O. R. Nykyforchyn

A MONAD FOR THE INCLUSION HYPERSPACE FUNCTOR IS UNIQUE

Abstract

O. R. Nykyforchyn. A monad for the inclusion hyperspace functor is unique, Matematychni Studii, 27 (2007) 3-18.

It is proved that there exists a unique monad in the category of compacta with the inclusion hyperspace functor as the functorial part, namely the classical inclusion hyperspace monad. О. Р. Никифорчин. Монада для функтора гиперпространств вкляччния является единственной // Математичні Студії. - 2007. - Т.27, №1. - С.3-18.

Доказано, что классическая монада гиперпространств включения является единственной монадой в категории компактов с функтором гиперпространств включения в качестве функториальной части.

Introduction. Monads (or triples) [7] are both important objects of study and useful tools, e.g., for investigating of analytical and topological properties by algebraic means. Further we restrict our attention to monads in the category of compacta. We can recall, for example, characterization of convex compacta as algebras for the probability measure monad (see [8]). Because of importance of monad structure a natural question of its unicity for a particular functor arise. Problems of this kind were solved for classical monads in the category of compacta, e.g. for the hyperspace monad $\mathbb{H}=(\exp , s, u)$ [4], for the superextension monad $\mathbb{L}=\left(\lambda, \eta_{L}, \mu_{L}\right)[1]$ and for the probability measure monad $\mathbb{P}=\left(P, \eta_{P}, \mu_{P}\right)[5]$. It is proved that for each of the functors exp, λ and P there are no other monads in the category of compacta. Nevertheless, for the inclusion hyperspace monad the problem of unicity remained open for a long time.

The aim of this paper is to provide an affirmative answer to this question. The common approach that allowed to solve the problems mentioned above, was to investigate images under the multiplication (in the sense of monad) of some "generic" elements in the corresponding spaces of closed subsets, maximal linked systems or probability measures. The case of the inclusion hyperspace functor is relatively difficult because of much more combinatorial complexity even for not very large finite spaces. Therefore it was necessary to develop special tools, namely "fine" equivalence relations on sets of nonempty subsets of cartesian products of finite spaces, such that it suffices to study only "main representatives" of each inclusion hyperspace. These "auxiliary statements" constitute the largest by size part of the paper. After that we use all equalities, included into the definition of monad, to gradually reduce the set of all alternatives possible for images of "generic elements", until the answer becomes quite unambiguous: there can be no more that one monad in the category of compacta with the inclusion hyperspace functor as the functorial part. Since such monad is well known, it is unique for this functor.

2000 Mathematics Subject Classification: 18B30, 54B30.

1. Preliminaries. First we recall some necessary definitions and facts. A compactum is a compact Hausdorff topological space. We write $A \subset X($ resp. $A \subset X)$ if A is a closed (resp. open) subset of X. See [7] for the definitions of category, functor, natural transformation. The category of compacta \mathcal{C} omp consists of all compact Hausdorff spaces as objects and all continuous mappings of compacta as arrows.

The hyperspace [6] of a compactum X is the set $\exp X$ of all nonempty closed subsets of X with the Vietoris topology. The standard base of this topology consists of all sets of the form

$$
\left\langle U_{1}, U_{2}, \ldots, U_{n}\right\rangle=\left\{G \in \exp X \mid G \subset U_{1} \cup U_{2} \cup \ldots U_{n}, \quad G \cap U_{i} \neq \varnothing, i \in\{1,2, \ldots, n\}\right\}
$$

where $n \in \mathbb{N}$ and sets U_{i} are open in X. The hyperspace of a compactum is also a compactum, thus for a compactum X the spaces $\exp ^{2} X=\exp (\exp X), \exp ^{3} X=\exp \left(\exp ^{2} X\right), \ldots$ are compacta as well.

For a continuous mapping $f: X \rightarrow Y$ of compacta the mapping $\exp f: \exp X \rightarrow \exp Y$, that is defined by the formula $\exp f(A)=\{f(x) \mid x \in A\}$ for $A \in \exp X$, is continuous.

The inclusion hyperspace [6] on a compactum X is a subset $\mathcal{F} \subset \exp X$ such that

1) \mathcal{F} is nonempty and closed in $\exp X$;
2) if $A, B \subset X$ cl then $A \in \mathcal{F}, A \subset B$ imply $B \in \mathcal{F}$.

By definition each inclusion hyperspace G is an element of $\exp ^{2} X$. We denote by $G X$ the set of all inclusion hyperspaces on X with topology induced by the topology on $\exp ^{2} X$. The subspace $G X$, being closed, is a compactum.

If $f: X \rightarrow Y$ is a continuous mapping of compacta, let $G f: G X \rightarrow G Y$,

$$
G f(\mathcal{F})=\{B \underset{\mathrm{cl}}{\subset} Y \mid \text { exists } A \in \mathcal{F}, f(A) \subset B\}
$$

Then $G f$ is well-defined and continuous.
The assignments exp, G are functors in the category of compacta, i.e. they preserve sources and targets of arrows, compositions and identity maps [7]. Therefore the powers $\exp ^{n}=\underbrace{\exp \circ \exp \circ \cdots \circ \exp }_{n}$ and $G^{n}=\underbrace{G \circ G \circ \cdots \circ G}_{n}$ are functors $\mathcal{C} o m p \rightarrow \mathcal{C}$ omp as well. We also need an another (trivial) example of functor $\mathcal{C o m p} \rightarrow \mathcal{C}$ omp, namely, the identity functor $\mathbf{1}_{\text {Comp }}$ that sends each compactum or mapping to itself.

The functor G preserves monomorphisms, that makes possible for an arbitrary embedding of compacta $i: X_{0} \hookrightarrow X$ to identify each element $\mathrm{A} \in G X_{0}$ with its image $G i(\mathrm{~A})=\{B \in$ $\exp X \mid B \supset A$ for some $A \in \mathrm{~A}\} \in G X$, and the entire space $G X_{0}$ with the image $G i\left(G X_{0}\right) \subset$ $G X$. The functor G also preserves intersections, i.e. $\mathrm{A} \in G X_{\alpha}$ for all elements of a family $\left\{X_{\alpha} \mid \alpha \in A\right\}$ of closed subsets of X implies $\mathrm{A} \in G\left(\bigcap_{\alpha \in A} X_{\alpha}\right)$. Thus we can define the support supp A of an element $\mathrm{A} \in G X$ in usual way as the least closed subspace $X_{0} \subset X$ such that $\mathrm{A} \in G X_{0}$.

It is straightforward to show that each element of an inclusion hyperspace on a compactum contains a minimal with respect to inclusion element of this inclusion hyperspace. Any inclusion hyperspace is uniquely determined by its minimal elements. It is obvious that the minimal elements of the above mentioned inclusion hyperspaces $\mathrm{A} \in G X_{0}$ and $G i(\mathrm{~A}) \in G X$ coincide, which again confirms legitimacy of the used identification. For all $X_{0} \underset{\text { cl }}{\subset} X$ and $\mathrm{A} \in G X$ we have $\mathrm{A} \in G X_{0}$ if and only if all minimal elements of A are contained in X_{0}.

We denote for an element $\mathrm{B} \in \exp ^{2} X$:

$$
r X(\mathrm{~B})=\{A \in \exp X \mid A \supset B \text { for some } B \in \mathrm{~B}\}
$$

Then $r X$ is a continuous retraction $\exp ^{2} X \rightarrow G X$.
For a compactum X the mappings $\eta X: X \rightarrow G X, \mu X: G^{2} X \rightarrow G X$ are defined by the formulae: $\eta X(a)=\{F \underset{\text { cl }}{\subset} X \mid F \ni a\}, \mu X(\mathrm{~F})=\bigcup_{\mathcal{A} \in \mathrm{F}} \cap \mathcal{A}$. They are well-defined and continuous, and the collections $\eta=(\eta X)_{X \in \text { ОвСотp }}, \mu=(\mu X)_{X \in \text { ОbСоmp }}$ are natural transformations [7] $\mathbf{1}_{\text {Comp }} \rightarrow G$ and $G^{2} \rightarrow G$ resp. Moreover, they are the unit and the multiplication of the monad $\mathbb{G}=(G, \eta, \mu)$ in \mathcal{C} omp, i.e., the diagrams

commute for each object X of the category \mathcal{C} omp.
See [2], [3] on the properties of this monad. It also has deep connections with the capacity monad in the category of compacta, which in turn has applications to the decision making theory.

It is easy to show that η is the unique natural transformation $\mathbf{1}_{\mathcal{C o m p}} \rightarrow G$. The aim of this paper is to prove that the natural transformation μ is unique in the following sense: if $\left(G, \eta, \mu^{\prime}\right)$ is a monad in the category of compacta, then $\mu^{\prime}=\mu$.
2. Auxiliary statements. We denote by n the set $\{0,1,2, \ldots, n-1\}$ with the discrete topology. We regard the elements of a cartesian product of n sets as sequences indexed by numbers $0,1, \ldots, n-1$. Nevertheless, it is convenient to number factors of this product by $1,2, \ldots, n$.

For any $k \in\{0,1,2, \ldots\}, n_{1}, n_{2}, \ldots, n_{k} \in\{1,2,3 \ldots\}$ we assume that subsets of the cartesian product $n_{1} \times n_{2} \times \cdots \times n_{k}$ are ordered by inclusion, i.e. A precedes B if $A \subset B$. For $k=0$ we consider this product as the set $\{()\}$ with the empty sequence () being its unique element. For $0 \leqslant l \leqslant k, 0 \leqslant i_{1} \leqslant n_{1}-1,0 \leqslant i_{2} \leqslant n_{2}-1, \ldots, 0 \leqslant i_{l} \leqslant n_{l}-1$ call the set

$$
[A]_{i_{1}, i_{2}, \ldots, i_{l}}=\operatorname{pr}_{(l+1)(l+2) \ldots k}\left(A \cap\left(\left\{i_{1}\right\} \times\left\{i_{2}\right\} \times \cdots \times\left\{i_{l}\right\} \times n_{l+1} \times \cdots \times n_{k}\right)\right) \subset n_{l+1} \times \cdots \times n_{k}
$$

the $\left(i_{1}, i_{2}, \ldots, i_{l}\right)$-th section of the set A. As the restriction of the projection $\operatorname{pr}_{(l+1)(l+2) \ldots k}$ to the intersection $A \cap\left(\left\{i_{1}\right\} \times\left\{i_{2}\right\} \times \cdots \times\left\{i_{l}\right\} \times n_{l+1} \times \cdots \times n_{k}\right)$ is a bijection onto $[A]_{i_{1}, i_{2}, \ldots, i_{l}}$, we identify the section with the corresponding intersection. In this sense we talk about restriction of a mapping from A to $[A]_{i_{1}, i_{2}, \ldots, i_{l}}$ etc. Specifically we identify the product $\{i\} \times n_{2} \times \cdots \times n_{k}$ with $n_{2} \times \cdots \times n_{k}$.

We extend lexicographically the strict partial order " \subsetneq " on the set of all subsets of the cartesian product $n_{1} \times n_{2} \times \cdots \times n_{k}$ to a strict linear order \prec. For $k=0$ let $\varnothing \prec\{()\}$. If $k \geqslant 1, A, B \subset n_{1} \times n_{2} \times \cdots \times n_{k}$, we put $A \prec B$ iff there is $i \in\left\{0,1, \ldots, n_{1}-1\right\}$ such that $[A]_{0}=[B]_{0},[A]_{1}=[B]_{1}, \ldots,[A]_{i-1}=[B]_{i-1},[A]_{i} \prec[B]_{i}$. The order reverse to " \prec " is denoted as " \succ ". We write $A \preceq B$ if $A \prec B$ or $A=B$, and $A \succeq B$ if $A \succ B$ or $A=B$.

Consider all products of the form $n_{1} \times n_{2} \times \cdots \times n_{k}$ and inductively define a class of their subsets called regular. For $k=0$ we regard both \varnothing and $\{()\}$ as regular subsets. If $k>0$, we say that a subset $A \subset n_{1} \times n_{2} \times \cdots \times n_{k}$ is regular if:

1) all sections $[A]_{i}, 0 \leqslant i \leqslant n_{1}-1$, are regular subsets in $n_{2} \times \cdots \times n_{k}$;
2) in the set of sections $[A]_{i}, 0 \leqslant i \leqslant n_{1}-1$, each element is either minimal of maximal with respect to \subset;
3) $[A]_{0} \succeq[A]_{1} \succeq \cdots \succeq[A]_{n_{1}-1}$, and only a section that is minimal with respect to \subset can appear more than once.

