]) : i \in \omega\}$ is uniformly bounded in $\mathcal{B}(\Gamma)$, so $\{S(v_0, n) : n \in \omega\}$ is uniformly bounded in $\mathcal{B}(\Gamma)$.

We put $t = m^2(n+1)$ and choose $v_0, v_1, ..., v_t \in V(\Gamma)$ such that $d(v_{i-1}, v_i) = 1, v_i \in S(v_0, i)$ for every $i \in \{1, 2, ..., t\}$. It is possible because Γ is unbounded. By $(*), f(v_t) \geq m(n+1)$ and $|f(v_{i-1}) - f(v_i)| \leq m$ for every $i \in \{1, ..., t\}$. It follows that every segment $[k, k+m], k \in \{0, ..., mn\}$ contains at least one element $f(v_0), f(v_1), ..., f(v_t)$.

We show that $f(S(v_0, n)) \subseteq [f(v_n) - m, f(v_n) + m]$, so we can take $i(n) = f(v_n)$. Suppose the contrary and choose $v \in S(v_0, n)$ such that $f(v) \notin [f(v_n) - m, f(v_n) + m]$. Since $d(v, v_0) = n$, we have $f(v) \in [0, mn]$. We pick $k \in [0, m(n+1)]$ such that $f(v) \in [k - m, k]$ and $[k - m, k] \cap [f(v_n) - m, f(v_n) + m] = \emptyset$.

Then we take $j \in \{0, ..., t\}$ such that $f(v_j) \in [k - m, k]$. Since $|f(v_j) - f(v_n)| > m$, by (*), we have $d(v_n, v_j) > 1$. Since $v \in S(v_0, n)$, then $d(v, v_j) > 1$. On the other hand, $|f(v) - f(v_j)| \le m$, so $d(v, v_j) \le 1$ and we got a contradiction.

(ii) => (iii). Since $\{S(v_0, n) : n \in \omega\}$ is uniformly bounded in $\mathcal{B}(\Gamma)$, there exists a natural number s such that $S(v_0, n) \subseteq B(v, s)$ for every $v \in S(v_0, n)$. We put $a_0 = v_0$ and, for every $n \in \omega$, choose $a_n \in S(v_0, n)$. Then $V(\Gamma) = B(A, s)$ and $d(a_n, a_{n+1}) \leq 2s + 1$, so we can put r = 2s + 1.

(iii) => (i). We define a mapping $f : \omega \to V(\Gamma)$ by the rule $f(i) = a_i, i \in \omega$. It is easy to check that f is a quasi-asymptophic embedding of $\mathcal{B}(\mathbb{I})$ to $\mathcal{B}(\Gamma)$ and $f(\omega)$ is large in $\mathcal{B}(\Gamma)$. Hence, Γ is a quasi-ray.

Let T be a tree and let $(v_n)_{n\in\omega}$ be an arrow in T. After deletion of the edges $\{v_n, v_{n+1}\}$ the tree T disintegrates into the family $\{T(v_n) : n \in \omega\}$ of trees with the roots $\{v_n : n \in \omega\}$. If a tree $T(v_n)$ is bounded, we put $h(T(v_n)) = \max\{d(v_n, v) : v \in V(T_n)\}$.

Theorem 2. An unbounded tree T is a quasi-ray if and only if there exists an arrow $(v_n)_{n \in \omega}$ in T and a natural number k such that $h(T(v_n)) \leq k$ for every $n \in \omega$.

Proof. Let T be a quasi-ray. By Theorem 1, there exists an r-arrow $(a_n)_{n \in \omega}$ in T such that the subset $\{a_n : n \in \omega\}$ is large in $\mathcal{B}(T)$. For every pair a_n, a_{n+1} , we find a shortest path

