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It is proved that there exists a unique monad in the category of compacta with the inclusion
hyperspace functor as the functorial part, namely the classical inclusion hyperspace monad.
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emeennoti // Maremarnani Crypii. — 2007. — T.27, Nel. — C.3-18.

Jloka3aHo, 94TO KJTaCCHYecKast MOHAJIA THIEPIPOCTPAHCTE BKIIIOYEHUST SIBJISIETCST € [MHCTBEH-
HOI MOHAJION B KATErOPUU KOMITAKTOB ¢ (PYHKTOPOM MHIEPIPOCTPAHCTE BKIIOYEHUS B KAIECTBE
GYHKTOPHATLHON JaCTH.

Introduction. Monads (or triples) [7] are both important objects of study and useful tools,
e.g., for investigating of analytical and topological properties by algebraic means. Further
we restrict our attention to monads in the category of compacta. We can recall, for example,
characterization of convex compacta as algebras for the probability measure monad (see [8]).
Because of importance of monad structure a natural question of its unicity for a particular
functor arise. Problems of this kind were solved for classical monads in the category of
compacta, e.g. for the hyperspace monad H = (exp, s,u) [4], for the superextension monad
L = (A, pr) [1] and for the probability measure monad P = (P, np, up) [5]. It is proved
that for each of the functors exp, A and P there are no other monads in the category of
compacta. Nevertheless, for the inclusion hyperspace monad the problem of unicity remained
open for a long time.

The aim of this paper is to provide an affirmative answer to this question. The common
approach that allowed to solve the problems mentioned above, was to investigate images
under the multiplication (in the sense of monad) of some “generic” elements in the correspon-
ding spaces of closed subsets, maximal linked systems or probability measures. The case of
the inclusion hyperspace functor is relatively difficult because of much more combinatorial
complexity even for not very large finite spaces. Therefore it was necessary to develop special
tools, namely “fine” equivalence relations on sets of nonempty subsets of cartesian products
of finite spaces, such that it suffices to study only “main representatives” of each inclusion
hyperspace. These “auxiliary statements” constitute the largest by size part of the paper.
After that we use all equalities, included into the definition of monad, to gradually reduce
the set of all alternatives possible for images of “generic elements”, until the answer becomes
quite unambiguous: there can be no more that one monad in the category of compacta with
the inclusion hyperspace functor as the functorial part. Since such monad is well known, it
is unique for this functor.
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1. Preliminaries. First we recall some necessary definitions and facts. A compactum is a
compact Hausdorff topological space. We write A C X (resp. A C X) if A is a closed (resp.
cl op

open) subset of X. See [7] for the definitions of category, functor, natural transformation.
The category of compacta Comp consists of all compact Hausdorff spaces as objects and all
continuous mappings of compacta as arrows.

The hyperspace |6] of a compactum X is the set exp X of all nonempty closed subsets of
X with the Vietoris topology. The standard base of this topology consists of all sets of the
form

<U1,U2,...,Un>:{G€€XpX|GCU1UU2U...UTL, GﬂUiyré@,iE{l,Q,...,n}},

where n € N and sets U; are open in X. The hyperspace of a compactum is also a compactum,
thus for a compactum X the spaces exp? X = exp(exp X), exp® X = exp(exp® X), ...are
compacta as well.

For a continuous mapping f: X — Y of compacta the mapping exp f: exp X — expV,
that is defined by the formula exp f(A) = {f(z) | z € A} for A € exp X, is continuous.

The inclusion hyperspace [6] on a compactum X is a subset F C exp X such that

1) F is nonempty and closed in exp X;

2) ifA,BgX, then A€ F, AC B imply B € F.

By definition each inclusion hyperspace G is an element of exp? X. We denote by GX
the set of all inclusion hyperspaces on X with topology induced by the topology on exp? X.
The subspace GX, being closed, is a compactum.

If f: X — Y is a continuous mapping of compacta, let Gf: GX — GY,

Gf(F)={B - Y | exists A € F, f(A) C B}.

Then G f is well-defined and continuous.

The assignments exp, GG are functors in the category of compacta, i.e. they preserve
sources and targets of arrows, compositions and identity maps [7]. Therefore the powers
exp" = expoexpo--- o exp and G" = GoGo---o0(G are functors Comp — Comp as well.

-~

We also need an another (trivial) example of functor Comp — Comp, namely, the identity
functor 1¢,m, that sends each compactum or mapping to itself.

