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We prove that a graph Γ is coarsely equivalent to ray if and only if Γ is uniformly spherically

bounded. We introduce and study some other classes of graphs asymptotically close to ray.

È.Â. Ïðîòàñîâ. Ëó÷åïîäîáíûå ãðàôû // Ìàòåìàòè÷íi Ñòóäi¨. � 2007. � Ò.27, �1. � C.19�29.

Äîêàçûâàåòñÿ, ÷òî ãðàô Γ ãðóáî ýêâèâàëåíòåí ëó÷ó òîãäà è òîëüêî òîãäà, êîãäà Γ
ðàâíîìåðíî ñôåðè÷åñêè îãðàíè÷åí. Ìû ââîäèì è èññëåäóåì íåêîòîðûå äðóãèå êëàññû

ãðàôîâ, àñèìïòîòè÷åñêè áëèçêèõ ëó÷ó.

1. INTRODUCTION. A ray is a (non-directed) graph I with the set of vertices ω =
{0, 1, ...} and the set of edges {(i, i + 1) : i ∈ ω}. We are going to characterize some types

of graphs that asymptotically look like ray. To make the adverb "asymptotically"precise we

start with some general approach to asymptology.

A ball structure is a triple B = (X, P, B) where X, P are non-empty sets, and for all

x ∈ X and α ∈ P , B(x, α) is a subset of X which is called a ball of radius α around x. It
is supposed that x ∈ B(x, α) for all x ∈ X, α ∈ P . The set X is called the support of B, P
is called the set of radiuses.

Given any x ∈ X, A ⊆ X, α ∈ P , we put

B∗(x, α) = {y ∈ X : x ∈ B(y, α)}, B(A, α) =
⋃

a∈A

B(a, α).

A ball structure B = (X, P, B) is called

• lower symmetric if, for any α, β ∈ P there exists α′, β ′ ∈ P such that, for any x ∈ X,

B∗(x, α′) ⊆ B(x, α), B(x, β ′) ⊆ B∗(x, β);

• upper symmetric if for any α, β ∈ P there exists α′, β ′ ∈ P such that, for any x ∈ X,

B(x, α) ⊆ B∗(x, α′), B∗(x, β) ⊆ B(x, β ′);

• lower multiplicative if for any α, β ∈ P there exists γ ∈ P such that, for any x ∈ X,

B(B(x, γ), γ) ⊆ B(x, α) ∩ B(x, β);

• upper multiplicative if for any α, β ∈ P there exists γ ∈ P such that,for any x ∈ X,

B(B(x, α), β) ⊆ B(x, γ).
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Let B = (X, P, B) be a lower symmetric and lower multiplicative ball structure. Then the

family ⋃

x∈X

B(x, α) × B(x, α) : α ∈ P

is a base of entourages for some (uniquely determined) uniformity on X.On the other hand,

if U ⊆ X × X is a uniformity on X, then the ball structure (X,U , B) is lower symmetric

and lower multiplicative, where B(x, U) = {y ∈ X : (x, y) ∈ U}. Thus, the lower symmetric

and lower multiplicative ball structures can be identified with uniform topological spaces.

A ball structure is said to be ballean if it is upper symmetric and upper multiplicative.

The balleans arouse in asymptotic geometry [6], asymptotic topology [1] under name of

coarse structures, and later (but independently) in combinatorics [5].

Now we describe some types of morphisms of balleans. A mapping f : X → X is called

a ≺-mapping if, for every α ∈ P1, there exists β ∈ P2 such that, for every x ∈ X1,

f(B1(x, α))) ⊆ B2(f(x), β).

By this definition, ≺-mappings can be considered as asymptotic counterparts of uniformly

continuous mappings between uniform topological spaces.

A mapping f : X1 → X2 is called a �-mapping if, for every β ∈ P2, there exists α ∈ P1

such that, for every x ∈ X1,

B2(f(x), β) ⊆ f(B1(x, α)).

By this definition, �-mappings can be considered as asymptotic counterparts of uniformly

open mappings between uniform topological spaces.

If f : X1 → X2 is a bijection such that f is a ≺-mapping and f is a �-mapping, we say

that f is an asymorphism between B1 and B2. Given an arbitrary ballean B = (X, P, B),
we can replace every ball B(x, α) to B(x, α) ∩ B∗(x, α) for all x ∈ X, α ∈ P .

More generally, a pair (f1, f2) of ≺-mappings f1 : X1 → X2, f2 : X2 → X1 is called

a quasi-asymorphism between B1 and B2 if there exists α ∈ P1, β ∈ P2 such that, for all

x ∈ X1, y ∈ X2,

f2f1(x) ∈ B1(x, α), f1f2(y) ∈ B2(y, β).

In terminology of [6], quasi-asymorphic balleans are called coarsely equivalent.

