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It is proved that there exists a unique monad in the category of compacta with the inclusion
hyperspace functor as the functorial part, namely the classical inclusion hyperspace monad.

Î. Ð. Íèêèôîð÷èí. Ìîíàäà äëÿ ôóíêòîðà ãèïåðïðîñòðàíñòâ âêëþ÷åíèÿ ÿâëÿåòñÿ åäèí-
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Äîêàçàíî, ÷òî êëàññè÷åñêàÿ ìîíàäà ãèïåðïðîñòðàíñòâ âêëþ÷åíèÿ ÿâëÿåòñÿ åäèíñòâåí-
íîé ìîíàäîé â êàòåãîðèè êîìïàêòîâ ñ ôóíêòîðîì ãèïåðïðîñòðàíñòâ âêëþ÷åíèÿ â êà÷åñòâå
ôóíêòîðèàëüíîé ÷àñòè.

Introduction. Monads (or triples) [7] are both important objects of study and useful tools,

e.g., for investigating of analytical and topological properties by algebraic means. Further

we restrict our attention to monads in the category of compacta. We can recall, for example,

characterization of convex compacta as algebras for the probability measure monad (see [8]).

Because of importance of monad structure a natural question of its unicity for a particular

functor arise. Problems of this kind were solved for classical monads in the category of

compacta, e.g. for the hyperspace monad H = (exp, s, u) [4], for the superextension monad

L = (λ, ηL, µL) [1] and for the probability measure monad P = (P, ηP , µP ) [5]. It is proved

that for each of the functors exp, λ and P there are no other monads in the category of

compacta. Nevertheless, for the inclusion hyperspace monad the problem of unicity remained

open for a long time.

The aim of this paper is to provide an affirmative answer to this question. The common

approach that allowed to solve the problems mentioned above, was to investigate images

under the multiplication (in the sense of monad) of some �generic� elements in the correspon-

ding spaces of closed subsets, maximal linked systems or probability measures. The case of

the inclusion hyperspace functor is relatively difficult because of much more combinatorial

complexity even for not very large finite spaces. Therefore it was necessary to develop special

tools, namely �fine� equivalence relations on sets of nonempty subsets of cartesian products

of finite spaces, such that it suffices to study only �main representatives� of each inclusion

hyperspace. These �auxiliary statements� constitute the largest by size part of the paper.

After that we use all equalities, included into the definition of monad, to gradually reduce

the set of all alternatives possible for images of �generic elements�, until the answer becomes

quite unambiguous: there can be no more that one monad in the category of compacta with

the inclusion hyperspace functor as the functorial part. Since such monad is well known, it

is unique for this functor.
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1. Preliminaries. First we recall some necessary definitions and facts. A compactum is a

compact Hausdorff topological space. We write A ⊂
cl
X (resp. A ⊂

op
X) if A is a closed (resp.

open) subset of X. See [7] for the definitions of category, functor, natural transformation.

The category of compacta Comp consists of all compact Hausdorff spaces as objects and all

continuous mappings of compacta as arrows.

The hyperspace [6] of a compactum X is the set expX of all nonempty closed subsets of

X with the Vietoris topology. The standard base of this topology consists of all sets of the

form

〈U1, U2, . . . , Un〉 = {G ∈ expX | G ⊂ U1 ∪ U2 ∪ . . . Un, G ∩ Ui 6= ∅, i ∈ {1, 2, . . . , n}},

where n ∈ N and sets Ui are open inX. The hyperspace of a compactum is also a compactum,

thus for a compactum X the spaces exp2X = exp(expX), exp3X = exp(exp2X), . . . are
compacta as well.

For a continuous mapping f : X → Y of compacta the mapping exp f : expX → expY ,
that is defined by the formula exp f(A) = {f(x) | x ∈ A} for A ∈ expX, is continuous.

The inclusion hyperspace [6] on a compactum X is a subset F ⊂ expX such that

1) F is nonempty and closed in expX;

2) if A,B ⊂
cl
X, then A ∈ F , A ⊂ B imply B ∈ F .

By definition each inclusion hyperspace G is an element of exp2X. We denote by GX
the set of all inclusion hyperspaces on X with topology induced by the topology on exp2X.

The subspace GX, being closed, is a compactum.

If f : X → Y is a continuous mapping of compacta, let Gf : GX → GY ,

Gf(F) = {B ⊂
cl
Y | exists A ∈ F , f(A) ⊂ B}.

Then Gf is well-defined and continuous.

The assignments exp, G are functors in the category of compacta, i.e. they preserve

sources and targets of arrows, compositions and identity maps [7]. Therefore the powers

expn = exp ◦ exp ◦ · · · ◦ exp︸ ︷︷ ︸
n

and Gn = G ◦G ◦ · · · ◦G︸ ︷︷ ︸
n

are functors Comp → Comp as well.

We also need an another (trivial) example of functor Comp → Comp, namely, the identity

functor 1Comp that sends each compactum or mapping to itself.

The functor G preserves monomorphisms, that makes possible for an arbitrary embedding

of compacta i : X0 ↪→ X to identify each element A ∈ GX0 with its image Gi(A) = {B ∈
expX | B ⊃ A for some A ∈ A} ∈ GX, and the entire spaceGX0 with the imageGi(GX0) ⊂
GX. The functor G also preserves intersections, i.e. A ∈ GXα for all elements of a family

{Xα | α ∈ A} of closed subsets ofX implies A ∈ G(
⋂

α∈AXα). Thus we can define the support

supp A of an element A ∈ GX in usual way as the least closed subspace X0 ⊂ X such that

A ∈ GX0.

It is straightforward to show that each element of an inclusion hyperspace on a compac-

tum contains a minimal with respect to inclusion element of this inclusion hyperspace. Any

inclusion hyperspace is uniquely determined by its minimal elements. It is obvious that the

minimal elements of the above mentioned inclusion hyperspaces A ∈ GX0 and Gi(A) ∈ GX
coincide, which again confirms legitimacy of the used identification. For all X0 ⊂

cl
X and

A ∈ GX we have A ∈ GX0 if and only if all minimal elements of A are contained in X0.
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We denote for an element B ∈ exp2X :

rX(B) = {A ∈ expX | A ⊃ B for some B ∈ B}.
Then rX is a continuous retraction exp2X → GX.

For a compactum X the mappings ηX : X → GX, µX : G2X → GX are defined by

the formulae: ηX(a) = {F ⊂
cl
X | F 3 a}, µX(F) =

⋃
A∈F

⋂A. They are well-defined

and continuous, and the collections η = (ηX)X∈ObComp, µ = (µX)X∈ObComp are natural

transformations [7] 1Comp → G and G2 → G resp. Moreover, they are the unit and the

multiplication of the monad G = (G, η, µ) in Comp, i.e., the diagrams

GX
ηGX //

1GX ##HHHHHHHHH

GηX
��

G2X

µX

��
G2X µX

// GX

G3X
GµX //

µGX
��

G2X

µX

��
G2X µX

// GX

commute for each object X of the category Comp.
See [2], [3] on the properties of this monad. It also has deep connections with the capacity

monad in the category of compacta, which in turn has applications to the decision making

theory.

It is easy to show that η is the unique natural transformation 1Comp → G. The aim of

this paper is to prove that the natural transformation µ is unique in the following sense: if

(G, η, µ′) is a monad in the category of compacta, then µ′ = µ.