The functor G preserves monomorphisms, that makes possible for an arbitrary embedding
of compacta i: Xy < X to identify each element A € GX with its image Gi(A) = {B €
exp X | B D A for some A € A} € GX, and the entire space GX, with the image Gi(GX,) C
GX. The functor GG also preserves intersections, i.e. A € GX,, for all elements of a family
{Xa | @ € A} of closed subsets of X implies A € G(ﬂaeA «). Thus we can define the support
supp A of an element A € GX in usual way as the least closed subspace Xy C X such that
A € GX,.

It is straightforward to show that each element of an inclusion hyperspace on a compac-
tum contains a minimal with respect to inclusion element of this inclusion hyperspace. Any
inclusion hyperspace is uniquely determined by its minimal elements. It is obvious that the
minimal elements of the above mentioned inclusion hyperspaces A € GXj and Gi(A) € GX
coincide, which again confirms legitimacy of the used identification. For all X C X and

A € GX we have A € GXj if and only if all minimal elements of A are contained i 1n Xo.
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We denote for an element B € exp? X :
rX(B)={AcexpX | AD B for some B € B}.

Then 7X is a continuous retraction exp? X — GX.
For a compactum X the mappings nX: X — GX, uX: G?X — GX are defined by
the formulae: nX(a) = {F - X | F > a}, pX(F) = UuerNA. They are well-defined

and continuous, and the collections 7 = (nX)xcobcomps 1t = (1X)xecobcomp are natural
transformations [7] leomp — G and G* — G resp. Moreover, they are the unit and the
multiplication of the monad G = (G, n, i) in Comp, i.e., the diagrams

GX GuXx
GX ——>@2X BX =X
anl k l,u,X uGXl J/MX
G?X X GX G*X X GX

commute for each object X of the category Comp.

See [2], [3] on the properties of this monad. It also has deep connections with the capacity
monad in the category of compacta, which in turn has applications to the decision making
theory.

It is easy to show that 7 is the unique natural transformation 1¢,,, — G. The aim of
this paper is to prove that the natural transformation p is unique in the following sense: if
(G,m, i) is a monad in the category of compacta, then p’' = p.

2. Auxiliary statements. We denote by n the set {0,1,2,...,n — 1} with the discrete
topology. We regard the elements of a cartesian product of n sets as sequences indexed by
numbers 0, 1, ..., n — 1. Nevertheless, it is convenient to number factors of this product by
1,2,...,n.

For any k£ € {0,1,2,...}, ny,ng,...,nx € {1,2,3...} we assume that subsets of the
cartesian product ny X ng X - - - X ny, are ordered by inclusion, i.e. A precedes B if A C B. For
k = 0 we consider this product as the set {()} with the empty sequence () being its unique
element. For 0 <[ <k, 0<i; < —1,0<i<ny—1,...,0<7 <n;—1call the set

[Aliy g,y = pr (AN (i} x {io} x - x{i} X mygq X -+ X)) CTnggq X -0 X ng
(1+1)(1+2)...k

the (i1, 42, ..., 1)-th section of the set A. As the restriction of the projection pr( 1y 9) 4 t0
the intersection AN ({i1} x {i2} x -+ x {4} xnyy1 X -+ X ny) is a bijection onto [Al;, 4. i, We
identify the section with the corresponding intersection. In this sense we talk about restriction
of a mapping from A to [A];, 4,4, etc. Specifically we identify the product {i} x ng x - - - x ny
with ny X -+ X ng.

We extend lexicographically the strict partial order “C” on the set of all subsets of the
cartesian product ny X ng X --- X ny to a strict linear order <. For k = 0 let & < {()}. If
k>1 A B Cny XngX- - xXng we put A < B iff there is i € {0,1,...,n; — 1} such
that [A]o = [Blo, [A]1 = [Bl1, ---, [A]i-1 = [Bli—1, [A]; < [B]i- The order reverse to “<” is
denoted as “>". We write A X< Bif A<BorA=B,and A> Bif A> Bor A=B.

Consider all products of the form n; x ny X - - - X n; and inductively define a class of their
subsets called regular. For k = 0 we regard both @ and {()} as regular subsets. If k£ > 0, we
say that a subset A C ny X ny X - -+ X ny is regular if:
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1) all sections [A];, 0 < i < ny — 1, are regular subsets in ny X - -+ X ny;

2) in the set of sections [A];, 0 < i < ny — 1, each element is either minimal of maximal
with respect to C;

3) [A]o = [A]1 = -+ = [A],,—1, and only a section that is minimal with respect to C can
appear more than once.