Every metric space (X, d) determines the ballean B(X, d) = (X, R+, Bd), where R
+ is

the set of non-negative integers, Bd(x, r) = {y ∈ X : d(x, y) ≤ r}.
A ballean is called metrizable if B is asymorphic to B(X, d) for some metric space (X, d).

A criterion of metrizability of balleans can be found in [5, Theorem 9.1]. This criterion shows

that every ballean quasi-asymorphic to metrizable ballean is metrizable. We note also that

every quasi-isometry between metric spaces [3,Chapter 4] is a quasi-asymorphism between

corresponding balleans.

From some point of view, the ballean B(R+, d), where d(x, y) = |x−y|, can be considered

as asymptotic counterpart of the interval [0,1] with natural topology. If this so, we get the

problem of characterization of balleans quasi-asymorphic to B(R+, d). Which language is

appropriate for this goal?

Let Γ be connected graph with the set of vertices V (Γ) and the set of edges E(Γ). Given
any u, v ∈ V (Γ), we denote d(u, v) the length of a shortest path between u and v. We

denote by B(Γ) the metric ballean B(V (Γ), d). A ballean B is called a graph ballean if B
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is asymorphic to B(Γ) for some graph Γ. A criterion of graph balleans can be found in [5,

Theorem 9.2]. It follows from this criterion that every ballean quasi-asymorphic to graph

ballean is a graph ballean.

Let f1 : ω → R
+ be the canonical embedding, f2(x) = [x]. Clearly, (f1, f2) is a quasi-

asymorphism between B(I) and B(R+, d), so in the original problem we can replace B(R+, d)
to B(I).

The main result of this paper characterizes all graphs Γ such that B(Γ) is quasi-asymor-

phic to B(I). Besides, we introduce and study some wider classes of graphs asymptotically

close to I.

2. EMBEDDINGS. Let B = (X, P, B) be a ballean, Y be a nonempty subset of X. The

ballean BY = (Y, P, BY ), where BY (y, α) = B(y, α) ∩ Y , is called a subballean of X.

A subset Y ⊆ X is called bounded if there exists x ∈ X, α ∈ P such that Y ⊆ B(x, α).
A ballean is called bounded if its support is bounded.

A family Im of subsets of X is called uniformly bounded in B if there exists α ∈ P such

that, for every F ∈ Im, F ⊆ B(x, α) for some x ∈ X. Equivalently, Im is uniformly bounded

if there exists β ∈ P such that, for every F ∈ Im, F ⊆ B(x, β) for every x ∈ F .

Let Im be a uniformly bounded partition of X. Given any F ∈ Im and α ∈ P , we put

BIm(F, α) = {F ′ ∈ Im : F ′ ⊆ B(F, α)}. It is easy to check that the ball structure B/ Im is

a ballean which is called a factor-ballean of B. We note also that B/ Im is the smallest (by

≺) ballean on Im such that the projection pr : X → Im is a ≺-mapping, where pr(x) = F if

and only if x ∈ F .

Let B1 = (X1, P1, B1), B2 = (X2, P2, B2) be balleans, f : X1 → X2. Clearly, f is a ≺-
mapping if and only if, for every uniformly bounded family Im of subsets of X1, the family

f(Im) = {f(F ) : F ∈ Im} is uniformly bounded in B2. We assume that f is a ≺-mapping

and consider the partition kerf of X1 determined by the equivalence: x ∼ y if and only if

f(x) = f(y). If the partition kerf is uniformly bounded, we get the canonical decomposition

f = if ◦ prf , prf : X1 → kerf , if : kerf → X2. In this case prf is a surjective ≺-mapping of

B1 onto B1/kerf , if is an injective ≺-mapping of B1/kerf into B2.

A mapping f : X1 → X2 is called an asymorphic embedding of B1 into B2 if f is an

asymorphism between B1 and the subballean of B2 determined by the subset f(X1) of X2.

A ≺-mapping f : X1 → X2 is called quasi-asymorphic embedding of B1 into B2 if, for

every β ∈ P2 there exists α ∈ P1 such that, for all x1, x2 ∈ X1, f(x1) ∈ B2(f(x2), β) implies

x1 ∈ B1(x2, α). Equivalently, a mapping f : X1 → X2 is a quasi-asymorphic embedding if,

for every uniformly bounded family Im1 of subsets of X1, the family f(Im1) is uniformly

bounded in B2, and, for every uniformly bounded family Im2 of subsets of X2, the family

f−1(Im2) = {f−1(F ) : F ∈ Im2} is uniformly bounded in B1. We note also that a quasi-

isomorphic embedding f is an asymorphic embedding if and only if f is injective. For the

case of metric ballean the notion of quasi-asymorphic embedding was introduced by Gromov

[2] under name uniform embedding.

Let f : X1 → X2 be a quasi-asymorphic embedding of B1 into B2. Then the partition kerf
is uniformly bounded and the mapping if : kerf → X2 from the canonical decomposition

f = if ◦ prf is an asymorphic embedding of B1/kerf into B2. On the other hand, if some

factor-ballean of B1 admits an asymorphic embedding into B2, then B1 admits a quasi-

asymorphic embedding into B2.