2. Auxiliary statements. We denote by n the set {0, 1, 2, . . . , n − 1} with the discrete

topology. We regard the elements of a cartesian product of n sets as sequences indexed by

numbers 0, 1, . . . , n− 1. Nevertheless, it is convenient to number factors of this product by

1, 2, . . . , n.
For any k ∈ {0, 1, 2, . . .}, n1, n2, . . . , nk ∈ {1, 2, 3 . . .} we assume that subsets of the

cartesian product n1×n2×· · ·×nk are ordered by inclusion, i.e. A precedes B if A ⊂ B. For
k = 0 we consider this product as the set {()} with the empty sequence () being its unique

element. For 0 6 l 6 k, 0 6 i1 6 n1 − 1, 0 6 i2 6 n2 − 1, . . . , 0 6 il 6 nl − 1 call the set

[A]i1,i2,...,il = pr
(l+1)(l+2)...k

(A ∩ ({i1} × {i2} × · · · × {il} × nl+1 × · · · × nk)) ⊂ nl+1 × · · · × nk

the (i1, i2, . . . , il)-th section of the set A. As the restriction of the projection pr(l+1)(l+2)...k to

the intersection A∩({i1}×{i2}×· · ·×{il}×nl+1×· · ·×nk) is a bijection onto [A]i1,i2,...,il, we

identify the section with the corresponding intersection. In this sense we talk about restriction

of a mapping from A to [A]i1,i2,...,il etc. Specifically we identify the product {i}×n2×· · ·×nk

with n2 × · · · × nk.

We extend lexicographically the strict partial order �(� on the set of all subsets of the

cartesian product n1 × n2 × · · · × nk to a strict linear order ≺. For k = 0 let ∅ ≺ {()}. If
k > 1, A,B ⊂ n1 × n2 × · · · × nk, we put A ≺ B iff there is i ∈ {0, 1, . . . , n1 − 1} such

that [A]0 = [B]0, [A]1 = [B]1, . . . , [A]i−1 = [B]i−1, [A]i ≺ [B]i. The order reverse to �≺� is
denoted as ���. We write A � B if A ≺ B or A = B, and A � B if A � B or A = B.

Consider all products of the form n1×n2×· · ·×nk and inductively define a class of their

subsets called regular. For k = 0 we regard both ∅ and {()} as regular subsets. If k > 0, we
say that a subset A ⊂ n1 × n2 × · · · × nk is regular if:
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1) all sections [A]i, 0 6 i 6 n1 − 1, are regular subsets in n2 × · · · × nk;

2) in the set of sections [A]i, 0 6 i 6 n1 − 1, each element is either minimal of maximal

with respect to ⊂;
3) [A]0 � [A]1 � · · · � [A]n1−1, and only a section that is minimal with respect to ⊂ can

appear more than once.

Note that 1) implies that all sections [A]i1,i2,...,il of a regular subset A are regular subsets

in the corresponding products.

For k = 1 and n1 > 1 we have three regular subsets in n1 = {0, 1, . . . , n1−1}, namely ∅,

{0} and n1 itself. For k = 2 and n1, n2 > 1 there are six such subsets in n1×n2 : A = n1×n2,

B = n1 × {0} ∪ {0} × n2, C1 = {0} × n2, C2 = n1 × {0}, D = {(0, 0)}, E = ∅.

We call a mapping f : n1 × n2 × · · · × nk → m1 × m2 × · · · × mk a regular bijection

(surjection), if every its restriction onto a section [n1×n2×· · ·×nk]i1,i2,...,il, where 0 6 l 6 k,
is a bijection (surjection) to some section [m1×m2×· · ·×mk]j1,j2,...,jl

. The definition implies

that the composition of regular bijections (surjections) is a regular bijection (surjection), and

the mapping f should be a bijection (surjection) itself.

We call subsets A,B ⊂ n1×n2×· · ·×nk equivalent and write A ∼ B if there is a regular

bijection b : n1 × n2 × · · · × nk → n1 × n2 × · · · × nk such that b(A) = B.
Subsets A ⊂ n1 × n2 × · · · × nk, B ⊂ m1 ×m2 × · · · ×mk are called weakly equivalent

(denote A ≈ B) if at least one of the following holds:

1) k = 0 and A = B, i.e. A = B = ∅ or A = B = {()};
2) k > 0, for each i ∈ {0, 1, . . . , n1 − 1} there exists i′ ∈ {0, 1, . . . , m1 − 1} such that

[B]i′ ≈ [A]i, and for each j ∈ {0, 1, . . . , m1 − 1} there exists j′ ∈ {0, 1, . . . , n1 − 1} such that

[A]j′ ≈ [B]j .
It is obvious that A ∼ B =⇒ A ≈ B, and both �∼� are �≈� are equivalence relations.
A regular subset A ⊂ n1 × n2 × · · · × nk is called quite regular, if it is the least with

respect to ≺ of all regular sets that are weakly equivalent to A. An equivalent definition by

induction by k can be given:

1) all sections [A]i, 0 6 i 6 n1 − 1, are quite regular subsets in n2 × · · · × nk;

2) in the set of sections [A]i, 0 6 i 6 n1 − 1, any element is either minimal or maximal

with respect to ⊂;
3) [A]0 � [A]1 � · · · � [A]n1−1, and only the last section [A]n1−1 can be repeated.

In the sequel assume that for some k ∈ {0, 1, 2, . . .} and all n1, n2, . . . , nk ∈ {1, 2, 3 . . .}
an inclusion hyperspace K(n1, n2, . . . , nk) ∈ G(n1 × n2 × · · · × nk) is fixed, and

(!)
if f : n1 × n2 × · · · × nk → m1 ×m2 × · · · ×mk is a regular surjection, then
Gf(K(n1, n2, . . . , nk)) = K(m1, m2, . . . , mk).

Lemma 1. Each minimal element A ∈ K(n1, n2, . . . , nk) is equivalent to some regular set
A0 ∈ K(n1, n2, . . . , nk).

Proof. Assume that 1 6 l 6 k and a regular bijection bl : n1×n2×· · ·×nk → n1×n2×· · ·×nk

has already been built such that all sections of the set Al = bl(A) of the form [Al]i1,i2,...,il are

regular subsets in nl+1 × nl+2 × · · · × nk.

Note that (!) implies that the set of all elements of the inclusion hyperspace K(n1, n2, . . . ,
nk), as well as the set of all its minimal elements, are invariant with respect to any regular

bijection n1 × n2 × · · · × nk → n1 × n2 × · · · × nk. Therefore the set Al is also a minimal

element of K(n1, n2, . . . , nk).
Assume that the section [Al]i1,i2,...,il−1,il is neither minimal nor unique and maximal with

respect to ⊂ among [Al]i1,i2,...,il−1,0, . . . , [Al]i1,i2,...,il−1,nl−1. Then there are i′, i′′ 6= il, i
′ 6= i′′
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such that the section [Al]i1,i2,...,il−1,i′ is maximal, the section [Al]i1,i2,...,il−1,i′′ is minimal, and

[Al]i1,i2,...,il−1,i′′ ⊂ [Al]i1,i2,...,il−1,il ⊂ [Al]i1,i2,...,il−1,i′. We define regular surjections

ψ, θ : n1 × n2 × · · · × nl−1 × (nl + 1)× nl+1 × · · · × nk → n1 × n2 × · · · × nk

by the formulae

ψ(x1, x2, . . . , xn) =

{
(x1, x2, . . . , xn) if xl 6 ni − 1;

(x1, . . . , xl−1, i
′′, xl+1, . . . , xn) if xl = nl;

θ(x1, x2, . . . , xn) =



(x1, x2, . . . , xn) if x1 = i1, . . . , xl−1 = il−1,

xl 6= il, xl 6= nl;

(x1, . . . , xl−1, i
′, xl+1, . . . , xn)

if x1 = i1, . . . , xl−1 = il−1, xl = il;

(x1, . . . , xl−1, il, xl+1, . . . , xn)

if x1 = i1, . . . , xl−1 = il−1, xl = nl;

ψ(x1, x2, . . . , xn) otherwise.