Note that 1) implies that all sections $[A]_{i_{1}, i_{2}, \ldots, i_{l}}$ of a regular subset A are regular subsets in the corresponding products.

For $k=1$ and $n_{1}>1$ we have three regular subsets in $n_{1}=\left\{0,1, \ldots, n_{1}-1\right\}$, namely \varnothing, $\{0\}$ and n_{1} itself. For $k=2$ and $n_{1}, n_{2}>1$ there are six such subsets in $n_{1} \times n_{2}: \mathcal{A}=n_{1} \times n_{2}$, $\mathcal{B}=n_{1} \times\{0\} \cup\{0\} \times n_{2}, \mathcal{C}_{1}=\{0\} \times n_{2}, \mathcal{C}_{2}=n_{1} \times\{0\}, \mathcal{D}=\{(0,0)\}, \mathcal{E}=\varnothing$.

We call a mapping $f: n_{1} \times n_{2} \times \cdots \times n_{k} \rightarrow m_{1} \times m_{2} \times \cdots \times m_{k}$ a regular bijection (surjection), if every its restriction onto a section $\left[n_{1} \times n_{2} \times \cdots \times n_{k}\right]_{i_{1}, i_{2}, \ldots, i_{l}}$, where $0 \leqslant l \leqslant k$, is a bijection (surjection) to some section $\left[m_{1} \times m_{2} \times \cdots \times m_{k}\right]_{j_{1}, j_{2}, \ldots, j_{l}}$. The definition implies that the composition of regular bijections (surjections) is a regular bijection (surjection), and the mapping f should be a bijection (surjection) itself.

We call subsets $A, B \subset n_{1} \times n_{2} \times \cdots \times n_{k}$ equivalent and write $A \sim B$ if there is a regular bijection $b: n_{1} \times n_{2} \times \cdots \times n_{k} \rightarrow n_{1} \times n_{2} \times \cdots \times n_{k}$ such that $b(A)=B$.

Subsets $A \subset n_{1} \times n_{2} \times \cdots \times n_{k}, B \subset m_{1} \times m_{2} \times \cdots \times m_{k}$ are called weakly equivalent (denote $A \approx B$) if at least one of the following holds:

1) $k=0$ and $A=B$, i.e. $A=B=\varnothing$ or $A=B=\{()\}$;
2) $k>0$, for each $i \in\left\{0,1, \ldots, n_{1}-1\right\}$ there exists $i^{\prime} \in\left\{0,1, \ldots, m_{1}-1\right\}$ such that $[B]_{i^{\prime}} \approx[A]_{i}$, and for each $j \in\left\{0,1, \ldots, m_{1}-1\right\}$ there exists $j^{\prime} \in\left\{0,1, \ldots, n_{1}-1\right\}$ such that $[A]_{j^{\prime}} \approx[B]_{j}$.

It is obvious that $A \sim B \Longrightarrow A \approx B$, and both " \sim " are " \approx " are equivalence relations.
A regular subset $A \subset n_{1} \times n_{2} \times \cdots \times n_{k}$ is called quite regular, if it is the least with respect to \prec of all regular sets that are weakly equivalent to A. An equivalent definition by induction by k can be given:

1) all sections $[A]_{i}, 0 \leqslant i \leqslant n_{1}-1$, are quite regular subsets in $n_{2} \times \cdots \times n_{k}$;

2) in the set of sections $[A]_{i}, 0 \leqslant i \leqslant n_{1}-1$, any element is either minimal or maximal with respect to \subset;
3) $[A]_{0} \succeq[A]_{1} \succeq \cdots \succeq[A]_{n_{1}-1}$, and only the last section $[A]_{n_{1}-1}$ can be repeated.

In the sequel assume that for some $k \in\{0,1,2, \ldots\}$ and all $n_{1}, n_{2}, \ldots, n_{k} \in\{1,2,3 \ldots\}$ an inclusion hyperspace $\mathcal{K}\left(n_{1}, n_{2}, \ldots, n_{k}\right) \in G\left(n_{1} \times n_{2} \times \cdots \times n_{k}\right)$ is fixed, and

$$
\begin{align*}
& \text { if } f: n_{1} \times n_{2} \times \cdots \times n_{k} \rightarrow m_{1} \times m_{2} \times \cdots \times m_{k} \text { is a regular surjection, then } \\
& G f\left(\mathcal{K}\left(n_{1}, n_{2}, \ldots, n_{k}\right)\right)=\mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right) \text {. } \tag{!}
\end{align*}
$$

Lemma 1. Each minimal element $A \in \mathcal{K}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ is equivalent to some regular set $A_{0} \in \mathcal{K}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$.
Proof. Assume that $1 \leqslant l \leqslant k$ and a regular bijection $b_{l}: n_{1} \times n_{2} \times \cdots \times n_{k} \rightarrow n_{1} \times n_{2} \times \cdots \times n_{k}$ has already been built such that all sections of the set $A_{l}=b_{l}(A)$ of the form $\left[A_{l}\right]_{i_{1}, i_{2}, \ldots, i_{l}}$ are regular subsets in $n_{l+1} \times n_{l+2} \times \cdots \times n_{k}$.

Note that (!) implies that the set of all elements of the inclusion hyperspace $\mathcal{K}\left(n_{1}, n_{2}, \ldots\right.$, n_{k}), as well as the set of all its minimal elements, are invariant with respect to any regular bijection $n_{1} \times n_{2} \times \cdots \times n_{k} \rightarrow n_{1} \times n_{2} \times \cdots \times n_{k}$. Therefore the set A_{l} is also a minimal element of $\mathcal{K}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$.

Assume that the section $\left[A_{l}\right]_{i_{1}, i_{2}, \ldots, i_{l-1}, i_{l}}$ is neither minimal nor unique and maximal with respect to \subset among $\left[A_{l}\right]_{i_{1}, i_{2}, \ldots, i_{l-1}, 0}, \ldots,\left[A_{l}\right]_{i_{1}, i_{2}, \ldots, i_{l-1}, n_{l}-1}$. Then there are $i^{\prime}, i^{\prime \prime} \neq i_{l}, i^{\prime} \neq i^{\prime \prime}$
such that the section $\left[A_{l}\right]_{i_{1}, i_{2}, \ldots, i_{l-1}, i^{\prime}}$ is maximal, the section $\left[A_{l}\right]_{i_{1}, i_{2}, \ldots, i_{l-1}, i^{\prime \prime}}$ is minimal, and $\left[A_{l}\right]_{i_{1}, i_{2}, \ldots, i_{l-1}, i^{\prime \prime}} \subset\left[A_{l}\right]_{i_{1}, i_{2}, \ldots, i_{l-1}, i_{l}} \subset\left[A_{l}\right]_{i_{1}, i_{2}, \ldots, i_{l-1}, i^{\prime}}$. We define regular surjections

$$
\psi, \theta: n_{1} \times n_{2} \times \cdots \times n_{l-1} \times\left(n_{l}+1\right) \times n_{l+1} \times \cdots \times n_{k} \rightarrow n_{1} \times n_{2} \times \cdots \times n_{k}
$$

by the formulae

$$
\begin{gathered}
\psi\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \begin{cases}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & \text { if } x_{l} \leqslant n_{i}-1 ; \\
\left(x_{1}, \ldots, x_{l-1}, i^{\prime \prime}, x_{l+1}, \ldots, x_{n}\right) & \text { if } x_{l}=n_{l} ;\end{cases} \\
\theta\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left\{\begin{array}{r}
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \text { if } x_{1}=i_{1}, \ldots, x_{l-1}=i_{l-1}, \\
x_{l} \neq i_{l}, x_{l} \neq n_{l} ; \\
\left(x_{1}, \ldots, x_{l-1}, i^{\prime}, x_{l+1}, \ldots, x_{n}\right) \\
\text { if } x_{1}=i_{1}, \ldots, x_{l-1}=i_{l-1}, x_{l}=i_{l} ; \\
\left(x_{1}, \ldots, x_{l-1}, i_{l}, x_{l+1}, \ldots, x_{n}\right) \\
\text { if } x_{1}=i_{1}, \ldots, x_{l-1}=i_{l-1}, x_{l}=n_{l} ; \\
\psi\left(x_{1}, x_{2}, \ldots, x_{n}\right) \text { otherwise. }
\end{array}\right.
\end{gathered}
$$

Then $\psi^{-1}(A) \in \mathcal{K}\left(n_{1}, \ldots, n_{l-1}, n_{l}+1, n_{l+1}, \ldots, n_{k}\right)$, thus $A_{l}^{\prime}=\theta\left(\psi^{-1}\left(A_{l}\right)\right) \in \mathcal{K}\left(n_{1}, \ldots\right.$, n_{k}). The sets A_{l} and A_{l}^{\prime} coincide except for sections with the index $\left(i_{1}, i_{2}, \ldots, i_{l-1}, i_{l}\right)$. We obtain $\left[A_{l}^{\prime}\right]_{i_{1}, i_{2}, \ldots, i_{l-1}, i_{l}}=\left[A_{l}\right]_{i_{1}, i_{2}, \ldots, i_{l-1}, i^{\prime \prime}} \subsetneq\left[A_{l}\right]_{i_{1}, i_{2}, \ldots, i_{l-1}, i_{l}}$, and $A_{l}^{\prime} \subsetneq A_{l}$, which contradicts to minimality of A_{l}. Thus the assumption is false, and each section $\left[A_{l}\right]_{i_{1}, i_{2}, \ldots, i_{l-1}, i_{l}}$ is either minimal or unique and maximal with respect \subset among $\left[A_{l}\right]_{i_{1}, i_{2}, \ldots, i_{l-1}, 0}, \ldots,\left[A_{l}\right]_{i_{1}, i_{2}, \ldots, i_{l-1}, n_{l}-1}$.

For each $i_{1} \in\left\{1,2, \ldots, n_{1}-1\right\}, i_{2} \in\left\{1,2, \ldots, n_{2}-1\right\}, \ldots, i_{l-1} \in\left\{1,2, \ldots, n_{l-1}-1\right\}$ choose a permutation $\sigma=\sigma_{i_{1}, i_{2}, \ldots, i_{l-1}}: n_{l} \rightarrow n_{l}$ such that

$$
\left[A_{l}\right]_{i_{1}, i_{2}, \ldots, i_{l-1}, \sigma\left(n_{l}-1\right)} \preceq\left[A_{l}\right]_{i_{1}, i_{2}, \ldots, i_{l-1}, \sigma\left(n_{l}-2\right)} \preceq \cdots \preceq\left[A_{l}\right]_{i_{1}, i_{2}, \ldots, i_{l-1}, \sigma(1)} \preceq\left[A_{l}\right]_{i_{1}, i_{2}, \ldots, i_{l-1}, \sigma(0)} .
$$

We define a mapping $\phi_{l}: n_{1} \times n_{2} \times \cdots \times n_{k} \rightarrow n_{1} \times n_{2} \times \cdots \times n_{k}$ by the formula

$$
\phi_{l}:\left(i_{1}, i_{2}, \ldots, i_{n}\right)=\left(i_{1}, i_{2}, \ldots, i_{l-1}, \sigma_{i_{1}, i_{2}, \ldots, i_{l-1}}\left(i_{l}\right), i_{l+1}, i_{k}\right) .
$$

Obviously ϕ_{l} is a regular bijection, the set $A_{l-1}=\phi_{l}\left(A_{l}\right)$ is in $\mathcal{K}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$, and for all $i_{1} \in\left\{1,2, \ldots, n_{1}-1\right\}, \ldots, i_{l-1} \in\left\{1,2, \ldots, n_{l-1}-1\right\}$ the sections satisfy a condition

$$
\left[A_{l-1}\right]_{i_{1}, i_{2}, \ldots, i_{l-1}, n_{l}-1} \preceq\left[A_{l-1}\right]_{i_{1}, i_{2}, \ldots, i_{l-1}, n_{l}-2} \preceq \cdots \preceq\left[A_{l-1}\right]_{i_{1}, i_{2}, \ldots, i_{l-1}, 1} \preceq\left[A_{l-1}\right]_{i_{1}, i_{2}, \ldots, i_{l-1}, 0} .
$$

Thus the regular bijection $b_{l-1}=\phi_{l} \circ b_{l}$ maps the set A to a set $A_{l-1} \in \mathcal{K}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ such that all sections of the latter of the form $\left[A_{l-1}\right]_{i_{1}, i_{2}, \ldots, i_{l-1}}$ are regular sets.