Let B = (X, P, B) be a ballean. A subset Y ⊆ X is called large if there exists α ∈ P
such that X = B(Y, α).
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Now we describe interrelation between quasi-asymorphisms and quasi-asymorphic em-

beddings. Let f1 : X1 → X2 be a quasi-asymorphic embedding of B1 into B2 such that the

subset f(X1) is large in B2. We construct a mapping f2 : X2 → X1 such that the pair (f1, f2)
is a quasi-asymorphism between B1 and B2. For every y ∈ f(X1), we choose some element

g(y) ∈ f−1(y), so we have the mapping g : f(X1) → X1. Since f(X1) is large in B2, there

exists β ∈ P2 such that B2(f(X1), β) = X2. To define the mapping f2 : X2 → X1 we take

an arbitrary z ∈ X2, choose y ∈ f(x1) such that z ∈ B(y, α) and put f2(z) = g(y).
On the other hand, if (f1, f2) is a quasi-asymorphism between B1 and B2, then f1 is quasi-

asymorphic embedding and f1(X1) is large in B2. Hence, B1 and B2 are quasi-asymorphic if

and only if there exists a quasi-asymorphic embedding f : X1 → X2 such that f(X1) is large
in B2.

The rest of this section is to interprete all the above notions for the case of graph balleans.

In what follows all graphs under consideration are supposed to be connected.

Proposition 1. Let Γ1, Γ2 be graphs, f : V (Γ1) → V (Γ2). Then the following statements

are equivalent:

(i) f is a ≺-mapping of B(Γ1) to B(Γ2);

(ii) there exists a natural number k such that f(B1(v, 1)) ⊆ B2(f(v), k) for every v ∈ V (Γ1),
where B1 and B2 are balls in Γ1 and Γ2;

(iii) there exists a natural number k such that d2(f(v), f(u)) ≤ kd1(v, u) for all u, v ∈
V (Γ1), where d1, d2 are the path metrics in Γ1 and Γ2.

Proof. (i) => (ii) follows directly from definition of ≺-mapping.

(ii) => (iii) If d1(v, u) = 1, then u ∈ B(v, 1) so d2(f(u), f(v)) ≤ k. Given any

v, u ∈ V (Γ1), we fix the shortest path v = v0, v1, ..., vn = u between u and v. Since
d2(f(vi), f(vi+1)) ≤ k for every i ∈ {0, 1, ..., n− 1}, then d2(f(v), f(v)) ≤ kn = d1(v, u).

(iii) => (i). It is suffices to note that (iii) is equivalent to f(B1(v, n)) ⊆ B2(f(v), kn)
for every v ∈ V (Γ1).

In other words Proposition 1 states that, in the case of graph balleans, ≺-mappings are

exactly lipschitz mappings of corresponding metric spaces. We say that f(V (Γ1)) → V (Γ2)
is a ≺-mapping of scale k if f(B1(v, 1)) ⊆ B2(f(v), k) for every v ∈ V (Γ1).

Let Γ1, Γ2 be graphs, m be a natural number, f : V (Γ1) → V (Γ2). Clearly, if

d1(v1, v2)/m ≤ d2(f(v1), f(v2)) ≤ md1(v1, v2)

for any v1, v2 ∈ V (Γ1), then f is a quasi-asymorphic embedding of B1 into B2. Following

example shows that the above inequality is not necessary for f to be a quasi-asymorphic

embedding, but if the subset f(V (Γ1)) is large in B(Γ2), this is so (Proposition 2).

Example 1. We consider the ray I and, for every natural number n, identify the vertices

2n,2n+1 of I with the end-vertices of In. Here In is a graph with the set of vertices {0, 1, ..., n}
and the set of edges {(i, i + 1) : i ∈ {0, ..., n − 1}} .Denote by Γ the resulting graph. Fix

a natural number k. If a natural number n is sufficiently large, the distance between the

vertices n, n + k ∈ ω in Γ is k. It follows that the identity mapping i : ω → V (Γ) is a

quasi-asymorphic embedding of B(I) into B(Γ). On the other side, the distance between the

vertices 2n, 2n+1 in Γ is n, but the distance between 2n, 2n+1 in I is 2n. Hence, the left part

of above inequality fails.
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Proposition 2. Let Γ1, Γ2 be graphs, k, l be natural numbers, f : V (Γ1) → V (Γ2) be a ≺-

mapping of scale k, B2(f(V (Γ1)), l) = V (Γ2). Then the following statements are equivalent:

(i) the family {f−1(B2(u, 2l + 1)) : u ∈ V (Γ1)} is uniformly bounded;

(ii) there exists a natural number m such that, for all v1, v2 ∈ V (Γ1),

d(v1, v2)/m ≤ d2(f(v1), f(v2)) ≤ md1(v1, v2).