Then ψ−1(A) ∈ K(n1, . . . , nl−1, nl + 1, nl+1, . . . , nk), thus A
′
l = θ(ψ−1(Al)) ∈ K(n1, . . . ,

nk). The sets Al and A
′
l coincide except for sections with the index (i1, i2, . . . , il−1, il). We

obtain [A′
l]i1,i2,...,il−1,il = [Al]i1,i2,...,il−1,i′′ ( [Al]i1,i2,...,il−1,il, and A′

l ( Al, which contradicts

to minimality of Al. Thus the assumption is false, and each section [Al]i1,i2,...,il−1,il is either

minimal or unique and maximal with respect ⊂ among [Al]i1,i2,...,il−1,0, . . . , [Al]i1,i2,...,il−1,nl−1.

For each i1 ∈ {1, 2, . . . , n1 − 1}, i2 ∈ {1, 2, . . . , n2 − 1}, . . . , il−1 ∈ {1, 2, . . . , nl−1 − 1}
choose a permutation σ = σi1,i2,...,il−1

: nl → nl such that

[Al]i1,i2,...,il−1,σ(nl−1) � [Al]i1,i2,...,il−1,σ(nl−2) � · · · � [Al]i1,i2,...,il−1,σ(1) � [Al]i1,i2,...,il−1,σ(0).

We define a mapping φl : n1 × n2 × · · · × nk → n1 × n2 × · · · × nk by the formula

φl : (i1, i2, . . . , in) = (i1, i2, . . . , il−1, σi1,i2,...,il−1
(il), il+1, ik).

Obviously φl is a regular bijection, the set Al−1 = φl(Al) is in K(n1, n2, . . . , nk), and for all

i1 ∈ {1, 2, . . . , n1 − 1}, . . . , il−1 ∈ {1, 2, . . . , nl−1 − 1} the sections satisfy a condition

[Al−1]i1,i2,...,il−1,nl−1 � [Al−1]i1,i2,...,il−1,nl−2 � · · · � [Al−1]i1,i2,...,il−1,1 � [Al−1]i1,i2,...,il−1,0.

Thus the regular bijection bl−1 = φl ◦ bl maps the set A to a set Al−1 ∈ K(n1, n2, . . . , nk)
such that all sections of the latter of the form [Al−1]i1,i2,...,il−1

are regular sets.

To start the induction, note that for l = k we can take the the identity map of n1×n2×
· · · × nk onto itself as a required bijection, and put Ak = A. Thus, decreasing l, we obtain

for l = 0 a regular bijection b0 : n1×n2×· · ·×nk → n1×n2×· · ·×nk such that the section

with the empty index of the set A0 = b0(A), i.e. the set A0 itself, is regular.

Lemma 2. Let A ⊂ n1 × n2 × · · · × nk, A
′ ⊂ n′

1 × n′
2 × · · · × n′

k, and A ≈ B. Then
A ∈ K(n1, n2, . . . , nk) if and only if A′ ∈ K(n′

1, n
′
2, . . . , n

′
k).
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Proof. Put m1 = max{n1, n
′
1}, m2 = max{n2, n

′
2}, . . . , mk = max{nk, n

′
k}, and choose

arbitrary regular surjections f : m1×m2×· · ·×mk → n1×n2×· · ·×nk and f
′ : m1×m2×· · ·×

mk → n′
1×n′

2×· · ·×n′
k. If B = f−1(A), B′ = (f ′)−1(A′), then A ≈ B, A′ ≈ B′, thus B ≈ B′,

and A ∈ K(n1, n2, . . . , nk) ⇐⇒ B ∈ K(m1, m2, . . . , mk), A
′ ∈ K(n′

1, n
′
2, . . . , n

′
k) ⇐⇒ B′ ∈

K(m1, m2, . . . , mk). Therefore it suffices to prove that B ∈ K(m1, m2, . . . , mk) ⇐⇒ B′ ∈
K(m1, m2, . . . , mk) for B ≈ B′, B,B′ ⊂ m1 ×m2 × · · · ×mk. Let B

′′ ⊂ m1 ×m2 × · · · ×mk

be a subset that is the least with respect �≺� among all subsets that are weakly equivalent

to B and B′. We will prove that B ∈ K(m1, m2, . . . , mk) ⇐⇒ B′′ ∈ K(m1, m2, . . . , mk),
B′ ∈ K(m1, m2, . . . , mk) ⇐⇒ B′′ ∈ K(m1, m2, . . . , mk).

Assume that for some l ∈ {0, 1, 2, . . . , k} a subset Bl ⊂ m1 × m2 × · · · × mk has been

constructed such that:

1) for any i1 ∈ m1, i2 ∈ m2, . . . , il ∈ ml the section [Bl]i1,i2,...,il is the least with respect

to �≺� among all subsets ml+1 ×ml+2 × · · · ×mk that are weakly equivalent to [B]i1,i2,...,il;

2) B ∈ K(m1, m2, . . . , mk) ⇐⇒ Bl ∈ K(m1, m2, . . . , mk).

Then Bl ≈ B. Define a set Bl−1 ⊂ m1×m2×· · ·×mk by the following condition: for each

i1 ∈ m1, i2 ∈ m2, . . . , il−1 ∈ ml−1 the section [Bl−1]i1,i2,...,il−1
is the least with respect to �≺�

among all subsets ml×ml+1×· · ·×mk that are equivalent to [Bl]i1,i2,...,il−1
. It is obvious that

Bl−1 ≈ Bl. We prove that Bl−1 ∈ K(m1, m2, . . . , mk) ⇐⇒ Bl ∈ K(m1, m2, . . . , mk). For
any i1 ∈ m1, i2 ∈ m2, . . . , il−1 ∈ ml−1 the set of sections {[Bl−1]i1,i2,...,il | 0 6 il 6 ml − 1}
coincide with the set of sections {[Bl]i′1,i′2,...,i′l | 0 6 i′l 6 ml − 1}. Thus each of the two sets

Bl−1 and Bl can be obtained from the other one by a sequence of transformations on subsets

of m1 ×m2 × · · · ×mk of the following two types:

1) fix i1 ∈ m1, i2 ∈ m2, . . . , il−1 ∈ ml−1, il, i
′
l ∈ ml, il 6= i′l, and from a set A ⊂ m1×m2×

· · · ×mk obtain a set A′ by the permutation of sections [A]i1,i2,...,il−1,il and [A]i1,i2,...,il−1,i′l;

2) fix i1 ∈ m1, i2 ∈ m2, . . . , il−1 ∈ ml−1, il, i
′
l, i

′′
l ∈ ml, il 6= i′l, such that [A]i1,i2,...,il−1,il =

[A]i1,i2,...,il−1,i′l 6= [A]i1,i2,...,il−1,i′′l for a set A ⊂ m1 ×m2 × · · · ×mk, replace [A]i1,i2,...,il−1,i′l by

[A]i1,i2,...,il−1,i′′l and obtain a set A′.
It is sufficient to show that transformations 1), 2) preserve the class of elements of

K(m1, m2, . . . , mk). Consider the transformation 1) and define a regular bijection Φ: m1 ×
m2 × · · · ×mk → m1 ×m2 × · · · ×mk by the formula

Φ(j1, j2, . . . , jk) =


(i1, i2, . . . , i

′
l, jl+1, . . . , jk) if j1 = i1, . . . , jl−1 = il−1, jl = il;

(i1, i2, . . . , il, jl+1, . . . , jk) if j1 = i1, . . . , jl−1 = il−1, jl = i′l;
(j1, j2, . . . , jk) otherwise.

Then Φ(A) = A′, thus A ∈ K(m1, m2, . . . , mk) ⇐⇒ A′ ∈ K(m1, m2, . . . , mk).