To start the induction, note that for $l=k$ we can take the the identity map of $n_{1} \times n_{2} \times$ $\cdots \times n_{k}$ onto itself as a required bijection, and put $A_{k}=A$. Thus, decreasing l, we obtain for $l=0$ a regular bijection $b_{0}: n_{1} \times n_{2} \times \cdots \times n_{k} \rightarrow n_{1} \times n_{2} \times \cdots \times n_{k}$ such that the section with the empty index of the set $A_{0}=b_{0}(A)$, i.e. the set A_{0} itself, is regular.

Lemma 2. Let $A \subset n_{1} \times n_{2} \times \cdots \times n_{k}, A^{\prime} \subset n_{1}^{\prime} \times n_{2}^{\prime} \times \cdots \times n_{k}^{\prime}$, and $A \approx B$. Then $A \in \mathcal{K}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ if and only if $A^{\prime} \in \mathcal{K}\left(n_{1}^{\prime}, n_{2}^{\prime}, \ldots, n_{k}^{\prime}\right)$.

Proof. Put $m_{1}=\max \left\{n_{1}, n_{1}^{\prime}\right\}, m_{2}=\max \left\{n_{2}, n_{2}^{\prime}\right\}, \ldots, m_{k}=\max \left\{n_{k}, n_{k}^{\prime}\right\}$, and choose arbitrary regular surjections $f: m_{1} \times m_{2} \times \cdots \times m_{k} \rightarrow n_{1} \times n_{2} \times \cdots \times n_{k}$ and $f^{\prime}: m_{1} \times m_{2} \times \cdots \times$ $m_{k} \rightarrow n_{1}^{\prime} \times n_{2}^{\prime} \times \cdots \times n_{k}^{\prime}$. If $B=f^{-1}(A), B^{\prime}=\left(f^{\prime}\right)^{-1}\left(A^{\prime}\right)$, then $A \approx B, A^{\prime} \approx B^{\prime}$, thus $B \approx B^{\prime}$, and $A \in \mathcal{K}\left(n_{1}, n_{2}, \ldots, n_{k}\right) \Longleftrightarrow B \in \mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right), A^{\prime} \in \mathcal{K}\left(n_{1}^{\prime}, n_{2}^{\prime}, \ldots, n_{k}^{\prime}\right) \Longleftrightarrow B^{\prime} \in$ $\mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right)$. Therefore it suffices to prove that $B \in \mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right) \Longleftrightarrow B^{\prime} \in$ $\mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ for $B \approx B^{\prime}, B, B^{\prime} \subset m_{1} \times m_{2} \times \cdots \times m_{k}$. Let $B^{\prime \prime} \subset m_{1} \times m_{2} \times \cdots \times m_{k}$ be a subset that is the least with respect "々" among all subsets that are weakly equivalent to B and B^{\prime}. We will prove that $B \in \mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right) \Longleftrightarrow B^{\prime \prime} \in \mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right)$, $B^{\prime} \in \mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right) \Longleftrightarrow B^{\prime \prime} \in \mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right)$.

Assume that for some $l \in\{0,1,2, \ldots, k\}$ a subset $B_{l} \subset m_{1} \times m_{2} \times \cdots \times m_{k}$ has been constructed such that:

1) for any $i_{1} \in m_{1}, i_{2} \in m_{2}, \ldots, i_{l} \in m_{l}$ the section $\left[B_{l}\right]_{i_{1}, i_{2}, \ldots, i_{l}}$ is the least with respect to " \prec " among all subsets $m_{l+1} \times m_{l+2} \times \cdots \times m_{k}$ that are weakly equivalent to $[B]_{i_{1}, i_{2}, \ldots, i_{l}}$;
2) $B \in \mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right) \Longleftrightarrow B_{l} \in \mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right)$.

Then $B_{l} \approx B$. Define a set $B_{l-1} \subset m_{1} \times m_{2} \times \cdots \times m_{k}$ by the following condition: for each $i_{1} \in m_{1}, i_{2} \in m_{2}, \ldots, i_{l-1} \in m_{l-1}$ the section $\left[B_{l-1}\right]_{i_{1}, i_{2}, \ldots, i_{l-1}}$ is the least with respect to "々" among all subsets $m_{l} \times m_{l+1} \times \cdots \times m_{k}$ that are equivalent to $\left[B_{l}\right]_{i_{1}, i_{2}, \ldots, i_{l-1}}$. It is obvious that $B_{l-1} \approx B_{l}$. We prove that $B_{l-1} \in \mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right) \Longleftrightarrow B_{l} \in \mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right)$. For any $i_{1} \in m_{1}, i_{2} \in m_{2}, \ldots, i_{l-1} \in m_{l-1}$ the set of sections $\left\{\left[B_{l-1}\right]_{i_{1}, i_{2}, \ldots, i_{l}} \mid 0 \leqslant i_{l} \leqslant m_{l}-1\right\}$ coincide with the set of sections $\left\{\left[B_{l}\right]_{i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{l}^{\prime}} \mid 0 \leqslant i_{l}^{\prime} \leqslant m_{l}-1\right\}$. Thus each of the two sets B_{l-1} and B_{l} can be obtained from the other one by a sequence of transformations on subsets of $m_{1} \times m_{2} \times \cdots \times m_{k}$ of the following two types:

1) fix $i_{1} \in m_{1}, i_{2} \in m_{2}, \ldots, i_{l-1} \in m_{l-1}, i_{l}, i_{l}^{\prime} \in m_{l}, i_{l} \neq i_{l}^{\prime}$, and from a set $A \subset m_{1} \times m_{2} \times$ $\cdots \times m_{k}$ obtain a set A^{\prime} by the permutation of sections $[A]_{i_{1}, i_{2}, \ldots, i_{l-1}, i_{l}}$ and $[A]_{i_{1}, i_{2}, \ldots, i_{l-1}, i_{l}}$;
2) fix $i_{1} \in m_{1}, i_{2} \in m_{2}, \ldots, i_{l-1} \in m_{l-1}, i_{l}, i_{l}^{\prime}, i_{l}^{\prime \prime} \in m_{l}, i_{l} \neq i_{l}^{\prime}$, such that $[A]_{i_{1}, i_{2}, \ldots, i_{l-1}, i_{l}}=$ $[A]_{i_{1}, i_{2}, \ldots, i_{l-1}, i_{l}^{\prime}} \neq[A]_{i_{1}, i_{2}, \ldots, i_{l-1}, i_{l}^{\prime \prime}}$ for a set $A \subset m_{1} \times m_{2} \times \cdots \times m_{k}$, replace $[A]_{i_{1}, i_{2}, \ldots, i_{l-1}, i_{l}^{\prime}}$ by $[A]_{i_{1}, i_{2}, \ldots, i_{l-1}, i_{l}^{\prime \prime}}$ and obtain a set A^{\prime}.

It is sufficient to show that transformations 1), 2) preserve the class of elements of $\mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right)$. Consider the transformation 1) and define a regular bijection $\Phi: m_{1} \times$ $m_{2} \times \cdots \times m_{k} \rightarrow m_{1} \times m_{2} \times \cdots \times m_{k}$ by the formula

$$
\Phi\left(j_{1}, j_{2}, \ldots, j_{k}\right)=\left\{\begin{array}{l}
\left(i_{1}, i_{2}, \ldots, i_{l}^{\prime}, j_{l+1}, \ldots, j_{k}\right) \text { if } j_{1}=i_{1}, \ldots, j_{l-1}=i_{l-1}, j_{l}=i_{l} \\
\left(i_{1}, i_{2}, \ldots, i_{l}, j_{l+1}, \ldots, j_{k}\right) \text { if } j_{1}=i_{1}, \ldots, j_{l-1}=i_{l-1}, j_{l}=i_{l}^{\prime} \\
\left(j_{1}, j_{2}, \ldots, j_{k}\right) \text { otherwise }
\end{array}\right.
$$

Then $\Phi(A)=A^{\prime}$, thus $A \in \mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right) \Longleftrightarrow A^{\prime} \in \mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right)$.
For transformation 2) define regular surjections

$$
\Psi, \Psi^{\prime}: m_{1} \times m_{2} \times \cdots \times m_{l-1} \times\left(m_{l}+1\right) \times m_{l+1} \times \cdots \times m_{k} \rightarrow m_{1} \times m_{2} \times \cdots \times m_{k}
$$

by the formulae

$$
\Psi\left(j_{1}, j_{2}, \ldots, j_{k}\right)=\left\{\begin{array}{c}
\left(j_{1}, j_{2}, \ldots, j_{l-1}, i_{l}^{\prime \prime}, j_{l+1}, \ldots, j_{k}\right) \text { if } \\
j_{l}=m_{l} ; \\
\left(j_{1}, j_{2}, \ldots, j_{k}\right) \text { otherwise } ;
\end{array}\right.
$$

$$
\Psi^{\prime}\left(j_{1}, j_{2}, \ldots, j_{k}\right)=\left\{\begin{array}{c}
\left(j_{1}, j_{2}, \ldots, j_{l-1}, i_{l}^{\prime \prime}, j_{l+1}, \ldots, j_{k}\right) \text { if } \\
j_{l}=m_{l},\left(j_{1}, j_{2}, \ldots, j_{l-1}\right) \neq\left(i_{1}, i_{2}, \ldots, i_{l-1}\right) \\
\left(i_{1}, i_{2}, \ldots, i_{l-1}, i_{l}^{\prime}, j_{l+1}, \ldots, j_{k}\right) \text { if } \\
\quad\left(j_{1}, j_{2}, \ldots, j_{l-1}, j_{l}\right)=\left(i_{1}, i_{2}, \ldots, i_{l-1}, m_{l}\right) ; \\
\left(i_{1}, i_{2}, \ldots, i_{l-1}, i_{l}, j_{l+1}, \ldots, j_{k}\right) \text { if } \\
\left(j_{1}, j_{2}, \ldots, j_{l-1}, j_{l}\right)=\left(i_{1}, i_{2}, \ldots, i_{l-1}, i_{l}\right) ; \\
\left(j_{1}, j_{2}, \ldots, j_{k}\right) \text { otherwise. }
\end{array}\right.
$$

Then $A \in \mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right)$, thus $\Psi^{-1}(A) \in \mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{l-1}, m_{l}+1, m_{l+1}, \ldots, m_{k}\right)$, and $A^{\prime}=\Psi^{\prime}\left(\Psi^{-1}(A)\right) \in \mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right)$.

Therefore $B_{l-1} \in \mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right) \Longleftrightarrow B_{l} \in \mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right)$, and $B_{l-1} \approx B$, which implies $B_{l-1} \in \mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right) \Longleftrightarrow B \in \mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right)$. For $l=k$ we can put $B_{l}=B$ and use induction to obtain that there exists a subset B_{0} that is the least with respect to " \prec " among all subsets of $m_{1} \times m_{2} \times \cdots \times m_{k}$ that are weakly equivalent to B, and $B_{0} \in \mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right) \Longleftrightarrow B \in \mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right)$. But this implies $B_{0}=B^{\prime \prime}$, therefore $B \in \mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right) \Longleftrightarrow B^{\prime \prime} \in \mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right)$, and $B^{\prime} \in \mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right) \Longleftrightarrow$ $B^{\prime \prime} \in \mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ as well. Thus we obtain $B \in \mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right) \quad \Longleftrightarrow \quad B^{\prime} \in$ $\mathcal{K}\left(m_{1}, m_{2}, \ldots, m_{k}\right)$.

This lemma implies that the inclusion hyperspace $\mathcal{K}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ is uniquely determined by the set of all sets of sections $\left\{[A]_{0},[A]_{1}, \ldots,[A]_{n_{1}-1}\right\}$ for regular minimal elements $A \in \mathcal{K}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$.

For $n_{1}, n_{2} \in\{1,2, \ldots\}$ we denote by $V_{n_{1}, n_{2}}$ the element $G\left(n_{1} \times n_{2}\right)$ with minimal elements $\{0\} \times n_{2},\{1\} \times n_{2}, \ldots,\left\{n_{1}-1\right\} \times n_{2}$. Now by induction define $V_{n_{1}, n_{2}, \ldots, n_{2 k-1}, n_{2 k}}$ for $k>1$ as the element of the space $G^{k}\left(n_{1} \times n_{2} \times \cdots \times n_{2 k-1} \times n_{2 k}\right)$ with minimal sets of the form

$$
\left\{G^{k-1} j_{i_{1}, 0}\left(V_{n_{3}, n_{4}, \ldots, n_{2 k-1}, n_{2 k}}\right), G^{k-1} j_{i_{1}, 1}\left(V_{n_{3}, n_{4}, \ldots, n_{2 k-1}, n_{2 k}}\right), \ldots, G^{k-1} j_{i_{1}, n_{2}-1}\left(V_{n_{3}, n_{4}, \ldots, n_{2 k-1}, n_{2 k}}\right)\right\}
$$

for $0 \leqslant i \leqslant n_{1}-1$, where the embeddings $j_{i_{1}, i_{2}}: n_{3} \times n_{4} \times \cdots \times n_{2 k-1} \times n_{2 k} \rightarrow n_{1} \times n_{2} \times$ $\cdots \times n_{2 k-1} \times n_{2 k}$ are defined by the formulae $j_{i_{1}, i_{2}}\left(i_{3}, \ldots, i_{2 k}\right)=\left(i_{1}, i_{2}, i_{3}, \ldots, i_{2 k}\right)$.