Proof. (ii) => (i) is evident.
(i) => (ii). By (i), there exists a natural number m′ such that d2(f(v1), f(v2)) ≤ 2l + 1
implies d1(v1, v2) ≤ m′. We put m = max{m′, k}. Since f is a ≺-mapping of scale k, we
have

d2(f(v1), f(v2)) ≤ kd1(v1, v2) ≤ md1(v1, v2).

Let d2(f(v1), f(v2)) = t. We choose the shortest path w0, w1, ..., wt, w0 = f(v1), wt = f(v2)
between f(v1) and f(v2). Since B2(f(V (Γ1)), l) = V (Γ2), there exists u1, u2, ..., ut−1 ∈ V (Γ1)
such that f(ui) ∈ B2(wi, l), i ∈ {1, ..., t − 1}. Then
d2(f(v1), f(u1)) ≤ l+1, d2(f(ut−1), f(v2)) ≤ l+1, d2(f(ui), f(ui+1)) ≤ 2l+1, i ∈ {1, ..., t−1}.
By the choice of m′, we have d1(v1, u1) ≤ m′, d1(ut−1, v2) ≤ m′, d1(ui, ui+1) ≤ m′,
i ∈ {1, ..., t − 1}. Hence, d1(v1, v2) ≤ m′t ≤ mt = d2(f(v1), v2).

Proposition 3. Let Γ1, Γ2 be graphs, f : V (Γ1) → V (Γ2). Then the following statements

are equivalent:

(i) f is a ≺-mapping of B(Γ1) to B(Γ2);

(ii) there exists a natural number k such that B2(f(v), 1) ⊆ f(B1(v, k)) for every v ∈ V (Γ1);

(iii) there exists a natural number k such that B2(f(v), n) ⊆ f(B1(v, kn)) for all v ∈ V (Γ1),
n ∈ ω.

Proof. The implications (i) => (ii) and (iii) => (i) are evident.
(ii) => (iii). Fix any v ∈ V (Γ1), n ∈ ω. For every element u ∈ B2(f(v), n) we can choose

the shortest path u0, ..., ut, u0 = f(v), ut = u, t ≤ n between f(v) and u. By (ii), there exist
v0, ..., vt ∈ V (Γ1), v0 = v such that vi+1 ∈ B2(vi, k), i ∈ {0, ..., t− 1} and f(v1) = u1, f(v2) =
u2, ..., f(vt) = ut = u. It follows that vt ∈ B2(v, kt) ⊆ B1(v, kn) and u ∈ f(B1(v, kn)).

3. QUASI-RAYS. We say that a graph Γ is a quasi-ray if B(Γ) is quasi-asymorphic to

B(I). Let Γ be an arbitrary graph, v ∈ V (Γ), n ∈ ω. We put

S(v, n) = {u ∈ V (Γ) : d(u, v) = n}.
Let r be a natural number. We say that a sequence (an)n∈ω of vertices of Γ is an r-arrow if

d(ai, ai+1) = 1 and ai ∈ S(a0, i) for every i ∈ ω. In the case r = 1, (an)n∈ω is called an arrow.

A graph Γ is called locally finite if ρ(v) is finite for every v ∈ V (Γ), where ρ(v) = |B(v, 1)|−1.
By Køning lemma, for every locally finite graph and every v ∈ V (Γ), there exists an arrow

starting at v.
A graph Γ is called unbounded if the ballean B(Γ) is unbounded (i.e. S(v, n) 6= ∅ for all

v ∈ V (Γ), n ∈ ω).

Theorem 1. Let Γ be an unbounded graph, v0 ∈ V (Γ). Then the following statements are

equivalent:
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(i) Γ is a quasi-ray;

(ii) the family {S(v0, n) : n ∈ ω} is uniformly bounded in B(Γ);

(iii) there exist natural numbers r, s and an r-arrow a(n)n∈ω such that a0 = v0 and

V (Γ) = B(A, s), where A = {an : n ∈ ω}.
Proof. (i) => (ii). Let f : V (Γ) → ω be a quasi-asymorphic embedding of B(Γ) into B(I)
such that the subset f(V (Γ)) is large in B(I). By Proposition 2, there exists a natural number

m such that

d(u, v)/m ≤ |f(u) − f(v)| ≤ md(u, v), (∗)

where d is the path metric on V (Γ).
If the family {S(v, n) : n ∈ ω} is uniformly bounded in B(Γ) for some v ∈ V (Γ), the

family {S(u, n) : n ∈ ω} is uniformly bounded for every u ∈ V (Γ). Hence, we may suppose

that f(v0) = min{f(v) : v ∈ V (Γ)} and, moreover, f(v0) = 0.
We fix an arbitrary natural number n and show that f(S(v0, n)) ⊆ [i(n) − m, i(n) + m]

for some i(n) ∈ ω, where [a, b] is a segment in ω with [a, b] = [0, b] if a < 0. Since the family

{[i−m, i+m] : i ∈ ω} is uniformly bounded in B(I) and f is a quasi-asymorphic embedding,

the family {f−1([i − m, i + m]) : i ∈ ω} is uniformly bounded in B(Γ), so {S(v0, n) : n ∈ ω}
is uniformly bounded in B(Γ).