For transformation 2) define regular surjections

Ψ,Ψ′ : m1 ×m2 × · · · ×ml−1 × (ml + 1)×ml+1 × · · · ×mk → m1 ×m2 × · · · ×mk

by the formulae

Ψ(j1, j2, . . . , jk) =


(j1, j2, . . . , jl−1, i

′′
l , jl+1, . . . , jk) if

jl = ml;

(j1, j2, . . . , jk) otherwise;
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Ψ′(j1, j2, . . . , jk) =



(j1, j2, . . . , jl−1, i
′′
l , jl+1, . . . , jk) if

jl = ml, (j1, j2, . . . , jl−1) 6= (i1, i2, . . . , il−1);

(i1, i2, . . . , il−1, i
′
l, jl+1, . . . , jk) if

(j1, j2, . . . , jl−1, jl) = (i1, i2, . . . , il−1, ml);

(i1, i2, . . . , il−1, il, jl+1, . . . , jk) if

(j1, j2, . . . , jl−1, jl) = (i1, i2, . . . , il−1, i
′
l);

(j1, j2, . . . , jk) otherwise.

Then A ∈ K(m1, m2, . . . , mk), thus Ψ−1(A) ∈ K(m1, m2, . . . , ml−1, ml + 1, ml+1, . . . , mk),
and A′ = Ψ′(Ψ−1(A)) ∈ K(m1, m2, . . . , mk).

Therefore Bl−1 ∈ K(m1, m2, . . . , mk) ⇐⇒ Bl ∈ K(m1, m2, . . . , mk), and Bl−1 ≈ B,
which implies Bl−1 ∈ K(m1, m2, . . . , mk) ⇐⇒ B ∈ K(m1, m2, . . . , mk). For l = k we can

put Bl = B and use induction to obtain that there exists a subset B0 that is the least with

respect to �≺� among all subsets of m1×m2×· · ·×mk that are weakly equivalent to B, and
B0 ∈ K(m1, m2, . . . , mk) ⇐⇒ B ∈ K(m1, m2, . . . , mk). But this implies B0 = B′′, therefore
B ∈ K(m1, m2, . . . , mk) ⇐⇒ B′′ ∈ K(m1, m2, . . . , mk), and B

′ ∈ K(m1, m2, . . . , mk) ⇐⇒
B′′ ∈ K(m1, m2, . . . , mk) as well. Thus we obtain B ∈ K(m1, m2, . . . , mk) ⇐⇒ B′ ∈
K(m1, m2, . . . , mk).

This lemma implies that the inclusion hyperspace K(n1, n2, . . . , nk) is uniquely determi-

ned by the set of all sets of sections {[A]0, [A]1, . . . , [A]n1−1} for regular minimal elements

A ∈ K(n1, n2, . . . , nk).
For n1, n2 ∈ {1, 2, . . .} we denote by Vn1,n2 the element G(n1×n2) with minimal elements

{0}×n2, {1}×n2, . . . , {n1− 1}×n2. Now by induction define Vn1,n2,...,n2k−1,n2k
for k > 1 as

the element of the space Gk(n1 × n2 × · · · × n2k−1 × n2k) with minimal sets of the form

{Gk−1ji1,0(Vn3,n4,...,n2k−1,n2k
), Gk−1ji1,1(Vn3,n4,...,n2k−1,n2k

), . . . , Gk−1ji1,n2−1(Vn3,n4,...,n2k−1,n2k
)}

for 0 6 i 6 n1 − 1, where the embeddings ji1,i2 : n3 × n4 × · · · × n2k−1 × n2k → n1 × n2 ×
· · · × n2k−1 × n2k are defined by the formulae ji1,i2(i3, . . . , i2k) = (i1, i2, i3, . . . , i2k).

Let n1, n2, . . . , n2k ∈ {1, 2, . . .}, and for some 1 6 l1 < l2 < · · · < ls 6 2k we have

nl2 = nl2 = · · · = nls = 1. Then the projection p : n1 × n2 × · · · × n2k →
∏

16l62k,
l/∈{l1,l2,...,ls}

nl is a

bijection. We denote the image

Gkp(Vn1,n2,...,n2k−1,n2k
) ∈ Gk(

∏
16l62k,

l/∈{l1,l2,...,ls}

nl )

by Vṅ1,ṅ2,...,ṅ2k−1,ṅ2k
, where the sequence ṅ1, ṅ2, . . . , ṅ2k−1, ṅ2k is obtained from n1, n2, . . . ,

n2k−1, n2k by replacement of all elements with indices l1, l2, . . . , ls (that are equal to 1) by
dots.

E.g. V·,m,n,· ∈ G2(m× n) is the image of the inclusion hyperspace V1,m,n,1 ∈ G2(1×m×
n× 1) under G2 pr23, where pr23 : 1×m× n× 1→ m× n is the projection.

Lemma 3. Let n1, n2, . . . , n2k−1, n2k ∈ {·, 1, 2, . . .}, and n2p−1 = n2p = · for some 1 6 p 6 k.
Then

Vn1,n2,...,n2k−1,n2k
= Gp−1ηGk−p

∏
16l62k,

nl 6=·

nl (Vn1,n2,...,n2p−2,n2p+1,...,n2k
).
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Proof. For p = 1 and arbitrary k > p the inclusion hyperspace V·,·,n3,...,n2k−1,n2k
has the

unique minimal set {Vn3,...,n2k−1,n2k
}, therefore is equal to ηGk−1

∏
16l62k,

nl 6=·

nl (Vn3,...,n2k−1,n2k
), and

the statement is true. Assume that is holds for all p 6 p0 and all k > p. Consider the case

n1, n2 ∈ {1, 2, . . .}, p = p0 + 1. The inclusion hyperspace Vn1,n2,...,n2k−1,n2k
has minimal sets

{Gk−1ji1,0(Vn3,n4,...,n2k−1,n2k
), Gk−1ji1,1(Vn3,n4,...,n2k−1,n2k

),

. . . , Gk−1ji1,n2−1(Vn3,n4,...,n2k−1,n2k
)}

for 0 6 i 6 n1 − 1, where the embedding ji1,i2 are defined above. But by the inductive

assumption these sets can be written as

{Gk−1ji1,0(G
p0−1ηGk−p0−1

∏
36l62k,

nl 6=·

nl (Vn3,n4,...,n2p−2,n2p+1,...,n2k−1,n2k
)),

Gk−1ji1,1(G
p0−1ηGk−p0−1

∏
36l62k,

nl 6=·

nl (Vn3,n4,...,n2p−2,n2p+1,...,n2k−1,n2k
)), . . . ,

Gk−1ji1,n2−1(G
p0−1ηGk−p0−1

∏
36l62k,

nl 6=·

nl (Vn3,n4,...,n2p−2,n2p+1,...,n2k−1,n2k
))}.

Note that η : 1Comp → G is a natural transformation and p0 − 1 < k, therefore

Gk−1ji1,i2 ◦Gp0−1ηGk−p0−1
∏

36l62k,
nl 6=·

nl = Gp0−1ηGk−p0−1
∏

16l62k,
nl 6=·

nl ◦Gk−2ji1,i2.

Thus the minimal sets of the inclusion hyperspace Vn1,n2,...,n2k−1,n2k
are the images of the

minimal sets of the inclusion hyperspace Vn1,n2,...,n2p−2,n2p+1,...,n2k−1,n2k
under the mapping

Gp0−1ηGk−p0−1
∏

16l62k,
nl 6=·

nl . Since p0 + 1 = p, we obtain the required equality

Vn1,n2,...,n2k−1,n2k
= Gp−1ηGk−p

∏
16l62k,

nl 6=·

nl (Vn1,n2,...,n2p−2,n2p+1,...,n2k−1,n2k
).

Passing to cases, when one or two of the indices n1, n2 are equal to �·�, is trivial.
Thus the statement of the lemma holds for all natural p.

3. Proof of the main result. In the sequel we assume that G = (G, η, µ) is a monad in the

category of compacta with the inclusion hyperspace functor as the functorial part, and the

natural transformations η and µ are arbitrary. As we remarked above, ambiguity is possible

only in the choice of the natural transformation µ : G2 → G.
We investigate images under this transformation of certain simple inclusion hyperspaces.