Let $n_{1}, n_{2}, \ldots, n_{2 k} \in\{1,2, \ldots\}$, and for some $1 \leqslant l_{1}<l_{2}<\cdots<l_{s} \leqslant 2 k$ we have $n_{l_{2}}=n_{l_{2}}=\cdots=n_{l_{s}}=1$. Then the projection $p: n_{1} \times n_{2} \times \cdots \times n_{2 k} \rightarrow \prod_{\substack{1 \leq l \leq 2 k \\ l \notin\left\{l_{1}, l_{2}, \ldots, l_{s}\right\}}} n_{l}$ is a
bijection. We denote the image

$$
G^{k} p\left(V_{n_{1}, n_{2}, \ldots, n_{2 k-1}, n_{2 k}}\right) \in G^{k}\left(\prod_{\substack{1 \leqslant l \leq 2 k \\ l \notin\left\{l_{1}, l_{2}, \ldots, l_{s}\right\}}} n_{l}\right)
$$

by $V_{\dot{n}_{1}, \dot{n}_{2}, \ldots, \dot{n}_{2 k-1}, \dot{n}_{2 k}}$, where the sequence $\dot{n}_{1}, \dot{n}_{2}, \ldots, \dot{n}_{2 k-1}, \dot{n}_{2 k}$ is obtained from n_{1}, n_{2}, \ldots, $n_{2 k-1}, n_{2 k}$ by replacement of all elements with indices $l_{1}, l_{2}, \ldots, l_{s}$ (that are equal to 1) by dots.
E.g. $V_{,, m, n, \cdot} \in G^{2}(m \times n)$ is the image of the inclusion hyperspace $V_{1, m, n, 1} \in G^{2}(1 \times m \times$ $n \times 1$) under $G^{2} \operatorname{pr}_{23}$, where $\operatorname{pr}_{23}: 1 \times m \times n \times 1 \rightarrow m \times n$ is the projection.

Lemma 3. Let $n_{1}, n_{2}, \ldots, n_{2 k-1}, n_{2 k} \in\{\cdot, 1,2, \ldots\}$, and $n_{2 p-1}=n_{2 p}=$ for some $1 \leqslant p \leqslant k$. Then

$$
V_{n_{1}, n_{2}, \ldots, n_{2 k-1}, n_{2 k}}=G^{p-1} \eta G^{k-p} \prod_{\substack{1 \leqslant l \leqslant 2 k, n_{l} \neq .}} n_{l}\left(V_{n_{1}, n_{2}, \ldots, n_{2 p-2}, n_{2 p+1}, \ldots, n_{2 k}}\right) .
$$

Proof. For $p=1$ and arbitrary $k \geqslant p$ the inclusion hyperspace $V_{\cdot,,, n_{3}, \ldots, n_{2 k-1}, n_{2 k}}$ has the unique minimal set $\left\{V_{n_{3}, \ldots, n_{2 k-1}, n_{2 k}}\right\}$, therefore is equal to $\eta G^{k-1} \prod_{\substack{1 \leq l \leq 2 k \\ n_{l} \neq .}} n_{l}\left(V_{n_{3}, \ldots, n_{2 k-1}, n_{2 k}}\right)$, and the statement is true. Assume that is holds for all $p \leqslant p_{0}$ and all $k \geqslant p$. Consider the case $n_{1}, n_{2} \in\{1,2, \ldots\}, p=p_{0}+1$. The inclusion hyperspace $V_{n_{1}, n_{2}, \ldots, n_{2 k-1}, n_{2 k}}$ has minimal sets

$$
\begin{gathered}
\left\{G^{k-1} j_{i_{1}, 0}\left(V_{n_{3}, n_{4}, \ldots, n_{2 k-1}, n_{2 k}}\right), G^{k-1} j_{i_{1}, 1}\left(V_{n_{3}, n_{4}, \ldots, n_{2 k-1}, n_{2 k}}\right),\right. \\
\left.\ldots, G^{k-1} j_{i_{1}, n_{2}-1}\left(V_{n_{3}, n_{4}, \ldots, n_{2 k-1}, n_{2 k}}\right)\right\}
\end{gathered}
$$

for $0 \leqslant i \leqslant n_{1}-1$, where the embedding $j_{i_{1}, i_{2}}$ are defined above. But by the inductive assumption these sets can be written as

$$
\begin{gathered}
\left\{G^{k-1} j_{i_{1}, 0}\left(G^{p_{0}-1} \eta G^{k-p_{0}-1} \prod_{\substack{3 \leq l \leq 2 k, n_{l} \neq .}} n_{l}\left(V_{n_{3}, n_{4}, \ldots, n_{2 p-2}, n_{2 p+1}, \ldots, n_{2 k-1}, n_{2 k}}\right)\right),\right. \\
G^{k-1} j_{i_{1}, 1}\left(G^{p_{0}-1} \eta G^{k-p_{0}-1} \prod_{\substack{3 \leqslant l \leq 2 k, n_{l} \neq .}} n_{l}\left(V_{n_{3}, n_{4}, \ldots, n_{2 p-2}, n_{2 p+1}, \ldots, n_{2 k-1}, n_{2 k}}\right)\right), \ldots, \\
\left.G^{k-1} j_{i_{1}, n_{2}-1}\left(G^{p_{0}-1} \eta G^{k-p_{0}-1} \prod_{\substack{3 \leqslant l \leq 2 k, n_{l} \neq .}} n_{l}\left(V_{n_{3}, n_{4}, \ldots, n_{2 p-2}, n_{2 p+1}, \ldots, n_{2 k-1}, n_{2 k}}\right)\right)\right\} .
\end{gathered}
$$

Note that $\eta: \mathbf{1}_{\mathcal{C o m p}} \rightarrow G$ is a natural transformation and $p_{0}-1<k$, therefore

$$
G^{k-1} j_{i_{1}, i_{2}} \circ G^{p_{0}-1} \eta G^{k-p_{0}-1} \prod_{\substack{3 \leqslant l \leq 2 k, n_{l} \neq-}} n_{l}=G^{p_{0}-1} \eta G^{k-p_{0}-1} \prod_{\substack{1 \leqslant l \leqslant 2 k, n_{l} \neq .}} n_{l} \circ G^{k-2} j_{i_{1}, i_{2}} .
$$

Thus the minimal sets of the inclusion hyperspace $V_{n_{1}, n_{2}, \ldots, n_{2 k-1}, n_{2 k}}$ are the images of the minimal sets of the inclusion hyperspace $V_{n_{1}, n_{2}, \ldots, n_{2 p-2}, n_{2 p+1}, \ldots, n_{2 k-1}, n_{2 k}}$ under the mapping $G^{p_{0}-1} \eta G^{k-p_{0}-1} \prod_{\substack{1 \leq l \leq 2 k \\ n_{l} \neq .}} n_{l}$. Since $p_{0}+1=p$, we obtain the required equality

$$
V_{n_{1}, n_{2}, \ldots, n_{2 k-1}, n_{2 k}}=G^{p-1} \eta G^{k-p} \prod_{\substack{1 \leqslant l \leqslant 2 k, n_{l} \neq .}} n_{l}\left(V_{n_{1}, n_{2}, \ldots, n_{2 p-2}, n_{2 p+1}, \ldots, n_{2 k-1}, n_{2 k}}\right) .
$$

Passing to cases, when one or two of the indices n_{1}, n_{2} are equal to ".", is trivial.
Thus the statement of the lemma holds for all natural p.
3. Proof of the main result. In the sequel we assume that $\mathbb{G}=(G, \eta, \mu)$ is a monad in the category of compacta with the inclusion hyperspace functor as the functorial part, and the natural transformations η and μ are arbitrary. As we remarked above, ambiguity is possible only in the choice of the natural transformation $\mu: G^{2} \rightarrow G$.

We investigate images under this transformation of certain simple inclusion hyperspaces. By Lemma 3 we have $\mu(m \times n)\left(V_{\cdot, \cdot, m, n}\right)=\mu(m \times n) \circ \eta G(m \times n)\left(V_{m, n}\right)=V_{m, n}$. Analogously $\mu(m \times n)\left(V_{m, n, r,}\right)=\mu(m \times n) \circ G \eta(m \times n)\left(V_{m, n}\right)=V_{m, n}$.

It is obvious that for any regular surjection $f: m \times n \rightarrow m^{\prime} \times n^{\prime}$ the equality $G^{2} f\left(V_{, m, n, .}\right)=$ $V_{\cdot, m^{\prime}, n^{\prime},,}, G^{2} f\left(V_{m, \cdot, n, .}\right)=V_{m^{\prime}, \cdot, n^{\prime},,}, G^{2} f\left(V_{\cdot, m, \cdot, n}\right)=V_{\cdot, m^{\prime}, \cdot n^{\prime}}, G^{2} f\left(V_{m, \cdot,, n}\right)=V_{m^{\prime}, \cdot,, n^{\prime}}$ holds. Thus
each of the collections of inclusion hyperspaces $\mu(m \times n)\left(V_{\cdot, m, n, \cdot}\right), \mu(m \times n)\left(V_{m, \cdot, n, .}\right), \mu(m \times$ $n)\left(V_{\cdot, m, \cdot, n}\right), \mu(m \times n)\left(V_{m, \cdot, n}\right)$, where $m, n \in \mathbb{N}$, satisfies condition (!). Therefore all minimal sets of any of these inclusion hyperspaces can be obtained by regular bijections $m \times n \rightarrow m \times n$ from its regular minimal elements.

Let $\mathrm{A}_{1}=\mu(m \times n)\left(V_{m, \cdot,, n}\right)$. Since

$$
G \operatorname{pr}_{1}\left(\mathrm{~A}_{1}\right)=G \operatorname{pr}_{1} \circ \mu(m \times n)\left(V_{m, \cdot,, n}\right)=\mu m \circ G^{2} \operatorname{pr}_{1}\left(V_{m, \cdot, \cdot n}\right)=\mu_{m}\left(V_{m, \cdot, \cdot,}\right)=V_{m, \cdot} \in G m
$$

is the inclusion hyperspace with minimal sets $\{0\},\{1\}, \ldots,\{m-1\}$, the inclusion hyperspace A_{1} contains all sets $\operatorname{pr}_{1}^{-1}(\{0\})=\{0\} \times n, \operatorname{pr}_{1}^{-1}(\{1\})=\{1\} \times n, \ldots, \operatorname{pr}_{1}^{-1}(\{m-1\})=$ $\{m-1\} \times n$. If the regular set $\mathcal{C}_{1}=\{0\} \times n$ is not minimal, it should contain a less set X that is in A_{1} and is equivalent to a regular set. The unique possible form of this set X is $\{(0, i)\}$ for $0 \leqslant i \leqslant n_{1}-1$. Thus all singletons in $m \times n$ are minimal in A_{1}. Then the inclusion hyperspace $G \operatorname{pr}_{2}(\mathrm{~A}) \in G n$ also should contain all singletons in n, which is impossible because
$G \operatorname{pr}_{2}\left(\mathrm{~A}_{1}\right)=G \operatorname{pr}_{2} \circ \mu(m \times n)\left(V_{m, \cdot, \cdot, n}\right)=\mu m \circ G^{2} \operatorname{pr}_{2}\left(V_{m, \cdot, \cdot, n}\right)=\mu m\left(V_{\cdot, \cdot,, n}\right)=V_{\cdot, n}=\{n\} \in G n$.
Thus the set $\{0\} \times n$, as well as the sets $\{1\} \times n, \ldots,\{m-1\} \times n$ that are equivalent to it, is minimal in A_{1}. Assume that A_{1} contains a minimal set Y that is not equivalent to C_{1}. Then Y is equivalent to a regular set that in incomparable with \mathcal{C}_{1} with respect to " \subset ", i.e. is equivalent to \mathcal{C}_{2}. But the assumption $\mathcal{C}_{2} \in \mathrm{~A}_{1}$ is also incompatible with the form of $G \operatorname{pr}_{2}\left(\mathrm{~A}_{1}\right)$. Thus the collection of minimal elements of A_{1} has the form $\{\{0\} \times n,\{1\} \times n, \ldots,\{m-1\} \times n\}$, i.e. $\mathrm{A}_{1}=V_{m, n}$.