We put t = m2(n + 1) and choose v0, v1, ..., vt ∈ V (Γ) such that d(vi−1, vi) = 1, vi ∈
S(v0, i) for every i ∈ {1, 2, ..., t}. It is possible because Γ is unbounded. By (*), f(vt) ≥
m(n + 1) and |f(vi−1) − f(vi)| ≤ m for every i ∈ {1, ..., t}. It follows that every segment

[k, k + m], k ∈ {0, ..., mn} contains at least one element f(v0), f(v1), ..., f(vt).
We show that f(S(v0, n)) ⊆ [f(vn) − m, f(vn) + m], so we can take i(n) = f(vn).

Suppose the contrary and choose v ∈ S(v0, n) such that f(v) 6∈ [f(vn)−m, f(vn)+m]. Since
d(v, v0) = n, we have f(v) ∈ [0, mn]. We pick k ∈ [0, m(n + 1)] such that f(v) ∈ [k − m, k]
and [k − m, k] ∩ [f(vn) − m, f(vn) + m] = ∅.

Then we take j ∈ {0, ..., t} such that f(vj) ∈ [k − m, k]. Since |f(vj) − f(vn)| > m,

by (∗), we have d(vn, vj) > 1. Since v ∈ S(v0, n), then d(v, vj) > 1. On the other hand,

|f(v) − f(vj)| ≤ m, so d(v, vj) ≤ 1 and we got a contradiction.

(ii) => (iii). Since {S(v0, n) : n ∈ ω} is uniformly bounded in B(Γ), there exists a

natural number s such that S(v0, n) ⊆ B(v, s) for every v ∈ S(v0, n). We put a0 = v0 and,

for every n ∈ ω, choose an ∈ S(v0, n). Then V (Γ) = B(A, s) and d(an, an+1) ≤ 2s + 1, so we

can put r = 2s + 1.
(iii) => (i). We define a mapping f : ω → V (Γ) by the rule f(i) = ai, i ∈ ω. It is easy

to check that f is a quasi-asymporphic embedding of B(I) to B(Γ) and f(ω) is large in B(Γ).
Hence, Γ is a quasi-ray.

Let T be a tree and let (vn)n∈ω be an arrow in T . After deletion of the edges {vn, vn+1}
the tree T disintegrates into the family {T (vn) : n ∈ ω} of trees with the roots {vn : n ∈ ω}.
If a tree T (vn) is bounded, we put h(T (vn)) = max{d(vn, v) : v ∈ V (Tn)}.
Theorem 2. An unbounded tree T is a quasi-ray if and only if there exists an arrow (vn)n∈ω

in T and a natural number k such that h(T (vn)) ≤ k for every n ∈ ω.

Proof. Let T be a quasi-ray. By Theorem1, there exists an r-arrow (an)n∈ω in T such that

the subset {an : n ∈ ω} is large in B(T ). For every pair an, an+1, we find a shortest path
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between an, an+1 and put the vertices of this path in (an)n∈ω between an, an+1. After that

we get a new sequence (bn)n∈ω containing (an)n∈ω as a subsequence. We put v0 = a0. Since

(an)n∈ω is an r-arrow, for every i ∈ ω, S(v0, i) contains only finite number of elements of

(bn)n∈ω. For every i ∈ ω, we denote by vi the last member of (bn)n∈ω such that vi ∈ S(v0, i).
Since T is a tree (vn)n∈ω is an arrow. By Theorem1, the family {S(v0, n) : n ∈ ω} is uniformly

bounded. It follows that there exists a natural number t such that d(vi, ai) ≤ t, i ∈ ω. Since
{an : n ∈ ω} is large in B(T ), then {vn : n ∈ ω} is large in B(T ).It follows that the heights
of all trees T (vn) are bounded by some constant k.

If (vn)n∈ω is an arrow in T and h(T (vn)) ≤ k for every n ∈ ω, then {vn : n ∈ ω} is large

in B(T ). By Theorem 1, T is a quasi-ray.

Comparing Theorem 1 and Theorem 2 it is naturally to ask if there exists an arrow in

every quasi-ray. The following example gives negative answer.