RAY-LIKE GRAPHS

between a_n, a_{n+1} and put the vertices of this path in $(a_n)_{n\in\omega}$ between a_n, a_{n+1} . After that we get a new sequence $(b_n)_{n\in\omega}$ containing $(a_n)_{n\in\omega}$ as a subsequence. We put $v_0 = a_0$. Since $(a_n)_{n\in\omega}$ is an *r*-arrow, for every $i \in \omega$, $S(v_0, i)$ contains only finite number of elements of $(b_n)_{n\in\omega}$. For every $i \in \omega$, we denote by v_i the last member of $(b_n)_{n\in\omega}$ such that $v_i \in S(v_0, i)$. Since *T* is a tree $(v_n)_{n\in\omega}$ is an arrow. By Theorem1, the family $\{S(v_0, n) : n \in \omega\}$ is uniformly bounded. It follows that there exists a natural number *t* such that $d(v_i, a_i) \leq t, i \in \omega$. Since $\{a_n : n \in \omega\}$ is large in $\mathcal{B}(T)$, then $\{v_n : n \in \omega\}$ is large in $\mathcal{B}(T)$. It follows that the heights of all trees $T(v_n)$ are bounded by some constant *k*.

If $(v_n)_{n \in \omega}$ is an arrow in T and $h(T(v_n)) \leq k$ for every $n \in \omega$, then $\{v_n : n \in \omega\}$ is large in $\mathcal{B}(T)$. By Theorem 1, T is a quasi-ray.

Comparing Theorem 1 and Theorem 2 it is naturally to ask if there exists an arrow in every quasi-ray. The following example gives negative answer.

Example 2. For every $n \in \omega$, we consider the graph \mathbb{I}_n and denote its vertices a(0, n), $a(1, n), \ldots, a(n, n)$ with $(a(i, n), a(i + 1, n)) \in V(\mathbb{I}_n)$, $i \in \{0, \ldots, n - 1\}$. We stick together all the vertices $\{a(0, n) : n \in \omega\}$ and call this new vertex by a(0, 0). Then, for every natural number k, we consider the set of vertices $\{a(k, i) : i \in \{k, k + 1, \ldots\}\}$ and connect all pairs of these vertices by the edges. Let Γ be the resulting graph. By the construction, S(a(0, 0), n) is a complete graph for every $n \in \omega$. Hence, the family $\{S(a(0, 0), n) : n \in \omega\}$ is uniformly bounded and, by Theorem 1, Γ is a quasi-ray.

Assume that there is an arrow in Γ starting at a(0,0). Then this arrow must follow via one of the subgraphs \mathbb{I}_n of Γ . But from the vertex a(n,n) on the level S(a(0,0),n) there are no possibilities to get S(a(0,0), n+1) in one step. The same arguments show that there are no arrows in Γ at all, i.e. starting at any vertex of Γ .

We say that a graph Γ is an *asyray* if the balleans $\mathcal{B}(\Gamma)$ and $\mathcal{B}(\mathbb{I})$ are asymorphic. Clearly, every asyray is a quasi-ray.

Theorem 3. A quasi-ray Γ is an asyray if and only if there exists a natural number m such that $\rho(v) \leq m$ for every $v \in V(\Gamma)$.

Proof. Assume that Γ is an asyray and fix an asymorphism $f: V(\Gamma) \to \omega$ between $\mathcal{B}(\Gamma)$ and $\mathcal{B}(\mathbb{I})$. By Lemma 1, there exists a natural number k such that $f(B(v, 1)) \subseteq [f(v)-k, f(v)+k]$ for every $v \in V(\Gamma)$. It follows that $\rho(v) \leq 2k$ for every $v \in V(\Gamma)$. Put m = 2k.

Suppose that $\rho(v) \leq m$ for every $v \in V(\Gamma)$. Fix $v_0 \in V(\Gamma)$. By Theorem 1, $\{S(v_0, n) : n \in \omega\}$ is uniformly bounded. It follows that there exists a natural number t such that $|S(v_0, n)| \leq t$ for every $n \in \omega$. We construct a bijection $f : \omega \to V(\Gamma)$ in the following way. Put $f(0) = v_0$, then we enumerate the elements of $S(v_0, 1), S(v_0, 2), \ldots$ It is easy to see that f is an asymorphism between $\mathcal{B}(\mathbb{I})$ and $\mathcal{B}(\Gamma)$.

A direct characterization of asyrays is given in [4] in the following form.