By Lemma 3 we have µ(m×n)(V·,·,m,n) = µ(m×n) ◦ ηG(m× n)(Vm,n) = Vm,n. Analogously

µ(m× n)(Vm,n,·,·) = µ(m× n) ◦Gη(m× n)(Vm,n) = Vm,n.

It is obvious that for any regular surjection f : m×n→ m′×n′ the equalityG2f(V·,m,n,·) =
V·,m′,n′,·, G2f(Vm,·,n,·) = Vm′,·,n′,·, G2f(V·,m,·,n) = V·,m′,·,n′, G2f(Vm,·,·,n) = Vm′,·,·,n′ holds. Thus
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each of the collections of inclusion hyperspaces µ(m× n)(V·,m,n,·), µ(m× n)(Vm,·,n,·), µ(m×
n)(V·,m,·,n), µ(m× n)(Vm,·,·,n), where m,n ∈ N, satisfies condition (!). Therefore all minimal

sets of any of these inclusion hyperspaces can be obtained by regular bijectionsm×n→ m×n
from its regular minimal elements.

Let A1 = µ(m× n)(Vm,·,·,n). Since

G pr1(A1) = G pr1 ◦µ(m× n)(Vm,·,·,n) = µm ◦G2 pr1(Vm,·,·,n) = µm(Vm,·,·,·) = Vm,· ∈ Gm

is the inclusion hyperspace with minimal sets {0}, {1}, . . . , {m−1}, the inclusion hyperspace

A1 contains all sets pr1
−1({0}) = {0} × n, pr1

−1({1}) = {1} × n, . . . , pr1
−1({m − 1}) =

{m−1}×n. If the regular set C1 = {0}×n is not minimal, it should contain a less set X that

is in A1 and is equivalent to a regular set. The unique possible form of this set X is {(0, i)} for
0 6 i 6 n1−1. Thus all singletons inm×n are minimal in A1. Then the inclusion hyperspace

G pr2(A) ∈ Gn also should contain all singletons in n, which is impossible because

G pr2(A1) = G pr2 ◦µ(m×n)(Vm,·,·,n) = µm◦G2 pr2(Vm,·,·,n) = µm(V·,·,·,n) = V·,n = {n} ∈ Gn.

Thus the set {0} × n, as well as the sets {1} × n, . . . , {m − 1} × n that are equivalent to

it, is minimal in A1. Assume that A1 contains a minimal set Y that is not equivalent to C1.

Then Y is equivalent to a regular set that in incomparable with C1 with respect to �⊂�, i.e. is
equivalent to C2. But the assumption C2 ∈ A1 is also incompatible with the form of G pr2(A1).
Thus the collection of minimal elements of A1 has the form {{0}×n, {1}×n, . . . , {m−1}×n},
i.e. A1 = Vm,n.

Let A2 = µ(m× n)(V·,m,n,·). We have

G pr1(A2) = G pr1 ◦µ(m× n)(V·,m,n,·) =

= µm ◦G2 pr1(V·,m,n,·) = µm(V·,m,·,·) = V·,m = {m} ∈ Gm,

therefore all elements of A2 under the first projection should map onto m. We also have

G pr2(A2) = G pr2 ◦µ(m× n)(V·,m,n,·) =

= µn ◦G2 pr2(V·,·,n,·) = µn(V·,·,n,·) = Vn,· = exp n ∈ Gn,

therefore A2 contains all sets pr2
−1({0}) = m×{0}, pr2

−1({1}) = m×{1}, . . . , pr2
−1({n−

1}) = m×{n−1}, i.e. sets that are equivalent to C2. Since all subsets ofm×n with surjective

projection to m contain subsets that are equivalent to C2, the set of minimal elements of A2

consists only of these sets. In other words, A2 consists of all subsets of m × n that contain

subsets of the form {(0, i0), (1, i1), . . . , (m− 1, im−1)}, where 0 6 ik 6 n for 0 6 k 6 m− 1.
Let A3 = µ(m× n)(Vm,·,n,·). We have

G pr1(A3) = G pr1 ◦µ(m× n)(Vm,·,n,·) =

= µm ◦G2 pr1(Vm,·,n,·) = µm(Vm,·,·,·) = Vm,· = expm ∈ Gm,

therefore A3 contains all sets pr1
−1({0}) = {0}× n, pr1

−1({1}) = {1}× n, . . . , pr1
−1({m−

1}) = {m − 1} × n. Analogously G pr2(A3) = Vn,· = expn ∈ Gn implies that A3 contains

the set pr2
−1({0}) = m×{0}, as well as all subsets m× n that are equivalent to it, i.e. sets

of the form {(0, i0), (1, i1), . . . , (m− 1, im−1)}, where 0 6 i0, i1, . . . , im−1 6 n− 1.
Only two mutually exclusive assumptions are possible:
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(*)
sets {0} × n, {1} × n, . . . , {m − 1} × n and m × {0}, m× {1}, . . . , m × {n− 1}
exhaust the collection of all minimal sets of the inclusion hyperspace A3;

(**)
there exists a minimal set X ∈ A3 that is distinct from {0} × n, {1} × n, . . . ,
{m− 1} × n and m× {0}, m× {1}, . . . , m× {n− 1}.

In the case (**) only X = {(i, j)}, where 0 6 i 6 m − 1, 0 6 j 6 n − 1, is possible.

Therefore minimal elements of A3 are all singletons {(i, j)}, 0 6 i 6 m− 1, 0 6 j 6 n− 1,
i.e. for (**) we have A3 = exp(m× n).

Let A4 = µ(m× n)(V·,m,·,n). We have

G pr1(A4) = G pr1 ◦µ(m× n)(V·,m,·,n) =

= µm ◦G2 pr1(V·,m,·,n) = µm(V·,m,·,·) = V·,m = {m} ∈ Gm.
Analogously

G pr2(A4) = G pr2 ◦µ(m× n)(V·,m,·,n) =

= µn ◦G2 pr2(V·,m,·,n) = µn(V·,m,·,·) = V·,m = {n} ∈ Gn.
Thus both the first and the second projections of any element of A4 should be surjective.

Therefore we can obtain two cases:

(+)
minimal elements of the inclusion hyperspace A4 are equivalent to A = m× n, i.e.
A4 = {m× n};

(++)

minimal elements of the inclusion hyperspace A4 are equivalent to B = {0} ×
n ∪ m × {0}, i.e. A4 consists of all subsets of m × n that contain subsets of the
form {l} × n ∪ {(0, i0), (1, i1), . . . , (m − 1, im−1)}, where 0 6 l 6 m − 1, 0 6
i0, i1, . . . , im−1 6 n− 1.

We omit an easy proof of the following

Lemma 4. If any of the statements (*), (**), (+), (++) holds for some m,n > 2, then it
holds for all m,n > 2.