Let $\mathrm{A}_{2}=\mu(m \times n)\left(V_{,, m, n,}\right)$. We have

$$
\begin{gathered}
G \operatorname{pr}_{1}\left(\mathrm{~A}_{2}\right)=G \operatorname{pr}_{1} \circ \mu(m \times n)\left(V_{\cdot, m, n, \cdot}\right)= \\
=\mu m \circ G^{2} \operatorname{pr}_{1}\left(V_{\cdot, m, n, \cdot}\right)=\mu m\left(V_{\cdot, m, \cdot,}\right)=V_{\cdot, m}=\{m\} \in G m,
\end{gathered}
$$

therefore all elements of A_{2} under the first projection should map onto m. We also have

$$
\begin{gathered}
G \operatorname{pr}_{2}\left(\mathrm{~A}_{2}\right)=G \operatorname{pr}_{2} \circ \mu(m \times n)\left(V_{\cdot, m, n, \cdot}\right)= \\
=\mu n \circ G^{2} \operatorname{pr}_{2}\left(V_{\cdot, \cdot n, \cdot}\right)=\mu n\left(V_{\cdot, \cdot, n,}\right)=V_{n, \cdot}=\exp n \in G n,
\end{gathered}
$$

therefore A_{2} contains all sets $\operatorname{pr}_{2}^{-1}(\{0\})=m \times\{0\}, \operatorname{pr}_{2}{ }^{-1}(\{1\})=m \times\{1\}, \ldots, \operatorname{pr}_{2}{ }^{-1}(\{n-$ $1\})=m \times\{n-1\}$, i.e. sets that are equivalent to \mathcal{C}_{2}. Since all subsets of $m \times n$ with surjective projection to m contain subsets that are equivalent to \mathcal{C}_{2}, the set of minimal elements of A_{2} consists only of these sets. In other words, A_{2} consists of all subsets of $m \times n$ that contain subsets of the form $\left\{\left(0, i_{0}\right),\left(1, i_{1}\right), \ldots,\left(m-1, i_{m-1}\right)\right\}$, where $0 \leqslant i_{k} \leqslant n$ for $0 \leqslant k \leqslant m-1$.

Let $\mathrm{A}_{3}=\mu(m \times n)\left(V_{m, \cdot, n,}\right)$. We have

$$
\begin{gathered}
G \operatorname{pr}_{1}\left(\mathrm{~A}_{3}\right)=G \operatorname{pr}_{1} \circ \mu(m \times n)\left(V_{m, \cdot, n, \cdot}\right)= \\
=\mu m \circ G^{2} \operatorname{pr}_{1}\left(V_{m, \cdot, n, \cdot}\right)=\mu m\left(V_{m, \cdot,,}\right)=V_{m, \cdot}=\exp m \in G m
\end{gathered}
$$

therefore A_{3} contains all sets $\operatorname{pr}_{1}^{-1}(\{0\})=\{0\} \times n, \operatorname{pr}_{1}^{-1}(\{1\})=\{1\} \times n, \ldots, \operatorname{pr}_{1}{ }^{-1}(\{m-$ $1\})=\{m-1\} \times n$. Analogously $G \operatorname{pr}_{2}\left(\mathrm{~A}_{3}\right)=V_{n, .}=\exp n \in G n$ implies that A_{3} contains the set $\operatorname{pr}_{2}^{-1}(\{0\})=m \times\{0\}$, as well as all subsets $m \times n$ that are equivalent to it, i.e. sets of the form $\left\{\left(0, i_{0}\right),\left(1, i_{1}\right), \ldots,\left(m-1, i_{m-1}\right)\right\}$, where $0 \leqslant i_{0}, i_{1}, \ldots, i_{m-1} \leqslant n-1$.

Only two mutually exclusive assumptions are possible:
sets $\{0\} \times n,\{1\} \times n, \ldots,\{m-1\} \times n$ and $m \times\{0\}, m \times\{1\}, \ldots, m \times\{n-1\}$ exhaust the collection of all minimal sets of the inclusion hyperspace A_{3};
there exists a minimal set $X \in A_{3}$ that is distinct from $\{0\} \times n,\{1\} \times n, \ldots$, $\{m-1\} \times n$ and $m \times\{0\}, m \times\{1\}, \ldots, m \times\{n-1\}$.

In the case $(* *)$ only $X=\{(i, j)\}$, where $0 \leqslant i \leqslant m-1,0 \leqslant j \leqslant n-1$, is possible. Therefore minimal elements of A_{3} are all singletons $\{(i, j)\}, 0 \leqslant i \leqslant m-1,0 \leqslant j \leqslant n-1$, i.e. for $\left({ }^{* *}\right)$ we have $\mathrm{A}_{3}=\exp (m \times n)$.

Let $\mathrm{A}_{4}=\mu(m \times n)\left(V_{,, m, \cdot n}\right)$. We have

$$
\begin{gathered}
G \operatorname{pr}_{1}\left(\mathrm{~A}_{4}\right)=G \operatorname{pr}_{1} \circ \mu(m \times n)\left(V_{\cdot, m, \cdot, n}\right)= \\
=\mu m \circ G^{2} \operatorname{pr}_{1}\left(V_{\cdot, m, \cdot, n}\right)=\mu m\left(V_{\cdot, m, \cdot,}\right)=V_{\cdot, m}=\{m\} \in G m .
\end{gathered}
$$

Analogously

$$
\begin{gathered}
G \operatorname{pr}_{2}\left(\mathrm{~A}_{4}\right)=G \operatorname{pr}_{2} \circ \mu(m \times n)\left(V_{\cdot, m, \cdot, n}\right)= \\
=\mu n \circ G^{2} \operatorname{pr}_{2}\left(V_{\cdot, m, \cdot, n}\right)=\mu n\left(V_{\cdot, m, \cdot,}\right)=V_{\cdot, m}=\{n\} \in G n .
\end{gathered}
$$

Thus both the first and the second projections of any element of A_{4} should be surjective. Therefore we can obtain two cases:
minimal elements of the inclusion hyperspace A_{4} are equivalent to $A=m \times n$, i.e.

$$
\begin{equation*}
\mathrm{A}_{4}=\{m \times n\} ; \tag{+}
\end{equation*}
$$

minimal elements of the inclusion hyperspace A_{4} are equivalent to $B=\{0\} \times$ $(++) \quad n \cup m \times\{0\}$, i.e. A_{4} consists of all subsets of $m \times n$ that contain subsets of the form $\{l\} \times n \cup\left\{\left(0, i_{0}\right),\left(1, i_{1}\right), \ldots,\left(m-1, i_{m-1}\right)\right\}$, where $0 \leqslant l \leqslant m-1,0 \leqslant$ $i_{0}, i_{1}, \ldots, i_{m-1} \leqslant n-1$.
We omit an easy proof of the following
Lemma 4. If any of the statements $\left(^{*}\right),\left({ }^{* *}\right),(+),(++)$ holds for some $m, n \geqslant 2$, then it holds for all $m, n \geqslant 2$.

Similar arguments are applicable also to the inclusion hyperspace $\mathbf{B}_{1}=\mu(m \times n \times$ $k)\left(V_{,, m, n, k}\right)$. We have

$$
\begin{gathered}
G \operatorname{pr}_{23}\left(\mathrm{~B}_{1}\right)=G \operatorname{pr}_{23} \circ \mu(m \times n \times k)\left(V_{\cdot, m, n, k}\right)=\mu(n \times k) \circ G^{2} \operatorname{pr}_{23}\left(V_{\cdot, m, n, k}\right)= \\
=\mu(n \times k)\left(V_{\cdot, \cdot, n, k}\right)=V_{n, k}, G \operatorname{pr}_{12}\left(\mathrm{~B}_{1}\right)=G \operatorname{pr}_{12} \circ \mu(m \times n \times k)\left(V_{\cdot, m, n, k}\right)= \\
=\mu(m \times n) \circ G^{2} \operatorname{pr}_{12}\left(V_{\cdot, m, n, k}\right)=\mu(m \times n)\left(V_{\cdot,, m, n, \cdot}\right)=\mathrm{A}_{2}, \\
\quad G \operatorname{pr}_{13}\left(\mathrm{~B}_{1}\right)=G \operatorname{pr}_{13} \circ \mu(m \times n \times k)\left(V_{\cdot, m, n, k}\right)= \\
=\mu(m \times k) \circ G^{2} \operatorname{pr}_{13}\left(V_{\cdot, m, n, k}\right)=\mu(m \times k)\left(V_{\cdot, m, \cdot, k}\right)=\mathrm{A}_{4}
\end{gathered}
$$

(if we replace $n \leftarrow k$).
For each set of the form $X=\left\{\left(0, i_{0}\right),\left(1, i_{1}\right), \ldots,\left(m-1, i_{m-1}\right)\right\} \subset m \times n$, where $0 \leqslant$ $i_{0}, i_{1}, \ldots, i_{m-1} \leqslant n-1$, the preimage $\operatorname{pr}_{12}^{-1}(X)=\{0\} \times\left\{i_{0}\right\} \times k \cup\{1\} \times\left\{i_{1}\right\} \times k \cup \cdots \cup$ $\{m-1\} \times\left\{i_{m-1}\right\} \times k$ is in B_{1}. This preimage is equivalent to a regular set $Y \subset m \times n \times k$, such that all its sections $[Y]_{i}$ are equal to $\{0\} \times k$, i.e. have the type \mathcal{C}_{1}. If we assume that there is a regular element $Z \in \mathrm{~B}_{1}$ that is incomparable with Y with respect to " \subset ", then one
of its sections $[Z]_{i}$ should not contain $[Y]_{i}$, i.e. should have the type $\mathcal{C}_{2}, \mathcal{D}$ or \mathcal{E}. In all this cases $\operatorname{pr}_{12}(Z) \subsetneq m \times n$.

If we assume $(+)$, then each elements B_{1} under pr_{13} should map to $m \times k$, that contradicts to the existence of Z. Thus under $(+)$ the set of minimal sets of the inclusion hyperspace B_{1} consists of all sets of the form $\{0\} \times\left\{i_{0}\right\} \times k \cup\{1\} \times\left\{i_{1}\right\} \times k \cup \cdots \cup\{m-1\} \times\left\{i_{m-1}\right\} \times$, i.e. of all sets equivalent to $m \times\{0\} \times k$. Consider the case $(++)$.

Lemma 5. Let $Y \in \mathrm{~B}_{1}$ is a regular minimal element, $n \geqslant 2, k \geqslant 2$. Then among the sections $\left\{[Y]_{0},[Y]_{1}, \ldots,[Y]_{m-1}\right\}$ there are no sets of the types \mathcal{A}, \mathcal{D} and \mathcal{E}.

Proof. Presence of $\mathcal{E}=\varnothing$ among the sections is impossible because of the form of $G \operatorname{pr}_{12}\left(\mathrm{~B}_{1}\right)$.
Define for $n, k \geqslant 3$ a mapping $\phi: n \times k \rightarrow(n-1) \times k$ by the formula:

$$
\phi(i, j)=\left\{\begin{array}{l}
(i, j) \text { if } i \leqslant n-2, j \leqslant k-2 \\
(i, j-1) \text { if } i \leqslant n-2, j=k-1, \\
(i-1, j) \text { if } i=n-1
\end{array}\right.
$$

This mapping has the following property: if $A, B, A_{0}, B_{0} \subset n \times k, A \sim A_{0}, B \sim B_{0}$, the sets A_{0}, B_{0} are regular, and $\phi(A) \subset \phi(B)$, then $A_{0} \subset B_{0}$. Put $\Phi: m \times n \times k \rightarrow m \times(n-1) \times k$, $\Phi=\mathbf{1}_{m} \times \phi$. Note that Φ is not a surjection, but $G^{2} \Phi\left(V_{\cdot, m, n, k}\right)=G^{2} e\left(V_{\cdot, m, n-1, k-1}\right)$, where $e: m \times(n-1) \times(k-1) \hookrightarrow m \times n \times k$ is the embedding. Thus

$$
\begin{gathered}
G \Phi\left(\mathrm{~B}_{1}\right)=G \Phi \circ \mu(m \times n \times k)\left(V_{\cdot, m, n, k}\right)= \\
=\mu(m \times(n-1) \times k) \circ G^{2} \Phi\left(V_{\cdot, m, n, k}\right)=\mu(m \times(n-1) \times k) \circ G^{2} e\left(V_{\cdot, m, n-1, k-1}\right) .
\end{gathered}
$$

Therefore all minimal elements of $G \Phi\left(\mathrm{~B}_{1}\right)$ are contained in $e(m \times(n-1) \times(k-1))=$ $m \times(n-1) \times(k-1)$.