Theorem 4. Let Γ be an infinite graph, s be a natural number such that $\rho(v) \leq s$ for every $v \in V(\Gamma)$, $(a_n)_{n \in \omega}$ be an arrow in Γ . Then the following statements are equivalent:

(i) Γ is an asyray;

(ii) the family $\{S(v_0, n) : n \in \omega\}$ is uniformly bounded in $\mathcal{B}(\Gamma)$;

(iii) there exists a natural number r such that $V(\Gamma) = B(\{a_n : n \in \omega\}, r)$.

4. RELATIONS \prec **AND** \succ . Given any graphs Γ_1, Γ_2 , we write $\mathcal{B}(\Gamma_1) \prec \mathcal{B}(\Gamma_2)$ (resp. $\mathcal{B}(\Gamma_1) \succ \mathcal{B}(\Gamma_2)$) if there exists an injective \prec -mapping (resp. surjective \succ -mapping) $f : V(\Gamma_1) \rightarrow V(\Gamma_2)$. The next two examples show that $\mathcal{B}(\Gamma_1) \prec \mathcal{B}(\Gamma_2)$ does not imply $\mathcal{B}(\Gamma_2) \succ \mathcal{B}(\Gamma_1)$, and $\mathcal{B}(\Gamma_1) \succ \mathcal{B}(\Gamma_2)$ does not imply $\mathcal{B}(\Gamma_2) \prec \mathcal{B}(\Gamma_1)$.

Example 3. Let K be a complete graph with the set of vertices $\{v_n : n \in \omega\}$. For every $n \in \omega$, we identify v_n with one of the end-points of \mathbb{I}_n . After this attachments we get some graph Γ . The identity mapping $f : V(K) \to V(\Gamma)$ is a \prec -mapping of scale 1, so $\mathcal{B}(K) \prec \mathcal{B}(\Gamma)$. Suppose that there exists a surjective \succ -mapping $f : V(\Gamma) \to V(K)$. Choose a natural number m such that $B_K(f(v), 1) \subseteq f(B_{\Gamma}(v, m))$ for every $v \in V(\Gamma)$. If n > m and v_n is the end-point of the subgraph \mathbb{I}_n of Γ , then $B_{\Gamma}(v, m)$ is finite, but every ball of unit radius in K coincides with K, a contradiction.

Example 4. Let G be a group with the identity e and finite set S of generators, $S = S^{-1}$, $e \notin S$. The Cayley graph Cay(G, S) is a graph with the set of vertices G, and the set of (non-directed) edges $\{(a, b) : a, b \in G, a^{-1}b \in S\}$.

Let F_2 be a free group of rank 2 with generators a, b. Put $T = Cay(F_2, \{a, b, a^{-1}, b^{-1}\})$ and note that T is a tree of local degree 4.

Let A_2 be a free Abelian group of rank 2 with the set of generators c, d. Put $\Gamma = Cay(A_2, \{c, d, c^{-1}, d^{-1}\})$. Geometrically, Γ is a graph with the set of vertices \mathbb{Z}^2 and the set of edges connecting the pair of points on euclidian distance 1.

We consider homomorphism $f: F_2 \to A_2$ defined by f(a) = c, f(b) = d and note that f is a \succ -mapping of $\mathcal{B}(T)$ onto $\mathcal{B}(\Gamma)$. Hence, $\mathcal{B}(T) \succ \mathcal{B}(\Gamma)$.

We show that $\mathcal{B}(\Gamma)$ can not be injectively \prec -embedded into $\mathcal{B}(T)$. Assume the contrary and fix some injective \prec -mapping $f : A_2 \to F_2$.

We identify V(T) with the set of shortest path from the identity e of F_2 to the vertices of T. Let $\sigma(T)$ be the set of all arrows in T starting at e. We endow $V(T) \cup \sigma(T)$ with topology of pointwise convergence and note that V(T) is dense discrete subspace of compact space $V(T) \cup \sigma(T)$. Since $h(A_2)$ is an infinite subset of V(T), then $cl(h(A_2)) \cap \sigma(T) \neq \emptyset$, where cl is a closure in $V(T) \cup \sigma(T)$. We consider two cases.