Example 2. For every n ∈ ω, we consider the graph In and denote its vertices a(0, n),
a(1, n), . . . , a(n, n) with (a(i, n), a(i + 1, n)) ∈ V (In), i ∈ {0, .., n − 1}. We stick together all

the vertices {a(0, n) : n ∈ ω} and call this new vertex by a(0,0). Then, for every natural

number k, we consider the set of vertices {a(k, i) : i ∈ {k, k +1, ...}} and connect all pairs of

these vertices by the edges. Let Γ be the resulting graph. By the construction, S(a(0, 0), n)
is a complete graph for every n ∈ ω. Hence, the family {S(a(0, 0), n) : n ∈ ω} is uniformly

bounded and, by Theorem 1, Γ is a quasi-ray.

Assume that there is an arrow in Γ starting at a(0, 0). Then this arrow must follow via

one of the subgraphs In of Γ. But from the vertex a(n, n) on the level S(a(0, 0), n) there are
no possibilities to get S(a(0, 0), n+ 1) in one step. The same arguments show that there are

no arrows in Γ at all, i.e. starting at any vertex of Γ.
We say that a graph Γ is an asyray if the balleans B(Γ) and B(I) are asymorphic. Clearly,

every asyray is a quasi-ray.

Theorem 3. A quasi-ray Γ is an asyray if and only if there exists a natural number m such

that ρ(v) ≤ m for every v ∈ V (Γ).

Proof. Assume that Γ is an asyray and fix an asymorphism f : V (Γ) → ω between B(Γ) and
B(I). By Lemma 1, there exists a natural number k such that f(B(v, 1)) ⊆ [f(v)−k, f(v)+k]
for every v ∈ V (Γ). It follows that ρ(v) ≤ 2k for every v ∈ V (Γ). Put m = 2k.

Suppose that ρ(v) ≤ m for every v ∈ V (Γ). Fix v0 ∈ V (Γ). By Theorem 1, {S(v0, n) :
n ∈ ω} is uniformly bounded. It follows that there exists a natural number t such that

|S(v0, n)| ≤ t for every n ∈ ω. We construct a bijection f : ω → V (Γ) in the following way.

Put f(0) = v0, then we enumerate the elements of S(v0, 1), S(v0, 2), .... It is easy to see that

f is an asymorphism between B(I) and B(Γ).

A direct characterization of asyrays is given in [4] in the following form.

Theorem 4. Let Γ be an infinite graph, s be a natural number such that ρ(v) ≤ s for every

v ∈ V (Γ), (an)n∈ω be an arrow in Γ. Then the following statements are equivalent:

(i) Γ is an asyray;

(ii) the family {S(v0, n) : n ∈ ω} is uniformly bounded in B(Γ);

(iii) there exists a natural number r such that V (Γ) = B({an : n ∈ ω}, r).
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4. RELATIONS ≺ AND �. Given any graphs Γ1, Γ2, we write B(Γ1) ≺ B(Γ2) (resp.

B(Γ1) � B(Γ2)) if there exists an injective ≺-mapping (resp. surjective �-mapping) f :
V (Γ1) → V (Γ2). The next two examples show that B(Γ1) ≺ B(Γ2) does not imply B(Γ2) �
B(Γ1), and B(Γ1) � B(Γ2) does not imply B(Γ2) ≺ B(Γ1).

Example 3. Let K be a complete graph with the set of vertices {vn : n ∈ ω}. For every
n ∈ ω, we identify vn with one of the end-points of In. After this attachments we get

some graph Γ. The identity mapping f : V (K) → V (Γ) is a ≺-mapping of scale 1, so

B(K) ≺ B(Γ). Suppose that there exists a surjective �-mapping f : V (Γ) → V (K). Choose
a natural number m such that BK(f(v), 1) ⊆ f(BΓ(v, m)) for every v ∈ V (Γ). If n > m and

vn is the end-point of the subgraph In of Γ, then BΓ(v, m) is finite, but every ball of unit

radius in K coincides with K, a contradiction.

Example 4. Let G be a group with the identity e and finite set S of generators,S = S−1,

e 6∈ S. The Cayley graph Cay(G, S) is a graph with the set of vertices G, and the set of

(non-directed) edges {(a, b) : a, b ∈ G, a−1b ∈ S}.
Let F2 be a free group of rank 2 with generators a, b. Put T = Cay(F2, {a, b, a−1, b−1})

and note that T is a tree of local degree 4.

Let A2 be a free Abelian group of rank 2 with the set of generators c, d. Put Γ =
Cay(A2, {c, d, c−1, d−1}). Geometrically, Γ is a graph with the set of vertices Z

2 and the set

of edges connecting the pair of points on euclidian distance 1.

We consider homomorphism f : F2 → A2 defined by f(a) = c, f(b) = d and note that f
is a �-mapping of B(T ) onto B(Γ). Hence, B(T ) � B(Γ).

We show that B(Γ) can not be injectively ≺-embedded into B(T ). Assume the contrary

and fix some injective ≺-mapping f : A2 → F2.