Construct a set $Y^{\prime} \subset m \times n \times k$ as follows: if $0 \leqslant i \leqslant m-1$, for $[Y]_{i} \neq\{(0,0)\}$ let $\left[Y^{\prime}\right]_{i}=[Y]_{i}$, and for $[Y]_{i}=\{(0,0)\}$ let $\left[Y^{\prime}\right]_{i}=\{(n-1, k-1)\}$. Then $Y^{\prime} \sim Y$, therefore Y^{\prime} also is minimal in B_{1}. If one of the sections $[Y]_{i}$ is equal to $\mathcal{A}=n \times k$ or $\mathcal{D}=\{(0,0)\}$, then the corresponding section $\left[Y^{\prime}\right]_{i}$ contains $\{(n-1, k-1)\}$, therefore $\Phi^{\prime}\left(Y^{\prime}\right) \ni(i, n-2, k-1)$, and $\Phi\left(Y^{\prime}\right) \not \subset m \times(n-1) \times(k-1)$. Thus the element $\Phi\left(Y^{\prime}\right)$ is not minimal in $G \Phi\left(\mathrm{~B}_{1}\right)$. Then there is a minimal element $Z^{\prime} \in \mathrm{B}_{1}$, such that $\Phi\left(Z^{\prime}\right) \subset \Phi\left(Y^{\prime}\right) \cap m \times(n-1) \times(k-1)$. By the above Z^{\prime} is equivalent to a regular set $Z \subset m \times n \times k$. For any $i \in\{0,1, \ldots, m-1\}$ we have $\Phi\left(Z^{\prime} \cap\{i\} \times n \times k\right) \subset \Phi\left(Y^{\prime} \cap\{i\} \times n \times k\right)$, therefore $\operatorname{pr}_{23}\left(\Phi\left(Z^{\prime} \cap\{i\} \times n \times k\right)\right)=\phi\left(\left[Z^{\prime}\right]_{i}\right) \subset$ $\operatorname{pr}_{23}\left(\Phi\left(Y^{\prime} \cap\{i\} \times n \times k\right)\right)=\phi\left(\left[Y^{\prime}\right]_{i}\right),\left[Y^{\prime}\right]_{i} \sim[Y],\left[Z^{\prime}\right]_{i} \sim[Z]$, and due to the mentioned above property of ϕ we obtain $[Z]_{i} \subset[Y]_{i}$ for $0 \leqslant i \leqslant m-1$. Thus $Z \subsetneq Y, Z \in \mathrm{~B}_{1}$, that contradicts to minimality of Y. Therefore for $n, k \geqslant 3$ a minimal set $Y \in \mathrm{~B}_{1}$ can not have sections of the types \mathcal{A} and \mathcal{D}. In order to extend the arguments onto the cases when $n=2$ or $k=2$, it is sufficient to use a regular surjection $m \times(n+1) \times(k+1) \rightarrow m \times n \times k$.

Thus under $(++)$ the sets of sections $\left\{[Y]_{0},[Y]_{1}, \ldots,[Y]_{m-1}\right\}$ of any regular minimal element $Y \in \mathrm{~B}_{1}$ are: $\left\{\mathcal{C}_{1}\right\}$ and one or several of the sets $\left\{\mathcal{C}_{1}, \mathcal{C}_{2}\right\},\left\{\mathcal{B}, \mathcal{C}_{2}\right\},\left\{\mathcal{B}, \mathcal{C}_{1}, \mathcal{C}_{2}\right\}$.

Let $\mathrm{B}_{2}=\mu(m \times n \times k)\left(V_{m, \cdot, n, k}\right)$. It is easy to prove analogously to the proof of Lemma 5 that there are no sets of the types A and D among the sections $Y_{i}, 0 \leqslant i \leqslant m-1$, of any regular minimal element $Y \in \mathrm{~B}_{2}$. Take into consideration that

$$
\begin{gathered}
G \operatorname{pr}_{23}\left(\mathrm{~B}_{2}\right)=G \operatorname{pr}_{23} \circ \mu(m \times n \times k)\left(V_{m, \cdot, n, k}\right)= \\
=\mu(n \times k) \circ G^{2} \operatorname{pr}_{23}\left(V_{m, \cdot, n, k}\right)=\mu(n \times k)\left(V_{\cdot \cdot, n, k}\right)=V_{n, k},
\end{gathered}
$$

$$
\begin{gathered}
G \operatorname{pr}_{12}\left(\mathrm{~B}_{2}\right)=G \operatorname{pr}_{12} \circ \mu(m \times n \times k)\left(V_{m, \cdot, n, k}\right)= \\
=\mu(m \times n) \circ G^{2} \operatorname{pr}_{12}\left(V_{m, \cdot, n, k}\right)=\mu(m \times n)\left(V_{m, \cdot, n,}\right)=\mathrm{A}_{3}, \\
G \operatorname{pr}_{13}\left(\mathrm{~B}_{2}\right)=G \operatorname{pr}_{13} \circ \mu(m \times n \times k)\left(V_{m, \cdot, n, k}\right)= \\
=\mu(m \times k) \circ G^{2} \operatorname{pr}_{13}\left(V_{m, \cdot, n, k}\right)=\mu(m \times k)\left(V_{m, \cdot,, k}\right)=\mathrm{A}_{1}
\end{gathered}
$$

(if we replace $n \leftarrow k$), which implies $G \operatorname{pr}_{13}\left(\mathrm{~B}_{2}\right)=V_{m, k}$. If we assume $(* *)$, then all minimal elements of B_{2} are of the form $\{i\} \times\{j\} \times k$, where $0 \leqslant i \leqslant m-1,0 \leqslant j \leqslant n-1$, i.e. these are sets equivalent to a regular set with sections of the types $\mathcal{C}_{1}, \mathcal{E}$. If $\left(^{*}\right)$ is true, we have regular minimal elements with the sets of sections $\left\{\mathcal{C}_{1}\right\},\{\mathcal{B}, \mathcal{E}\}$ and, probably, $\left\{\mathcal{C}_{1}, \mathcal{C}_{2}\right\}$ or $\left\{\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{E}\right\}$.

Let $\mathrm{B}_{3}=\mu(m \times n \times k)\left(V_{m, n, \cdot, k}\right)$. We have

$$
\begin{gathered}
G \operatorname{pr}_{23}\left(\mathrm{~B}_{3}\right)=G \operatorname{pr}_{23} \circ \mu(m \times n \times k)\left(V_{m, n, \cdot, k}\right)= \\
=\mu(n \times k) \circ G^{2} \operatorname{pr}_{23}\left(V_{m, n, \cdot, k}\right)=\mu(n \times k)\left(V_{\cdot, n, \cdot, k}\right)=\mathrm{A}_{4}
\end{gathered}
$$

(if we replace $m \leftarrow n, n \leftarrow k$),

$$
\begin{gathered}
G \operatorname{pr}_{12}\left(\mathrm{~B}_{3}\right)=G \operatorname{pr}_{12} \circ \mu(m \times n \times k)\left(V_{m, n, \cdot, k}\right)= \\
=\mu(m \times n) \circ G^{2} \operatorname{pr}_{12}\left(V_{m, n, \cdot, k}\right)=\mu(m \times n)\left(V_{m, n, \cdot, \cdot}\right)=V_{m, n}, \\
G \operatorname{pr}_{13}\left(\mathrm{~B}_{3}\right)=G \operatorname{pr}_{13} \circ \mu(m \times n \times k)\left(V_{m, n, \cdot, k}\right)= \\
=\mu(m \times k) \circ G^{2} \operatorname{pr}_{13}\left(V_{m, n, \cdot, k}\right)=\mu(m \times k)\left(V_{m, \cdot,, k}\right)=\mathrm{A}_{1}
\end{gathered}
$$

(if we replace $n \leftarrow k$), thus $G \operatorname{pr}_{13}\left(\mathrm{~B}_{3}\right)=V_{m, k}$.
This implies that B_{3} contains all preimages of minimal elements of $V_{m, n}$ under pr_{12}, i.e. sets of the form $\operatorname{pr}_{12}^{-1}(\{i\} \times n)=\{i\} \times m \times k, 0 \leqslant i \leqslant m-1$. If we assume $(+)$, then the form of $G \operatorname{pr}_{23}\left(\mathrm{~B}_{3}\right)$ implies that there are no other minimal elements. If $(++)$ holds, then in addition to $\{\mathcal{A}, \mathcal{E}\}$ the following sets of sections of regular minimal elements are possible: $\{\mathcal{B}\},\{\mathcal{B}, \mathcal{D}\},\{\mathcal{B}, \mathcal{E}\},\left\{\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{E}\right\},\left\{\mathcal{C}_{1}, \mathcal{C}_{2}\right\},\left\{\mathcal{B}, \mathcal{C}_{1}\right\},\left\{\mathcal{B}, \mathcal{C}_{2}\right\},\left\{\mathcal{B}, \mathcal{C}_{1}, \mathcal{C}_{2}\right\},\left\{\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{D}\right\}$, and at least one of them should be present.

Consider the set of inclusion hyperspaces
$\mathrm{C}_{1}=\mu(m \times n \times k) \circ G \mu(m \times n \times k)\left(V_{\cdot, m, n, \cdot,, k}\right)=\mu(m \times n \times k) \circ \mu G(m \times n \times k)\left(V_{\cdot, m, n, \cdot, \cdot, k}\right)$. It is obvious that it also satisfies (!). On the one hand, $G \mu(m \times n \times k)\left(V_{\cdot, m, n, \cdot, \cdot, k}\right)=\left(V_{\cdot, m, n, k}\right)$, thus $\mathrm{C}_{1}=\mu(m \times n \times k)\left(V_{, ~}, m, n, k\right)=\mathrm{B}_{1}$.

To calculate C_{1} in a different way, we fix a bijection $t: n^{m} \rightarrow \underbrace{n \times n \times \cdots \times n}_{m}$ and note that $V_{,, m, n, \cdot,, k}=G^{2} \psi\left(V_{,, m, n, .}\right)$, where $\psi: m \times n \rightarrow G(m \times n \times k)$ is the mapping that is defined by the formula $\psi(i, j)=r(m \times n \times k)(\{(i, j)\} \times k)$. Thus

$$
\begin{gathered}
\mu G(m \times n \times k)\left(V_{\cdot, m, n, \cdot,, k}\right)= \\
=\mu G(m \times n \times k) \circ G^{2} \psi\left(V_{\cdot, m, n,}\right)=G \psi \circ \mu(m \times n)\left(V_{\cdot, m, n, \cdot}\right)=G \psi\left(\mathrm{~A}_{2}\right) .
\end{gathered}
$$

Besides, $G \psi\left(\mathrm{~A}_{2}\right)=G^{2} \Psi\left(V_{n^{m}, m, \cdot, k}\right)$, where $\Psi: n^{m} \times m \times k \rightarrow m \times n \times k$ is the surjection defined by the formula $\Psi(l, i, j)=(i, t(l)(i), j)$. Therefore

$$
\mathrm{C}_{1}=\mu(m \times n \times k) \circ G^{2} \Psi\left(V_{n^{m}, m, \cdot, k}\right)=G \Psi \circ \mu\left(n^{m} \times m \times k\right)\left(V_{n^{m}, m, \cdot, k}\right)=G \Psi\left(\mathrm{~B}_{3}\right)
$$

(if we replace $m \leftarrow n^{m}, n \leftarrow m$).
Investigate how Ψ acts on possible minimal sets of the inclusion hyperspace B_{3}.