Case $|cl(h(A_2)) \cap \sigma(T)| > 1$. Then there exists $v, v_1, v_2 \in V(T)$ such that $(v_1, v), (v_2, v) \in E(T)$ and the sets $V(T(v_1)) \cap h(A_2), V(T(v_2)) \cap h(A_2)$ are infinite, where $T(v_1), T(v_2)$ are trees with the roots v_1, v_2 obtained by deletion of the edges $(v, v_1), (v, v_2)$. Then we can choose two sequences $(u_n)_{n \in \omega}, (w_n)_{n \in \omega}$ in $V(A_2)$ such that the family $\{p_n : n \in \omega\}$ of the shortest paths between u_n and w_n is disjoint (by vertices), and $h(u_n) \in T(v_1), h(w_n) \in T(v_2), n \in \omega$. If the scale of h is k, then $h(p_n) \cap B_T(v, k) \neq \emptyset$. Since $B_T(v, k)$ is finite, the family $\{h(p_n) : n \in \omega\}$ is not disjoint and we get the contradiction to injectivity of h.

Case $|cl(h(A_2)) \cap \sigma(T)| = 1$. Then there exists an arrow $(v_n)_{n \in \omega}$ in T such that $V(T(v_n)) \cap h(A_2)$ is finite for every $n \in \omega$, where $\{T(v_n) : n \in \omega\}$ are trees with the roots $\{v_n : n \in \omega\}$ obtained by deletion of the edges $\{(v_n, v_{n+1}) : n \in \omega\}$. We choose a countable family $\{R_n : n \in \omega\}$ of pairwise disjoint (by vertices) arrow in Γ . Since h is a \prec -mapping and all the sets $\{V(T(v_n)) \cap h(A_2)\}$ are finite, we can choose $m, n \in \omega, n \neq m$ such that $h(R_n) \cap h(R_m) \neq \emptyset$, contradicting injectivity of h.

We note also that the statement " $\mathcal{B}(\Gamma)$ does not admit injective \prec -mapping into $\mathcal{B}(T)$ " can be extracted from Lemma 9.16 [6] concerning asymptotic dimension.

5. \prec -**RAYS.** By [5, Theorem 10.1], $\mathcal{B}(\mathbb{I}) \prec \mathcal{B}(\Gamma)$ and $\mathcal{B}(\Gamma) \succ \mathcal{B}(\mathbb{I})$ for every infinite graph Γ . We say that a graph Γ is a \prec -ray if $\mathcal{B}(\Gamma) \prec \mathcal{B}(\mathbb{I})$. Clearly, every finite graph is a \prec -ray. **Problem 1.** Characterize all \prec -rays.

We give one sufficient condition for graph to be \prec -ray and show that this condition is not necessary.

Theorem 5. Let Γ be a graph, $v_0 \in \Gamma$, k be a natural number. If $|S(v_0, n)| \leq k$ for every $n \in \omega$, then Γ is a \prec -ray.

Proof. Starting with v_0 , we enumerate $v_1, ..., v_t$ the elements of $S(v_0, 1)$, then we enumerate $v_{t+1}, ..., v_s$ the elements of $S(v_0, 2)$ and so on. After that we get enumeration $(v_n)_{n \in \omega}$ of $V(\Gamma)$. We define a mapping $f : V(\Gamma) \to \omega$ by the rule $f(v_n) = n, n \in \omega$. If $u, v \in V(\Gamma)$ and d(u, v) = 1, then $|f(u) - f(v)| \leq 3k$. By Proposition 1, f is a \prec -mapping of $\mathcal{B}(\Gamma)$ into $\mathcal{B}(\mathbb{I})$.

Example 5. We fix a natural number n and consider the following set of points of \mathbb{Z}^2 : (2,1), (2,2) (4,1), (4,2), (4,3), (4,4)

(4,1), (4,2), (4,3), (4,4)

 $\begin{array}{l} (2^{n-1},1), (2^{n-1},2), \dots, (2^{n-1},2^{n-1}) \\ (2^n,1), (2^n,2), \dots, (2^n,2^n) \\ (0,0), (1,0), \dots, (2^n,0). \end{array}$

Given any two points u, v on this table, we define the edge (u, v) if and only if the euclidian distance between u and v is 1. Denote by T_n the resulting tree and say that (0,0) is a left vertex of T_n , $(2^n, 0)$ is a right vertex of T_n .