We identify V (T ) with the set of shortest path from the identity e of F2 to the vertices of

T . Let σ(T ) be the set of all arrows in T starting at e. We endow V (T )∪σ(T ) with topology

of pointwise convergence and note that V (T ) is dense discrete subspace of compact space

V (T )∪σ(T ). Since h(A2) is an infinite subset of V (T ), then cl(h(A2))∩σ(T ) 6= ∅, where cl
is a closure in V (T ) ∪ σ(T ). We consider two cases.

Case |cl(h(A2))∩σ(T )| > 1. Then there exists v, v1, v2 ∈ V (T ) such that (v1, v), (v2, v) ∈
E(T ) and the sets V (T (v1)) ∩ h(A2), V (T (v2)) ∩ h(A2) are infinite, where T (v1), T (v2) are

trees with the roots v1, v2 obtained by deletion of the edges (v, v1), (v, v2). Then we can

choose two sequences (un)n∈ω, (wn)n∈ω in V (A2) such that the family {pn : n ∈ ω} of the

shortest paths between un and wn is disjoint (by vertices), and h(un) ∈ T (v1), h(wn) ∈ T (v2),
n ∈ ω. If the scale of h is k, then h(pn) ∩ BT (v, k) 6= ∅. Since BT (v, k) is finite, the family

{h(pn) : n ∈ ω} is not disjoint and we get the contradiction to injectivity of h.

Case |cl(h(A2))∩σ(T )| = 1. Then there exists an arrow (vn)n∈ω in T such that V (T (vn))∩
h(A2) is finite for every n ∈ ω, where {T (vn) : n ∈ ω} are trees with the roots {vn : n ∈ ω}
obtained by deletion of the edges {(vn, vn+1) : n ∈ ω}. We choose a countable family {Rn :
n ∈ ω} of pairwise disjoint (by vertices) arrow in Γ. Since h is a ≺-mapping and all the sets

{V (T (vn))∩h(A2)} are finite, we can choose m, n ∈ ω, n 6= m such that h(Rn)∩h(Rm) 6= ∅,

contradicting injectivity of h.

We note also that the statement "B(Γ) does not admit injective ≺-mapping into B(T )"
can be extracted from Lemma 9.16 [6] concerning asymptotic dimension.

5. ≺-RAYS. By [5, Theorem 10.1], B(I) ≺ B(Γ) and B(Γ) � B(I) for every infinite graph

Γ. We say that a graph Γ is a ≺-ray if B(Γ) ≺ B(I). Clearly, every finite graph is a ≺-ray.
Problem 1. Characterize all ≺-rays.
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We give one sufficient condition for graph to be ≺-ray and show that this condition is

not necessary.

Theorem 5. Let Γ be a graph, v0 ∈ Γ, k be a natural number. If |S(v0, n)| ≤ k for every

n ∈ ω, then Γ is a ≺-ray.

Proof. Starting with v0, we enumerate v1, ..., vt the elements of S(v0, 1), then we enumerate

vt+1, ..., vs the elements of S(v0, 2) and so on. After that we get enumeration (vn)n∈ω of

V (Γ). We define a mapping f : V (Γ) → ω by the rule f(vn) = n, n ∈ ω. If u, v ∈ V (Γ)
and d(u, v) = 1, then |f(u) − f(v)| ≤ 3k. By Proposition 1, f is a ≺-mapping of B(Γ)
into B(I).

Example 5. We fix a natural number n and consider the following set of points of Z
2:

(2, 1), (2, 2)
(4, 1), (4, 2), (4, 3), (4, 4)
.............................
(2n−1, 1), (2n−1, 2), ........, (2n−1, 2n−1)
(2n, 1), (2n, 2), .................................., (2n, 2n)
(0, 0), (1, 0), ......................................, (2n, 0).

Given any two points u, v on this table, we define the edge (u, v) if and only if the

euclidian distance between u and v is 1. Denote by Tn the resulting tree and say that (0, 0)
is a left vertex of Tn, (2n, 0) is a right vertex of Tn.

Now we define a mapping f : V (T ) → {0, 1, ..., 3 · 2n} by the rule: f(i, 0) = 3i, i ∈
{0, 1, ..., 2n}; f(2k, j) = 3(2k + j) + 1, k = {1, ..., n − 1}, j = {1, ..., 2k}; f(2n, j) = 3(2n −
j) + 2, j = {1, 2, ..., 2n}. It is not hard to check that f is an injective ≺-mapping of scale 3

of B(Tn) to B(I3·2n).
Let us forget the geometric definition of Tn and consider the sequence T1, T2, ..., Tn, ... of

abstract graphs with pairwise disjoint sets of vertices. For every pair Tn, Tn+1 we connect by

edge the left vertex of Tn with the right vertex of Tn+1. Denote by T the resulting graph. By

construction, there exists an injective 3-scale ≺-mapping of B(T ) to B(I), so T is a ≺-ray.
Let v be the right vertex of T1, vn be the left vertex of Tn and t be a distance between v and

vn. Then |S(v, t+2n)| = n, so the family {S(v, k) : k ∈ ω} is not bounded by the cardinality

of its members.