Similar arguments are applicable also to the inclusion hyperspace B1 = µ(m × n ×
k)(V·,m,n,k). We have

G pr23(B1) = G pr23 ◦µ(m× n× k)(V·,m,n,k) = µ(n× k) ◦G2 pr23(V·,m,n,k) =

= µ(n× k)(V·,·,n,k) = Vn,k, G pr12(B1) = G pr12 ◦µ(m× n× k)(V·,m,n,k) =

= µ(m× n) ◦G2 pr12(V·,m,n,k) = µ(m× n)(V·,m,n,·) = A2,

G pr13(B1) = G pr13 ◦µ(m× n× k)(V·,m,n,k) =

= µ(m× k) ◦G2 pr13(V·,m,n,k) = µ(m× k)(V·,m,·,k) = A4

(if we replace n← k).
For each set of the form X = {(0, i0), (1, i1), . . . , (m − 1, im−1)} ⊂ m × n, where 0 6

i0, i1, . . . , im−1 6 n − 1, the preimage pr12
−1(X) = {0} × {i0} × k ∪ {1} × {i1} × k ∪ · · · ∪

{m− 1} × {im−1} × k is in B1. This preimage is equivalent to a regular set Y ⊂ m× n× k,
such that all its sections [Y ]i are equal to {0} × k, i.e. have the type C1. If we assume that

there is a regular element Z ∈ B1 that is incomparable with Y with respect to �⊂�, then one
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of its sections [Z]i should not contain [Y ]i, i.e. should have the type C2, D or E . In all this

cases pr12(Z) ( m× n.
If we assume (+), then each elements B1 under pr13 should map tom×k, that contradicts

to the existence of Z. Thus under (+) the set of minimal sets of the inclusion hyperspace B1

consists of all sets of the form {0} × {i0} × k ∪ {1} × {i1} × k ∪ · · · ∪ {m − 1} × {im−1}×,
i.e. of all sets equivalent to m× {0} × k. Consider the case (++).
Lemma 5. Let Y ∈ B1 is a regular minimal element, n > 2, k > 2. Then among the sections
{[Y ]0, [Y ]1, . . . , [Y ]m−1} there are no sets of the types A, D and E .
Proof. Presence of E = ∅ among the sections is impossible because of the form of G pr12(B1).

Define for n, k > 3 a mapping φ : n× k → (n− 1)× k by the formula:

φ(i, j) =


(i, j) if i 6 n− 2, j 6 k − 2,

(i, j − 1) if i 6 n− 2, j = k − 1,

(i− 1, j) if i = n− 1.

This mapping has the following property: if A,B,A0, B0 ⊂ n× k, A ∼ A0, B ∼ B0, the sets

A0, B0 are regular, and φ(A) ⊂ φ(B), then A0 ⊂ B0. Put Φ: m× n× k → m× (n− 1)× k,
Φ = 1m × φ. Note that Φ is not a surjection, but G2Φ(V·,m,n,k) = G2e(V·,m,n−1,k−1), where
e : m× (n− 1)× (k − 1) ↪→ m× n× k is the embedding. Thus

GΦ(B1) = GΦ ◦ µ(m× n× k)(V·,m,n,k) =

= µ(m× (n− 1)× k) ◦G2Φ(V·,m,n,k) = µ(m× (n− 1)× k) ◦G2e(V·,m,n−1,k−1).

Therefore all minimal elements of GΦ(B1) are contained in e(m × (n − 1) × (k − 1)) =
m× (n− 1)× (k − 1).

Construct a set Y ′ ⊂ m × n × k as follows: if 0 6 i 6 m − 1, for [Y ]i 6= {(0, 0)} let

[Y ′]i = [Y ]i, and for [Y ]i = {(0, 0)} let [Y ′]i = {(n − 1, k − 1)}. Then Y ′ ∼ Y , therefore Y ′

also is minimal in B1. If one of the sections [Y ]i is equal to A = n× k or D = {(0, 0)}, then
the corresponding section [Y ′]i contains {(n− 1, k− 1)}, therefore Φ′(Y ′) 3 (i, n− 2, k− 1),
and Φ(Y ′) 6⊂ m× (n−1)× (k−1). Thus the element Φ(Y ′) is not minimal in GΦ(B1). Then
there is a minimal element Z ′ ∈ B1, such that Φ(Z ′) ⊂ Φ(Y ′)∩m× (n−1)× (k−1). By the

above Z ′ is equivalent to a regular set Z ⊂ m×n×k. For any i ∈ {0, 1, . . . , m−1} we have
Φ(Z ′ ∩ {i} × n× k) ⊂ Φ(Y ′ ∩ {i} × n× k), therefore pr23(Φ(Z ′ ∩ {i} × n× k)) = φ([Z ′]i) ⊂
pr23(Φ(Y ′ ∩ {i} × n × k)) = φ([Y ′]i), [Y ′]i ∼ [Y ], [Z ′]i ∼ [Z], and due to the mentioned

above property of φ we obtain [Z]i ⊂ [Y ]i for 0 6 i 6 m − 1. Thus Z ( Y , Z ∈ B1, that

contradicts to minimality of Y . Therefore for n, k > 3 a minimal set Y ∈ B1 can not have

sections of the types A and D. In order to extend the arguments onto the cases when n = 2
or k = 2, it is sufficient to use a regular surjection m× (n+ 1)× (k + 1)→ m× n× k.

Thus under (++) the sets of sections {[Y ]0, [Y ]1, . . . , [Y ]m−1} of any regular minimal

element Y ∈ B1 are: {C1} and one or several of the sets {C1, C2}, {B, C2}, {B, C1, C2}.
Let B2 = µ(m× n× k)(Vm,·,n,k). It is easy to prove analogously to the proof of Lemma 5

that there are no sets of the types A and D among the sections Yi, 0 6 i 6 m − 1, of any
regular minimal element Y ∈ B2. Take into consideration that

G pr23(B2) = G pr23 ◦µ(m× n× k)(Vm,·,n,k) =

= µ(n× k) ◦G2 pr23(Vm,·,n,k) = µ(n× k)(V·,·,n,k) = Vn,k,
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G pr12(B2) = G pr12 ◦µ(m× n× k)(Vm,·,n,k) =

= µ(m× n) ◦G2 pr12(Vm,·,n,k) = µ(m× n)(Vm,·,n,·) = A3,

G pr13(B2) = G pr13 ◦µ(m× n× k)(Vm,·,n,k) =

= µ(m× k) ◦G2 pr13(Vm,·,n,k) = µ(m× k)(Vm,·,·,k) = A1

(if we replace n← k), which implies G pr13(B2) = Vm,k. If we assume (**), then all minimal

elements of B2 are of the form {i} × {j} × k, where 0 6 i 6 m− 1, 0 6 j 6 n− 1, i.e. these
are sets equivalent to a regular set with sections of the types C1, E . If (*) is true, we have

regular minimal elements with the sets of sections {C1}, {B, E} and, probably, {C1, C2} or
{C1, C2, E}.

Let B3 = µ(m× n× k)(Vm,n,·,k). We have

G pr23(B3) = G pr23 ◦µ(m× n× k)(Vm,n,·,k) =

= µ(n× k) ◦G2 pr23(Vm,n,·,k) = µ(n× k)(V·,n,·,k) = A4

(if we replace m← n, n← k),

G pr12(B3) = G pr12 ◦µ(m× n× k)(Vm,n,·,k) =

= µ(m× n) ◦G2 pr12(Vm,n,·,k) = µ(m× n)(Vm,n,·,·) = Vm,n,

G pr13(B3) = G pr13 ◦µ(m× n× k)(Vm,n,·,k) =

= µ(m× k) ◦G2 pr13(Vm,n,·,k) = µ(m× k)(Vm,·,·,k) = A1

(if we replace n← k), thus G pr13(B3) = Vm,k.

This implies that B3 contains all preimages of minimal elements of Vm,n under pr12, i.e.

sets of the form pr12
−1({i} × n) = {i} ×m× k, 0 6 i 6 m− 1. If we assume (+), then the

form of G pr23(B3) implies that there are no other minimal elements. If (++) holds, then in

addition to {A, E} the following sets of sections of regular minimal elements are possible:

{B}, {B,D}, {B, E}, {C1, C2, E}, {C1, C2}, {B, C1}, {B, C2}, {B, C1, C2}, {C1, C2,D}, and at

least one of them should be present.

Consider the set of inclusion hyperspaces

C1 = µ(m× n× k) ◦Gµ(m× n× k)(V·,m,n,·,·,k) = µ(m× n× k) ◦ µG(m× n× k)(V·,m,n,·,·,k).

It is obvious that it also satisfies (!). On the one hand, Gµ(m×n×k)(V·,m,n,·,·,k) = (V·,m,n,k),
thus C1 = µ(m× n× k)(V·,m,n,k) = B1.