Lemma 6. A subset $Z \subset m \times n \times k$ contains the image $\Psi(X)$ of some set $X \subset n^{m} \times m \times k$, that is equivalent to a regular set X^{\prime} with the set of sections \mathcal{M}, if and only if Z contains a set $Y \subset m \times n \times k$ that is equivalent to a regular set Y^{\prime} with the set of sections \mathcal{N} or (for items (1), (2)) \mathcal{N}^{\prime}, for any of the following combinations: 1) $\mathcal{M}=\left\{\mathcal{C}_{1}, \mathcal{C}_{2}\right\}, \mathcal{N}=\{\mathcal{A}, \mathcal{D}\}$, $\left.\left.\left.\mathcal{N}^{\prime}=\left\{\mathcal{B}, \mathcal{C}_{2}\right\} ; 2\right) \mathcal{M}=\left\{\mathcal{B}, \mathcal{C}_{1}, \mathcal{C}_{2}\right\}, \mathcal{N}=\{\mathcal{A}, \mathcal{D}\}, \mathcal{N}^{\prime}=\left\{\mathcal{B}, \mathcal{C}_{2}\right\} ; 3\right) \mathcal{M}=\{\mathcal{A}, \mathcal{E}\}, \mathcal{N}=\left\{\mathcal{C}_{1}\right\} ; 4\right)$ $\mathcal{M}=\{\mathcal{B}, \mathcal{E}\}, \mathcal{N}=\left\{\mathcal{C}_{1}, \mathcal{D}\right\} ;$ 5) $\mathcal{M}=\left\{\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{E}\right\}, \mathcal{N}=\left\{\mathcal{C}_{1}, \mathcal{D}\right\} ;$ 6) $\mathcal{M}=\left\{\mathcal{B}, \mathcal{C}_{2}\right\}, \mathcal{N}=\left\{\mathcal{B}, \mathcal{C}_{2}\right\} ;$ 7) $\mathcal{M}=\left\{\mathcal{B}, \mathcal{C}_{1}\right\}, \mathcal{N}=\{\mathcal{A}, \mathcal{D}\}$; 8) $\mathcal{M}=\{\mathcal{B}\}, \mathcal{N}=\left\{\mathcal{A}, \mathcal{C}_{2}\right\} ;$ 9) $\mathcal{M}=\{\mathcal{B}, \mathcal{D}\}, \mathcal{N}=\left\{\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{D}\right\}$; 10) $\mathcal{M}=\left\{\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{D}\right\}, \mathcal{N}=\left\{\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{D}\right\}$.

Proof. Let us prove (1). Assume that $Z \supset \Psi(X)$, where X satisfies the condition of the lemma. Then the set n^{m} is the union of two nonempty disjoint subsets L_{1} and L_{2}, and for any $l \in L_{1}$ we have $[X]_{l}=\left\{i_{l}\right\} \times k$ for some $i_{l} \in\{0,1, \ldots, n-1\}$. For any $l \in L_{2}$ the section $[X]_{l}$ has the form $\left\{\left(0, k_{0}\right),\left(1, k_{1}\right), \ldots,\left(n-1, k_{n-1}\right)\right\}$, where $0 \leqslant k_{0}, k_{1}, \ldots, k_{n-1} \leqslant k-1$. Denote $P=m \times n \backslash\left\{\left(i_{l}, t(l)\left(i_{l}\right)\right) \mid l \in L_{1}\right\}, Q=\operatorname{pr}_{12}(\Psi(X))=\left\{\left(i_{l}, t(l)\left(i_{l}\right)\right) \mid l \in L_{1}\right\} \cup$ $\left\{(i, t(l)(i)) \mid l \in L_{2}\right\}$. If $\operatorname{pr}_{1}(P)=m$, we choose $\left(0, p_{0}\right),\left(1, p_{1}\right), \ldots,\left(m-1, p_{m-1}\right) \in P$. Assume that $(i, j) \in m \times n,(i, j) \notin Q$, and let $l \in n^{m}$ be determined by the equality $t(l)=\left(p_{0}, p_{1}, \ldots, p_{i-1}, j, p_{i+1}, \ldots, p_{m-1}\right.$. Then both $l \in L_{1}$ and $l \in L_{2}$ are impossible, that is a contradiction. Therefore for $\operatorname{pr}_{1}(P)=m$ we have $\operatorname{pr}_{12}(\Psi(X))=m \times n$, and $L_{1} \neq \varnothing$ implies that $\Psi(X) \supset\{(i, j)\} \times k$ for some $0 \leqslant i \leqslant m-1,0 \leqslant j \leqslant n-1$. Thus $\Psi(X)$ contains a subset Y that is equivalent to a regular set with sections $\left\{\mathcal{B}, \mathcal{C}_{2}\right\}$. If $\operatorname{pr}_{1}(P) \neq m$, we choose $i \in m \backslash \operatorname{pr}_{1}(P)$ and obtain $\Psi(X) \supset\{i\} \times n \times k$. Moreover, $L_{2} \neq \varnothing$ implies $\Psi(X) \supset\left\{\left(0, j_{0}, k_{0}\right),\left(1, j_{1}, k_{1}\right), \ldots,\left(m-1, j_{m-1}, k_{m-1}\right)\right\}$, for some $0 \leqslant j_{0}, j_{1}, \ldots, j_{m-1} \leqslant n-1$, $0 \leqslant k_{0}, k_{1}, \ldots, k_{m-1} \leqslant k-1$. Therefore $\Psi(X)$ contains a subset Y that is equivalent to a regular set with sections $\{\mathcal{A}, \mathcal{D}\}$.

Now let Z contain a subset Y equivalent to a regular set with sections $\left\{\mathcal{B}, \mathcal{C}_{2}\right\}$. Then Y has the form $\left\{\left(i_{0}, j_{0}\right)\right\} \times k \cup\left\{\left(i, j, k_{i, j}\right) \mid 0 \leqslant i \leqslant m-1,0 \leqslant j \leqslant n\right\}$. We put $L_{1}=\left\{l \in n^{m} \mid\right.$ $\left.t(l)\left(i_{0}\right)=j_{0}\right\}, L_{2}=n^{m} \backslash L_{1}, X \subset n^{m} \times m \times k, X=L_{1} \times\left\{i_{0}\right\} \times k \cup\left\{\left(l, i, k_{i, t(l)(i)}\right)\right\}$. Then X is equivalent to a regular set with sections $\left\{\mathcal{C}_{1}, \mathcal{C}_{2}\right\}$, and $\Psi(X)=Y \subset Z$.

If Z contains a subset Y equivalent to a regular set with sections $\{\mathcal{A}, \mathcal{D}\}$, then $Y=$ $\left\{i_{0}\right\} \times n \times k \cup\left\{\left(0, j_{0}, k_{0}\right),\left(1, j_{1}, k_{1}\right), \ldots,\left(m-1, j_{m-1}, k_{m-1}\right)\right\}$, for some $0 \leqslant i_{0} \leqslant m-1$, $0 \leqslant j_{0}, j_{1}, \ldots, j_{m-1} \leqslant n-1,0 \leqslant k_{0}, k_{1}, \ldots, k_{m-1} \leqslant k-1$. We put $l_{0}=t^{-1}\left(\left(j_{0}, j_{1}, \ldots, j_{m-1}\right)\right)$, $L_{1}=n^{m} \backslash\left\{l_{0}\right\}, L_{2}=\left\{l_{0}\right\}, X=L_{1} \times\left\{i_{0}\right\} \times k \cup\left\{\left(l, 0, k_{0}\right),\left(l, 1, k_{1}\right), \ldots,\left(l, m-1, k_{m-1}\right)\right\}$. Then X is equivalent to a regular set with sections $\left\{\mathcal{C}_{1}, \mathcal{C}_{2}\right\}$, and $\Psi(X)=Y \subset Z$.

Other items can be proved by analogous not very difficult, but cumbersome arguments.

We compare the obtained sets of sections with possible sections of regular minimal elements of B_{1}. Since there cannot be sets of the types \mathcal{D} and \mathcal{E} among sections of regular elements of B_{1}, only three possible types of regular minimal elements of B_{3} remain, namely with sections $\{\mathcal{A}, \mathcal{E}\},\left\{\mathcal{B}, \mathcal{C}_{2}\right\}$ and $\{\mathcal{B}\}$. They correspond respectively to regular minimal elements with sections of the types $\left\{\mathcal{C}_{1}\right\},\left\{\mathcal{B}, \mathcal{C}_{2}\right\}$ and $\left\{\mathcal{A}, \mathcal{C}_{2}\right\}$ of the inclusion hyperspace B_{1}. A minimal regular element with sections of the type $\{\mathcal{B}\}$ is also impossible because in this case a regular element with sections of the types $\left\{\mathcal{A}, \mathcal{C}_{2}\right\}$ is minimal in B_{1} and has a section of the type \mathcal{A}, which is also impossible by Lemma 5 . Therefore we can have only regular minimal elements with sections $\{\mathcal{A}, \mathcal{E}\}$ and $\left\{\mathcal{B}, \mathcal{C}_{2}\right\}$ in B_{3} and regular minimal elements with sections $\left\{\mathcal{C}_{1}\right\}$ and $\left\{\mathcal{B}, \mathcal{C}_{2}\right\}$ in B_{1}.

Summing up, we have two possibilities (everywhere all parameters m, n, k are not less than 2) :

1) (+) holds, the inclusion hyperspace B_{1} has regular minimal elements with sections $\left\{\mathcal{C}_{1}\right\}$, and the inclusion hyperspace B_{3} has regular minimal elements with sections $\{\mathcal{A}, \mathcal{E}\}$;
2) (++) holds, the inclusion hyperspace B_{1} has regular minimal elements with sections $\left\{\mathcal{C}_{1}\right\}$ and $\left\{\mathcal{B}, \mathcal{C}_{2}\right\}$, and the inclusion hyperspace B_{3} has regular minimal elements with sections $\{\mathcal{A}, \mathcal{E}\}$ and $\left\{\mathcal{B}, \mathcal{C}_{2}\right\}$.

Consider the family of inclusion hyperspaces
$\mathrm{C}_{2}=\mu(m \times n \times k) \circ G \mu(m \times n \times k)\left(V_{m, \cdot, n, \cdot,, k}\right)=\mu(m \times n \times k) \circ \mu G(m \times n \times k)\left(V_{m, \cdot, \cdot, n, \cdot k}\right)$.
It also satisfies condition (!). On the one hand, $\mathrm{C}_{2}=\mu(m \times n \times k) \circ G \mu(m \times n \times k) \circ G \widetilde{e}\left(V_{m, \cdot}\right)$, where the mapping $\widetilde{e}: m \rightarrow G^{2}(m \times n \times k)$ sends each $i \in m$ to $G^{2} e_{i}\left(V_{n, \cdot,, k}\right)$, where $e_{i}: n \times k \rightarrow$ $m \times n \times k, e_{i}(j, l)=(i, j, l)$. We obtain

$$
\begin{aligned}
& \mu(m \times n \times k) \circ \widetilde{e}(i)=\mu(m \times n \times k) \circ G^{2} e_{i}\left(V_{n, \cdot,, k}\right)= \\
& \quad=G e_{i} \circ \mu(n \times k)\left(V_{n, \cdot, \cdot, k}\right)=G e_{i}\left(\mathrm{~A}_{1}\right)=G e_{i}\left(V_{n, k}\right) .
\end{aligned}
$$

Therefore $\mathrm{C}_{2}=\mu(m \times n \times k) G \theta\left(V_{m,}\right)$, where $\theta: m \rightarrow G(m \times n \times k), \theta(i)=G e_{i}\left(V_{n, k}\right)$, thus $\mathrm{C}_{2}=\mu(m \times n \times k)\left(V_{m, \cdot, n, k}\right)=\mathrm{B}_{2}$.

On the other hand, $\mathrm{C}_{2}=\mu(m \times n \times k) \circ \mu G(m \times n \times k) \circ G^{2} \psi\left(V_{m, \cdot, n, .}\right)$, where the mapping $\psi: m \times n \rightarrow G(m \times n \times k)$ is again defined as $\psi(i, j)=r(m \times n \times k)(\{(i, j)\} \times k)$. Here

$$
\begin{gathered}
\mu G(m \times n \times k)\left(V_{m, \cdot, n, \cdot,, k}\right)=\mu G(m \times n \times k) \circ G^{2} \psi\left(V_{m, \cdot, n, \cdot}\right)= \\
=G \psi \circ \mu(m \times n)\left(V_{m, \cdot, n, \cdot}\right)=G \psi\left(\mathrm{~A}_{3}\right) .
\end{gathered}
$$

Consider the both possibilities $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$. If $\left({ }^{* *}\right)$ holds, then $G \psi\left(\mathrm{~A}_{3}\right)=V_{m n, \cdot,, k}$ (we identify $m \times n$ and $m n$), which implies $C_{2}=\mu(m \times n \times k)\left(V_{m n, \cdot,, k}\right)=V_{m n, k}$. It is the inclusion hyperspace in $m \times n \times k$ with minimal sets of the form $\{i\} \times\{j\} \times k$, where $0 \leqslant i \leqslant m-1,0 \leqslant j \leqslant n-1$. If $\left(^{*}\right)$ is true, we put $m^{\prime}=m+n^{m}, n^{\prime}=\max \{m, n\}$ and fix a bijection $p: n^{m} \rightarrow \underbrace{n \times n \times \cdots \times n}_{m}$. Then $G \psi\left(\mathrm{~A}_{3}\right)=G^{2} \Theta\left(V_{m^{\prime}, n^{\prime},, k}\right)$, where the mapping $\Theta: m^{\prime} \times n^{\prime} \times k \rightarrow m \times n \times k$ is defined by the formula:

$$
\Theta(i, j, l)=\left\{\begin{array}{l}
(\min \{j, m\}, p(i)(\min \{j, m\}), k) \text { if } i<n^{m} ; \\
\left(i-n^{m}, \min \{j, n\}, k\right) \text { if } i \geqslant n^{m} .
\end{array}\right.
$$