Theorem 6. For every graph Γ, the following statements are equivalent: (i) there exists a

finite-to-one mapping f : V (Γ) → ω which is a ≺-mapping of B(Γ) to B(I); (ii) Γ is locally

finite.

Proof. (ii) => (i). We fix an arbitrary vertex v0 ∈ V (Γ) and, for every v ∈ V (Γ), put
f(v) = d(v, v0). If (u, v) ∈ E(Γ), then |f(u) − f(v)| ≤ 1. Since Γ is locally finite, S(v0, n)
is finite for every n ∈ ω. It follows that f is a finite to one ≺-mapping of scale 1 of B(Γ)
to B(I).

(i) => (ii). Assume the contrary: Γ is not locally finite, but there exists a finite-to-one

≺-mapping f : V (Γ) → ω. We choose a vertex v ∈ V (Γ) such that B(v, 1) is infinite. Since
f is ≺-mapping, the subset f(B(v, 1)) of ω is finite. Hence, f is not finite-to-one.

The same arguments show that, for every unbounded graph Γ, there exists a surjective

≺-mapping f : V (Γ) → V (I) of scale 1.
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6. �-RAYS. Example 4 shows that B(Γ1) � B(Γ2) does not imply B(Γ2) ≺ B(Γ1), but in
the case Γ1 = I such an example impossible.

Theorem 7. Let Γ be a graph. Then B(I) � B(Γ) if and only if Γ is a ≺-ray.

Proof. Let f : ω → V (Γ) be a surjective �-mapping of B(I) onto B(Γ). Let m be a natural

number such that BΓ(f(n), 1) ⊆ f([n − m, n + m]) for every n ∈ ω. We define a mapping

h : V (Γ) → ω by the rule h(v) = min{i : f(i) = v}, and prove that h is an injective

≺-mapping of scale m of B(Γ) into B(I), so Γ is a ≺-ray.
Let v ∈ V (Γ) and h(v) = n. Suppose that h(BΓ(v, 1)) 6⊆ [n − m, n + m] and choose

u ∈ BΓ(v, 1) such that h(u) 6∈ [n − m, n + m]. We put h(u) = k and consider two cases.

Case k < n − m. Since v ∈ f([k − m, k + m]), there exists n′ < n such that f(n′) = v,
contradicting h(v) = n.

Case k > n − m. Since u ∈ f([n − m, n + m]), there exists n′ < k such that f(n′) = u,
contradicting h(u) = k.

If f : V (Γ) → ω is an injective ≺-mapping of B(Γ) into B(I), we eliminate all elements of

ω, which have no preimages. Then we enumerate the rest of ω in natural order. Thus, we have

defined a bijective ≺-mapping h : V (Γ) → ω of B(Γ) onto B(I). Clearly, h−1 : ω → V (Γ) is
bijective �-mapping of B(I) onto B(Γ), so B(I) � B(Γ).

We say that a graph Γ is a � ray if there exists a bijective �-mapping f : V (Γ) → ω of

B(Γ) onto B(I). Equivalently, Γ is a�-ray if there exists a bijective≺-mapping h : ω → V (Γ)
of B(I) onto B(Γ).

Problem 2. Characterize all �-rays.

In fact, for locally finite graphs, this problem has been solved in another terminology in

[5, Chapter 3]. The next two theorems are paraphrases of Theorem 3.13 and 3.16 from [5].

Theorem 8. A locally finite tree T is a �-ray if and only if there exists an arrow (vn)n∈ω

in T such that all the trees {T (vn) : n ∈ ω} are finite.

Let T be a tree with the root x. We say that T is x-rooted and define a partial ordering

≤ on the set V (T ) by the rule: y ≤ z if and only if the shortest path from x to z goes

through y.

Call an x-rooted spanning tree of a graph Γ normal if any pair of adjacent vertices of Γ
is comparable in the partial ordering on V (Γ) induced by T . For every locally finite graph

Γ and every vertex x ∈ V (Γ), there exists a normal x-rooted spanning tree of Γ [5, Theorem

3.15].

Theorem 9. For every infinite locally finite graph Γ, the following statements are equivalent:

(i) Γ is a �-ray; (ii) Γ has a normal rooted spanning tree which is a �-ray; (iii) every

normal rooted spanning tree of Γ is a �-ray; (iv) there exists a bijection f : ω → V (Γ)
such that d(f(i), f(i + 1)) ≤ 3 for every i ∈ ω.

In view of Theorem 8, the equivalence (i) <=> (ii) of Theorem 9 can be considered as a

characterization of locally finite �-rays. The equivalence (i) <=> (iv) of Theorem 9 can be

reformulated in the following way: if there exists a ≺-bijection h : ω → V (Γ) of B(I) onto

B(Γ), then there exists a ≺-bijection f : ω → V (Γ) of scale 3 of B(I) onto B(Γ).
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