Now we define a mapping $f : V(T) \to \{0, 1, ..., 3 \cdot 2^n\}$ by the rule: $f(i, 0) = 3i, i \in \{0, 1, ..., 2^n\}$; $f(2^k, j) = 3(2^k + j) + 1, k = \{1, ..., n - 1\}, j = \{1, ..., 2^k\}$; $f(2^n, j) = 3(2^n - j) + 2, j = \{1, 2, ..., 2^n\}$. It is not hard to check that f is an injective \prec -mapping of scale 3 of $\mathcal{B}(T_n)$ to $\mathcal{B}(\mathbb{I}_{3\cdot 2^n})$.

Let us forget the geometric definition of T_n and consider the sequence $T_1, T_2, ..., T_n, ...$ of abstract graphs with pairwise disjoint sets of vertices. For every pair T_n, T_{n+1} we connect by edge the left vertex of T_n with the right vertex of T_{n+1} . Denote by T the resulting graph. By construction, there exists an injective 3-scale \prec -mapping of $\mathcal{B}(T)$ to $\mathcal{B}(\mathbb{I})$, so T is a \prec -ray. Let v be the right vertex of T_1, v_n be the left vertex of T_n and t be a distance between v and v_n . Then $|S(v, t+2^n)| = n$, so the family $\{S(v, k) : k \in \omega\}$ is not bounded by the cardinality of its members.

Theorem 6. For every graph Γ , the following statements are equivalent: (i) there exists a finite-to-one mapping $f: V(\Gamma) \to \omega$ which is a \prec -mapping of $\mathcal{B}(\Gamma)$ to $\mathcal{B}(\mathbb{I})$; (ii) Γ is locally finite.

Proof. (ii) => (i). We fix an arbitrary vertex $v_0 \in V(\Gamma)$ and, for every $v \in V(\Gamma)$, put $f(v) = d(v, v_0)$. If $(u, v) \in E(\Gamma)$, then $|f(u) - f(v)| \leq 1$. Since Γ is locally finite, $S(v_0, n)$ is finite for every $n \in \omega$. It follows that f is a finite to one \prec -mapping of scale 1 of $\mathcal{B}(\Gamma)$ to $\mathcal{B}(\mathbb{I})$.

(i) => (ii). Assume the contrary: Γ is not locally finite, but there exists a finite-to-one \prec -mapping $f: V(\Gamma) \to \omega$. We choose a vertex $v \in V(\Gamma)$ such that B(v, 1) is infinite. Since f is \prec -mapping, the subset f(B(v, 1)) of ω is finite. Hence, f is not finite-to-one. \Box

The same arguments show that, for every unbounded graph Γ , there exists a surjective \prec -mapping $f: V(\Gamma) \to V(\mathbb{I})$ of scale 1.

6. \succ -**RAYS.** Example 4 shows that $\mathcal{B}(\Gamma_1) \succ \mathcal{B}(\Gamma_2)$ does not imply $\mathcal{B}(\Gamma_2) \prec \mathcal{B}(\Gamma_1)$, but in the case $\Gamma_1 = \mathbb{I}$ such an example impossible.

Theorem 7. Let Γ be a graph. Then $\mathcal{B}(\mathbb{I}) \succ \mathcal{B}(\Gamma)$ if and only if Γ is a \prec -ray.

Proof. Let $f: \omega \to V(\Gamma)$ be a surjective \succ -mapping of $\mathcal{B}(\mathbb{I})$ onto $\mathcal{B}(\Gamma)$. Let m be a natural number such that $B_{\Gamma}(f(n), 1) \subseteq f([n-m, n+m])$ for every $n \in \omega$. We define a mapping $h: V(\Gamma) \to \omega$ by the rule $h(v) = \min\{i: f(i) = v\}$, and prove that h is an injective \prec -mapping of scale m of $\mathcal{B}(\Gamma)$ into $\mathcal{B}(\mathbb{I})$, so Γ is a \prec -ray.

Let $v \in V(\Gamma)$ and h(v) = n. Suppose that $h(B_{\Gamma}(v, 1)) \not\subseteq [n - m, n + m]$ and choose $u \in B_{\Gamma}(v, 1)$ such that $h(u) \notin [n - m, n + m]$. We put h(u) = k and consider two cases.

Case k < n - m. Since $v \in f([k - m, k + m])$, there exists n' < n such that f(n') = v, contradicting h(v) = n.