To calculate C1 in a different way, we fix a bijection t : nm → n× n× · · · × n︸ ︷︷ ︸
m

and note

that V·,m,n,·,·,k = G2ψ(V·,m,n,·), where ψ : m×n→ G(m×n×k) is the mapping that is defined

by the formula ψ(i, j) = r(m× n× k)({(i, j)} × k). Thus
µG(m× n× k)(V·,m,n,·,·,k) =

= µG(m× n× k) ◦G2ψ(V·,m,n,·) = Gψ ◦ µ(m× n)(V·,m,n,·) = Gψ(A2).

Besides, Gψ(A2) = G2Ψ(Vnm,m,·,k), where Ψ: nm × m × k → m × n × k is the surjection

defined by the formula Ψ(l, i, j) = (i, t(l)(i), j). Therefore

C1 = µ(m× n× k) ◦G2Ψ(Vnm,m,·,k) = GΨ ◦ µ(nm ×m× k)(Vnm,m,·,k) = GΨ(B3)

(if we replace m← nm, n← m).

Investigate how Ψ acts on possible minimal sets of the inclusion hyperspace B3.
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Lemma 6. A subset Z ⊂ m×n× k contains the image Ψ(X) of some set X ⊂ nm×m× k,
that is equivalent to a regular set X ′ with the set of sectionsM, if and only if Z contains a
set Y ⊂ m × n × k that is equivalent to a regular set Y ′ with the set of sections N or (for
items (1), (2)) N ′, for any of the following combinations: 1) M = {C1, C2}, N = {A,D},
N ′ = {B, C2}; 2)M = {B, C1, C2},N = {A,D},N ′ = {B, C2}; 3)M = {A, E},N = {C1}; 4)
M = {B, E}, N = {C1,D}; 5)M = {C1, C2, E}, N = {C1,D}; 6)M = {B, C2}, N = {B, C2};
7)M = {B, C1}, N = {A,D}; 8)M = {B}, N = {A, C2}; 9)M = {B,D}, N = {C1, C2,D};
10)M = {C1, C2,D}, N = {C1, C2,D}.
Proof. Let us prove (1). Assume that Z ⊃ Ψ(X), where X satisfies the condition of the

lemma. Then the set nm is the union of two nonempty disjoint subsets L1 and L2, and for

any l ∈ L1 we have [X]l = {il}×k for some il ∈ {0, 1, . . . , n−1}. For any l ∈ L2 the section

[X]l has the form {(0, k0), (1, k1), . . . , (n − 1, kn−1)}, where 0 6 k0, k1, . . . , kn−1 6 k − 1.
Denote P = m × n \ {(il, t(l)(il)) | l ∈ L1}, Q = pr12(Ψ(X)) = {(il, t(l)(il)) | l ∈ L1} ∪
{(i, t(l)(i)) | l ∈ L2}. If pr1(P ) = m, we choose (0, p0), (1, p1), . . . , (m − 1, pm−1) ∈ P .
Assume that (i, j) ∈ m × n, (i, j) /∈ Q, and let l ∈ nm be determined by the equality

t(l) = (p0, p1, . . . , pi−1, j, pi+1, . . . , pm−1. Then both l ∈ L1 and l ∈ L2 are impossible, that

is a contradiction. Therefore for pr1(P ) = m we have pr12(Ψ(X)) = m × n, and L1 6= ∅

implies that Ψ(X) ⊃ {(i, j)} × k for some 0 6 i 6 m − 1, 0 6 j 6 n − 1. Thus Ψ(X)
contains a subset Y that is equivalent to a regular set with sections {B, C2}. If pr1(P ) 6= m,

we choose i ∈ m \ pr1(P ) and obtain Ψ(X) ⊃ {i} × n × k. Moreover, L2 6= ∅ implies

Ψ(X) ⊃ {(0, j0, k0), (1, j1, k1), . . . , (m−1, jm−1, km−1)}, for some 0 6 j0, j1, . . . , jm−1 6 n−1,
0 6 k0, k1, . . . , km−1 6 k − 1. Therefore Ψ(X) contains a subset Y that is equivalent to a

regular set with sections {A,D}.
Now let Z contain a subset Y equivalent to a regular set with sections {B, C2}. Then Y

has the form {(i0, j0)} × k ∪ {(i, j, ki,j) | 0 6 i 6 m− 1, 0 6 j 6 n}. We put L1 = {l ∈ nm |
t(l)(i0) = j0}, L2 = nm \L1, X ⊂ nm ×m× k, X = L1 × {i0} × k ∪ {(l, i, ki,t(l)(i))}. Then X
is equivalent to a regular set with sections {C1, C2}, and Ψ(X) = Y ⊂ Z.

If Z contains a subset Y equivalent to a regular set with sections {A,D}, then Y =
{i0} × n × k ∪ {(0, j0, k0), (1, j1, k1), . . . , (m − 1, jm−1, km−1)}, for some 0 6 i0 6 m − 1,
0 6 j0, j1, . . . , jm−1 6 n−1, 0 6 k0, k1, . . . , km−1 6 k−1. We put l0 = t−1((j0, j1, . . . , jm−1)),
L1 = nm \ {l0}, L2 = {l0}, X = L1 × {i0} × k ∪ {(l, 0, k0), (l, 1, k1), . . . , (l,m − 1, km−1)}.
Then X is equivalent to a regular set with sections {C1, C2}, and Ψ(X) = Y ⊂ Z.

Other items can be proved by analogous not very difficult, but cumbersome arguments.

We compare the obtained sets of sections with possible sections of regular minimal

elements of B1. Since there cannot be sets of the types D and E among sections of regular

elements of B1, only three possible types of regular minimal elements of B3 remain, namely

with sections {A, E}, {B, C2} and {B}. They correspond respectively to regular minimal

elements with sections of the types {C1}, {B, C2} and {A, C2} of the inclusion hyperspace B1.

A minimal regular element with sections of the type {B} is also impossible because in this

case a regular element with sections of the types {A, C2} is minimal in B1 and has a section

of the type A, which is also impossible by Lemma 5. Therefore we can have only regular

minimal elements with sections {A, E} and {B, C2} in B3 and regular minimal elements with

sections {C1} and {B, C2} in B1.

Summing up, we have two possibilities (everywhere all parameters m,n, k are not less

than 2) :
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1) (+) holds, the inclusion hyperspace B1 has regular minimal elements with sections

{C1}, and the inclusion hyperspace B3 has regular minimal elements with sections {A, E};
2) (++) holds, the inclusion hyperspace B1 has regular minimal elements with sections

{C1} and {B, C2}, and the inclusion hyperspace B3 has regular minimal elements with sections

{A, E} and {B, C2}.
Consider the family of inclusion hyperspaces

C2 = µ(m× n× k) ◦Gµ(m× n× k)(Vm,·,n,·,·,k) = µ(m× n× k) ◦ µG(m× n× k)(Vm,·,·,n,·,k).

It also satisfies condition (!). On the one hand, C2 = µ(m×n×k)◦Gµ(m×n×k)◦Gẽ(Vm,·),
where the mapping ẽ : m→ G2(m×n×k) sends each i ∈ m toG2ei(Vn,·,·,k), where ei : n×k →
m× n× k, ei(j, l) = (i, j, l). We obtain

µ(m× n× k) ◦ ẽ(i) = µ(m× n× k) ◦G2ei(Vn,·,·,k) =

= Gei ◦ µ(n× k)(Vn,·,·,k) = Gei(A1) = Gei(Vn,k).

Therefore C2 = µ(m× n× k)Gθ(Vm,·), where θ : m→ G(m× n× k), θ(i) = Gei(Vn,k), thus
C2 = µ(m× n× k)(Vm,·,n,k) = B2.