Thus

$$
\mathrm{C}_{2}=\mu(m \times n \times k) \circ G^{2} \Theta\left(V_{m^{\prime}, n^{\prime},, k}\right)=G \Theta \circ \mu\left(m^{\prime} \times n^{\prime} \times k\right)\left(V_{m^{\prime}, n^{\prime},, k}\right)=G \Theta\left(\mathrm{~B}_{3}\right)
$$

(if we replace $m \leftarrow m^{\prime}, n \leftarrow n^{\prime}$).
Assume $\left(^{*}\right)$ and consider the images under $G \Theta$ of possible minimal elements of B_{3}.
Lemma 7. A subset $Z \subset m \times n \times k$ contains the image $\Theta(X)$ of some set $X \subset n^{m} \times m \times k$, that is equivalent to a regular set X^{\prime} with the set of sections \mathcal{M}, if and only if Z contains a set $Y \subset m \times n \times k$ that is equivalent to a regular set Y^{\prime} with the set of sections \mathcal{N} or (for item (1)) \mathcal{N}^{\prime}, for each of the following combinations:

1. $\mathcal{M}=\{\mathcal{A}, \mathcal{E}\}, \mathcal{N}=\{\mathcal{A}, \mathcal{E}\}, \mathcal{N}^{\prime}=\left\{\mathcal{C}_{1}\right\} ;$
2. $\mathcal{M}=\left\{\mathcal{B}, \mathcal{C}_{2}\right\}, \mathcal{N}=\left\{\mathcal{B}, \mathcal{C}_{2}\right\}$;

We omit a straightforward proof. Since no subset $Y \subset m \times n \times k$ equivalent to a regular set Y^{\prime} with sections $\{\mathcal{A}, \mathcal{E}\},\left\{\mathcal{C}_{1}\right\}$ or $\left\{\mathcal{B}, \mathcal{C}_{2}\right\}$ can be a subset of a minimal set Z of the inclusion hyperspace B_{2} with sections $\{\mathcal{B}, \mathcal{E}\}$, we obtain that under $\left({ }^{*}\right)$ the equality $G \Theta\left(\mathrm{~B}_{3}\right)=\mathrm{B}_{2}$ is impossible, which is a contradiction. Thus $\left({ }^{* *}\right)$ holds, and the unique regular minimal element of B_{2} has sections of the types $\mathcal{C}_{1}, \mathcal{E}$, i.e. minimal elements of B_{2} have the forms $\{i\} \times\{j\} \times k$, where $0 \leqslant i \leqslant m-1,0 \leqslant j \leqslant n-1$.

Consider the family of inclusion hyperspaces
$\mathrm{C}_{3}=\mu(m \times n \times k) \circ G \mu(m \times n \times k)\left(V_{m, \cdot, \cdot, \cdot,, k}\right)=\mu(m \times n \times k) \circ \mu G(m \times n \times k)\left(V_{m, \cdot, \cdot, \cdot,, k}\right)$.
It satisfies (!) as well. On the one hand, $\mathrm{C}_{3}=\mu(m \times n \times k) \circ \mu G(m \times n \times k) \circ G^{2} \psi\left(V_{m, \cdot, \cdot n}\right)$, where we again define the mapping $\psi: m \times n \rightarrow G(m \times n \times k)$ by the formula $\psi(i, j)=$ $r(m \times n \times k)(\{(i, j)\} \times k)$. Thus $\mu G(m \times n \times k)\left(V_{m, \cdot, \cdot n,,, k}\right)=\mu G(m \times n \times k) \circ G^{2} \psi\left(V_{m, \cdot, n}\right)=$ $G \psi \circ \mu(m \times n)\left(V_{m, \cdot,, n}\right)=G \psi\left(\mathrm{~A}_{1}\right)=G \psi\left(V_{m, n}\right)=V_{m, n, \cdot, k}$. Therefore $\mathrm{C}_{3}=\mu(m \times n \times$ $k)\left(V_{m, n, \cdot, k}\right)=\mathrm{B}_{3}$.

On the other hand, $\mathrm{C}_{3}=\mu(m \times n \times k) \circ G \mu(m \times n \times k) \circ G \hat{e}\left(V_{m, .}\right)$, where the mapping $\hat{e}: m \rightarrow G^{2}(m \times n \times k)$ sends each $i \in m$ to $G^{2} e_{i}\left(V_{, n,,, k}\right)$, where $e_{i}: n \times k \rightarrow m \times n \times k$, $e_{i}(j, l)=(i, j, l)$. We have $\mu(m \times n \times k) \circ \hat{e}(i)=\mu(m \times n \times k) \circ G^{2} e_{i}\left(V_{,, n, \cdot, k}\right)=G e_{i} \circ \mu(n \times$ $k)\left(V_{\cdot, n,, k}\right)=G e_{i}\left(\mathrm{~A}_{4}\right)$. Thus $\mathrm{C}_{3}=\mu(m \times n \times k) G \xi\left(V_{m, \cdot}\right)$, where $\xi: m \rightarrow G(m \times n \times k)$, $\xi(l)=G e_{i}\left(\mathrm{~A}_{4}\right)$.

Under $(+)$ we have $G \xi\left(V_{m, \cdot}\right)=V_{m, \cdot, n, k}$.
If $(++)$ is true, we put $n^{\prime}=n \cdot k^{n}, k^{\prime}=n+k$ and fix a bijection $q: n \cdot k^{n} \rightarrow$ $\underbrace{k \times k \times \cdots \times k}_{n} \times n$. Then $G \xi\left(V_{m,,}\right)=G^{2} \Xi\left(V_{m, \cdot, n^{\prime}, k^{\prime}}\right)$, where $\Xi: m \times n^{\prime} \times k^{\prime} \rightarrow m \times n \times k$ is defined by the formula: $\Xi(i, j, l)=\left\{\begin{array}{l}(i, l, q(j)(l)) \text { if } l<n ; \\ (i, q(j)(n), l-n) \text { if } l \geqslant n .\end{array}\right.$

Therefore $\mathrm{C}_{3}=\mu(m \times n \times k) \circ G^{2} \Xi\left(V_{m, \cdot, n^{\prime}, k^{\prime}}\right)=G \Xi \circ \mu\left(m \times n^{\prime} \times k^{\prime}\right)\left(V_{m, \cdot, n^{\prime}, k^{\prime}}\right)=G \Xi\left(\mathrm{~B}_{2}\right)$ (if we replace $n \leftarrow n^{\prime}, k \leftarrow k^{\prime}$). Thus we obtain $G \Xi\left(\mathrm{~B}_{2}\right)=\mathrm{B}_{3}$. Choose a minimal element $Y \in \mathrm{~B}_{2}$ equivalent to a regular set with sections \mathcal{B}, \mathcal{E} and equal to $\{0\} \times n^{\prime} \times\{0\} \cup\{0\} \times$ $\left\{q^{-1}((0,0, \ldots, 0))\right\} \times k^{\prime}$. It is easy to verify that $\Xi(Y)=\{0\} \times n \times\{0\} \cup\{0\} \times\{0\} \times k$ is a regular set with sections of the types \mathcal{B}, \mathcal{E}, that cannot be in B_{3}. Thus the assumption $(++)$ is false, and the only possible variant is $(+),\left({ }^{* *}\right)$.

Now we know that the inclusion hyperspace B_{1} has regular minimal elements with sections $\left\{\mathcal{C}_{1}\right\}$, the inclusion hyperspace B_{2} has regular minimal elements with sections $\left\{\mathcal{C}_{1}, \mathcal{E}\right\}$, and the inclusion hyperspace B_{3} has regular minimal elements with sections $\{\mathcal{A}, \mathcal{E}\}$.

Consider the family of inclusion hyperspaces $\mathrm{D}=\mu(s \times m \times n \times k)\left(V_{s, m, n, k}\right)$ that is parameterized by natural s, m, n, k. It is obvious that D satisfies (!) and $G \operatorname{pr}_{234}(\mathrm{D})=\mathrm{B}_{1}$, $G \operatorname{pr}_{134}(\mathrm{D})=\mathrm{B}_{2}, G \operatorname{pr}_{124}(\mathrm{D})=\mathrm{B}_{3}$. This implies that the only regular minimal element of D has the form $\{0\} \times m \times\{0\} \times k$.

Lemma 8. If $\alpha, \beta: G^{2} \rightarrow G$ are natural transformations, and for all natural s, m, n, k the equality $\alpha(s \times m \times n \times k)\left(V_{s, m, n, k}\right)=\beta(s \times m \times n \times k)\left(V_{s, m, n, k}\right)$ holds, then $\alpha=\beta$.

Proof. First we will prove that for any $\mathrm{F} \in G^{2} X$, where X is a finite compactum, there are natural s, m, n, k and a mapping $f: s \times m \times n \times k \rightarrow X$ such that $G^{2} f\left(V_{s, m, n, k}\right)=\mathrm{F}$. Put $k=|X|, n=|\exp X|, m=|G X|, s=|\exp G X|$, and for any $F \in \exp X$ fix a surjection $\alpha_{F}: k \rightarrow F$. For each $\mathcal{F} \in G X$ fix a surjection $\beta_{\mathcal{F}}: n \rightarrow \mathcal{F}$, and put $h_{\mathcal{F}}: n \times k \rightarrow X$,
$h_{\mathcal{F}}(j, l)=\alpha_{\beta_{\mathcal{F}}(j)}(k)$. It is easy to see that $G h_{\mathcal{F}}\left(V_{n, k}\right)=\mathcal{F}$. Now for each $H \in \exp G X$ fix a surjection $\gamma_{H}: m \rightarrow H$, and put $g_{H}: m \times n \times k, g_{H}(i, j, k)=h_{\gamma_{H}(i)}(j, l)$. Fix a surjection $\delta_{\mathrm{F}}: s \rightarrow \mathrm{~F}$ and put $f: s \times m \times n \times k, f(p, i, j, l)=g_{\delta_{\mathcal{F}}(p)}(i, j, k)$. It is straightforward to verify that the mapping f is required. Thus we obtain $\alpha X(\mathrm{~F})=\alpha X \circ G^{2} f\left(V_{s, m, n, k}\right)=$ $G f \circ \alpha(s \times m \times n \times k)\left(V_{s, m, n, k}\right)=G f \circ \beta(s \times m \times n \times k)\left(V_{s, m, n, k}\right)=\beta X \circ G^{2} f\left(V_{s, m, n, k}\right)=\beta X(\mathrm{~F})$. This implies that the components of the natural transformations α and β coincide on finite compacta. Since any zero-dimensional compactum can be represented as the inverse limit of finite compacta [6], and the inclusion hyperspace functor G is continuous, i.e. it preserves limits of inverse spectra, we have $\alpha X=\beta X$ for each zero-dimensional compactum X. Each compactum is a continuous image of a zero-dimensional compactum, and the functor G is epimorphic, i.e. it preserves the class of continuous surjections, therefore $\alpha X=\beta X$ for any compactum X.

This implies that the main result is true:
Theorem. There exists a unique monad in the category of compacta with the inclusion hyperspace functor as the functorial part.

REFERENCES

1. Заричный М.М. Монада суперрасширения и ее алгебры // Укр. матем. журн. - 1987. - Т.39, №3. С. 303-309.
2. Заричный М.М., Радул Т.Н. Монадь в категории компактов // Успехи матем. наук. - 1995. - Т. 50, вып. 3. - С. 83-108.
3. Радул Т. Монада гиперпространств включения и ее алгебры // Укр. матем. журнал. - 1990. - Т.42, №6. - С. 806-812.
4. Федорчук В.В. Млгкие отображения, многозначные ретракиии и функторы // Успехи матем. наук. - 1986. - Т. 41, вып. 6. - С. 121-159.
5. Федорчук В.В. Вероятностные меры в топологии // Успехи матем. наук. 1991. Т. 46, вып. 1. C. 41-80.
6. Федорчук В.В., Филиппов В.В. Общая топология: основные конструкции. - М.: Изд-во МГУ, 1988. - 252 с.
7. Mac Lane S. Categories for the working mathematician. - 2nd ed., Springer-Verlag, N.Y., 1998. - 314 p.
8. S̀wirszcz T. Monadic functors and convexity, Bull. Acad. Pol. Sci., Sér. Math., Astr. et Phys. - 1974, V. 22. - P. 39-42.