Case k > n - m. Since $u \in f([n - m, n + m])$, there exists n' < k such that f(n') = u, contradicting h(u) = k.

If $f: V(\Gamma) \to \omega$ is an injective \prec -mapping of $\mathcal{B}(\Gamma)$ into $\mathcal{B}(\mathbb{I})$, we eliminate all elements of ω , which have no preimages. Then we enumerate the rest of ω in natural order. Thus, we have defined a bijective \prec -mapping $h: V(\Gamma) \to \omega$ of $\mathcal{B}(\Gamma)$ onto $\mathcal{B}(\mathbb{I})$. Clearly, $h^{-1}: \omega \to V(\Gamma)$ is bijective \succ -mapping of $\mathcal{B}(\mathbb{I})$ onto $\mathcal{B}(\Gamma)$, so $\mathcal{B}(\Gamma) \succ \mathcal{B}(\Gamma)$. \Box

We say that a graph Γ is a \succ ray if there exists a bijective \succ -mapping $f: V(\Gamma) \to \omega$ of $\mathcal{B}(\Gamma)$ onto $\mathcal{B}(\mathbb{I})$. Equivalently, Γ is a \succ -ray if there exists a bijective \prec -mapping $h: \omega \to V(\Gamma)$ of $\mathcal{B}(\mathbb{I})$ onto $\mathcal{B}(\Gamma)$.

Problem 2. Characterize all \succ -rays.

In fact, for locally finite graphs, this problem has been solved in another terminology in [5, Chapter 3]. The next two theorems are paraphrases of Theorem 3.13 and 3.16 from [5].

Theorem 8. A locally finite tree T is a \succ -ray if and only if there exists an arrow $(v_n)_{n \in \omega}$ in T such that all the trees $\{T(v_n) : n \in \omega\}$ are finite.

Let T be a tree with the root x. We say that T is x-rooted and define a partial ordering \leq on the set V(T) by the rule: $y \leq z$ if and only if the shortest path from x to z goes through y.

Call an x-rooted spanning tree of a graph Γ normal if any pair of adjacent vertices of Γ is comparable in the partial ordering on $V(\Gamma)$ induced by T. For every locally finite graph Γ and every vertex $x \in V(\Gamma)$, there exists a normal x-rooted spanning tree of Γ [5, Theorem 3.15].

Theorem 9. For every infinite locally finite graph Γ , the following statements are equivalent: (i) Γ is a \succ -ray; (ii) Γ has a normal rooted spanning tree which is a \succ -ray; (iii) every normal rooted spanning tree of Γ is a \succ -ray; (iv) there exists a bijection $f : \omega \to V(\Gamma)$ such that $d(f(i), f(i+1)) \leq 3$ for every $i \in \omega$.

In view of Theorem 8, the equivalence $(i) \ll (ii)$ of Theorem 9 can be considered as a characterization of locally finite \succ -rays. The equivalence $(i) \ll (iv)$ of Theorem 9 can be reformulated in the following way: if there exists a \prec -bijection $h : \omega \to V(\Gamma)$ of $\mathcal{B}(\mathbb{I})$ onto $\mathcal{B}(\Gamma)$, then there exists a \prec -bijection $f : \omega \to V(\Gamma)$ of scale 3 of $\mathcal{B}(\mathbb{I})$ onto $\mathcal{B}(\Gamma)$.

REFERENCES

- 1. Dranishnikov A Asymptotic topology, Russian Math. Surveys, 55,(2000), Nº6, 71-116.
- 2. Gromov M. Asymptotic invariants of infinite groups, London Math. Soc. Lecture Note Ser., 182 (1993).
- 3. Harpe P. Topics in Geometrical Group Theory, University Chicago Press, 2000
- 4. Kuchaiev O., Tsvietkova A., Asymptotic rays, Algebra and Discrete Math. (submitted).
- Protasov I., Banakh T., Ball structures and Colorings of Groups and Graphs, Math. Stud. Monogr. Ser. 11(2003).
- 6. Roe J. Lectures on Coarse Geometry, AMS University Lecture Ser., **31**(2003)

Kyiv National University protasov@unicyb.kiev.ua

Received 1.10.2005