On the other hand, C2 = µ(m×n×k)◦µG(m×n×k)◦G2ψ(Vm,·,n,·), where the mapping

ψ : m× n→ G(m× n× k) is again defined as ψ(i, j) = r(m× n× k)({(i, j)} × k). Here

µG(m× n× k)(Vm,·,n,·,·,k) = µG(m× n× k) ◦G2ψ(Vm,·,n,·) =

= Gψ ◦ µ(m× n)(Vm,·,n,·) = Gψ(A3).

Consider the both possibilities (*) and (**). If (**) holds, then Gψ(A3) = Vmn,·,·,k (we

identify m × n and mn), which implies C2 = µ(m × n × k)(Vmn,·,·,k) = Vmn,k. It is the

inclusion hyperspace in m × n × k with minimal sets of the form {i} × {j} × k, where
0 6 i 6 m − 1, 0 6 j 6 n − 1. If (*) is true, we put m′ = m + nm, n′ = max{m,n} and
fix a bijection p : nm → n× n× · · · × n︸ ︷︷ ︸

m

. Then Gψ(A3) = G2Θ(Vm′,n′,·,k), where the mapping

Θ: m′ × n′ × k → m× n× k is defined by the formula:

Θ(i, j, l) =

{
(min{j,m}, p(i)(min{j,m}), k) if i < nm;

(i− nm,min{j, n}, k) if i > nm.

Thus

C2 = µ(m× n× k) ◦G2Θ(Vm′,n′,·,k) = GΘ ◦ µ(m′ × n′ × k)(Vm′,n′,·,k) = GΘ(B3)

(if we replace m← m′, n← n′).
Assume (*) and consider the images under GΘ of possible minimal elements of B3.

Lemma 7. A subset Z ⊂ m×n× k contains the image Θ(X) of some set X ⊂ nm×m× k,
that is equivalent to a regular set X ′ with the set of sectionsM, if and only if Z contains a
set Y ⊂ m × n × k that is equivalent to a regular set Y ′ with the set of sections N or (for
item (1)) N ′, for each of the following combinations:

1. M = {A, E}, N = {A, E}, N ′ = {C1};
2. M = {B, C2}, N = {B, C2};
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We omit a straightforward proof. Since no subset Y ⊂ m×n×k equivalent to a regular set
Y ′ with sections {A, E}, {C1} or {B, C2} can be a subset of a minimal set Z of the inclusion

hyperspace B2 with sections {B, E}, we obtain that under (*) the equality GΘ(B3) = B2

is impossible, which is a contradiction. Thus (**) holds, and the unique regular minimal

element of B2 has sections of the types C1, E , i.e. minimal elements of B2 have the forms

{i} × {j} × k, where 0 6 i 6 m− 1, 0 6 j 6 n− 1.
Consider the family of inclusion hyperspaces

C3 = µ(m× n× k) ◦Gµ(m× n× k)(Vm,·,·,n,·,k) = µ(m× n× k) ◦ µG(m× n× k)(Vm,·,·,n,·,k).

It satisfies (!) as well. On the one hand, C3 = µ(m× n× k) ◦ µG(m× n× k) ◦G2ψ(Vm,·,·,n),
where we again define the mapping ψ : m × n → G(m × n × k) by the formula ψ(i, j) =
r(m×n×k)({(i, j)}×k). Thus µG(m×n×k)(Vm,·,·,n,·,k) = µG(m×n×k) ◦G2ψ(Vm,·,·,n) =
Gψ ◦ µ(m × n)(Vm,·,·,n) = Gψ(A1) = Gψ(Vm,n) = Vm,n,·,k. Therefore C3 = µ(m × n ×
k)(Vm,n,·,k) = B3.

On the other hand, C3 = µ(m× n× k) ◦ Gµ(m× n× k) ◦Gê(Vm,·), where the mapping

ê : m → G2(m × n × k) sends each i ∈ m to G2ei(V·,n,·,k), where ei : n × k → m × n × k,
ei(j, l) = (i, j, l). We have µ(m× n× k) ◦ ê(i) = µ(m× n× k) ◦G2ei(V·,n,·,k) = Gei ◦ µ(n×
k)(V·,n,·,k) = Gei(A4). Thus C3 = µ(m × n × k)Gξ(Vm,·), where ξ : m → G(m × n × k),
ξ(l) = Gei(A4).

Under (+) we have Gξ(Vm,·) = Vm,·,n,k.

If (++) is true, we put n′ = n · kn, k′ = n + k and fix a bijection q : n · kn →
k × k × · · · × k︸ ︷︷ ︸

n

× n. Then Gξ(Vm,·) = G2Ξ(Vm,·,n′,k′), where Ξ: m× n′ × k′ → m × n× k is

defined by the formula: Ξ(i, j, l) =

{
(i, l, q(j)(l)) if l < n;

(i, q(j)(n), l − n) if l > n.

Therefore C3 = µ(m× n× k) ◦G2Ξ(Vm,·,n′,k′) = GΞ ◦ µ(m× n′ × k′)(Vm,·,n′,k′) = GΞ(B2)
(if we replace n ← n′, k ← k′). Thus we obtain GΞ(B2) = B3. Choose a minimal element

Y ∈ B2 equivalent to a regular set with sections B, E and equal to {0} × n′ × {0} ∪ {0} ×
{q−1((0, 0, . . . , 0))} × k′. It is easy to verify that Ξ(Y ) = {0} × n× {0} ∪ {0} × {0} × k is a

regular set with sections of the types B, E , that cannot be in B3. Thus the assumption (++)

is false, and the only possible variant is (+), (**).

Now we know that the inclusion hyperspace B1 has regular minimal elements with sections

{C1}, the inclusion hyperspace B2 has regular minimal elements with sections {C1, E}, and
the inclusion hyperspace B3 has regular minimal elements with sections {A, E}.

Consider the family of inclusion hyperspaces D = µ(s × m × n × k)(Vs,m,n,k) that is

parameterized by natural s,m, n, k. It is obvious that D satisfies (!) and G pr234(D) = B1,

G pr134(D) = B2, G pr124(D) = B3. This implies that the only regular minimal element of D
has the form {0} ×m× {0} × k.
Lemma 8. If α, β : G2 → G are natural transformations, and for all natural s,m, n, k the
equality α(s×m× n× k)(Vs,m,n,k) = β(s×m× n× k)(Vs,m,n,k) holds, then α = β.

Proof. First we will prove that for any F ∈ G2X, where X is a finite compactum, there are

natural s,m, n, k and a mapping f : s ×m × n × k → X such that G2f(Vs,m,n,k) = F. Put
k = |X|, n = | expX|, m = |GX|, s = | expGX|, and for any F ∈ expX fix a surjection

αF : k → F . For each F ∈ GX fix a surjection βF : n → F , and put hF : n × k → X,
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hF(j, l) = αβF (j)(k). It is easy to see that GhF(Vn,k) = F . Now for each H ∈ expGX fix

a surjection γH : m → H , and put gH : m × n × k, gH(i, j, k) = hγH (i)(j, l). Fix a surjection

δF : s → F and put f : s × m × n × k, f(p, i, j, l) = gδF (p)(i, j, k). It is straightforward

to verify that the mapping f is required. Thus we obtain αX(F) = αX ◦ G2f(Vs,m,n,k) =
Gf ◦α(s×m×n×k)(Vs,m,n,k) = Gf ◦β(s×m×n×k)(Vs,m,n,k) = βX◦G2f(Vs,m,n,k) = βX(F).
This implies that the components of the natural transformations α and β coincide on finite

compacta. Since any zero-dimensional compactum can be represented as the inverse limit of

finite compacta [6], and the inclusion hyperspace functor G is continuous, i.e. it preserves

limits of inverse spectra, we have αX = βX for each zero-dimensional compactum X. Each

compactum is a continuous image of a zero-dimensional compactum, and the functor G is

epimorphic, i.e. it preserves the class of continuous surjections, therefore αX = βX for any

compactum X.

This implies that the main result is true:

Theorem. There exists a unique monad in the category of compacta with the inclusion
hyperspace functor as the functorial part.
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