Note that 1) implies that all sections [Al;, ;,.. i, of a regular subset A are regular subsets
in the corresponding products.

For k = 1 and n; > 1 we have three regular subsets in ny = {0,1,...,n; — 1}, namely &,
{0} and n, itself. For k = 2 and ny, ny > 1 there are six such subsets in ny xng : A = ny X ng,
B =mn; x {0} U{0} x ng, C; = {0} x ny, Co =ny x {0}, D=1{(0,0)}, £ = 2.

We call a mapping f: ny X ng X --- X np — mq X mg X --- X my a reqular bijection
(surjection), if every its restriction onto a section [ng X ng X - -+ X ngliy iy, Where 0 < 1 < k,
is a bijection (surjection) to some section [my X mg X - -+ X Mgl j,..j,- The definition implies
that the composition of regular bijections (surjections) is a regular bijection (surjection), and
the mapping f should be a bijection (surjection) itself.

We call subsets A, B C ny X ng X - - - X ng equivalent and write A ~ B if there is a regular
bijection b: ny X ng X -+ X g — ny X ng X - -+ X ng such that b(A) = B.

Subsets A C ny X ng X -+ X ng, B C my X my X --- X my are called weakly equivalent
(denote A ~ B) if at least one of the following holds:

1) k=0and A=B,ie. A=B=0or A=B={(};

2) k > 0, for each i € {0,1,...,n; — 1} there exists i € {0,1,...,m; — 1} such that
[B]y = [A];, and for each j € {0,1,...,m; — 1} there exists j' € {0,1,...,n; — 1} such that
(Al ~ [B];-

It is obvious that A ~ B =—> A = B, and both “~” are “~” are equivalence relations.

A regular subset A C ny X ng X --+ X ny is called quite regular, if it is the least with
respect to < of all regular sets that are weakly equivalent to A. An equivalent definition by
induction by k can be given:

1) all sections [A];, 0 < i < ny — 1, are quite regular subsets in ny X -+ - X ng;

2) in the set of sections [A];, 0 < i < ny — 1, any element is either minimal or maximal
with respect to C;

3) [A]o = [A]1 = -+ = [A], -1, and only the last section [A],,_1 can be repeated.

In the sequel assume that for some k& € {0,1,2,...} and all ny,ng,...,n, € {1,2,3...}
an inclusion hyperspace IC(ny,ns, ..., ng) € G(ng X ng X - -+ X ng) is fixed, and

() if fing Xng X---Xmn, — my X mg X--- X my Is a regular surjection, then
Gf(lC(nl,ng, . ,nk)) = /C(ml,mQ, e ,mk).

Lemma 1. Fach minimal element A € K(ny,ns,...,n;) is equivalent to some regular set
AO € /C(nl, Nno, ..., nk.)

Proof. Assume that 1 <[ < k and a regular bijection b;: nq Xng X+« - XN — Ny XN X+« XNy
has already been built such that all sections of the set A, = b;(A) of the form [A] are
regular subsets in n; 11 X ny9 X - X ng.

Note that (!) implies that the set of all elements of the inclusion hyperspace K(n,na, . . .,
ng), as well as the set of all its minimal elements, are invariant with respect to any regular
bijection nq X ng X -+ X N — Ny X Ny X -+ X ng. Therefore the set A; is also a minimal
element of KC(ny,ng, ..., ng).

Assume that the section [A];, i, 4_,.i, 1S neither minimal nor unique and maximal with
respect to C among [Aliiis. iy 1.0 [Ailirsianiyym—1- Then there are ¢',i" £ i;, ¢/ # "

01,82,0-49]
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such that the section [A];, 4, i, 15 maximal, the section [A;];, s, i, 1S minimal, and
(At iz, i C [Alin a1 © [Atlivia,iy,v- We define regular surjections

U, 0:my Xng X oo Xy X (ng+1) Xngq X oo Xng—ng XNg X -+ X Ny

by the formulae

. (.%'1,33'2,...,.%”) 1fxl§nz—1,
¢($17372a---737n) - .y if . .
(:L‘la"'axl—laz axl—l—la'--y'xn) 7 = ny;
( . . .
(Ilax%' .- axn) if T =10, ,21-1 = -1,
Ty # i, T F
-/
(xla"'axlflaz7xl+17"'7xn>
O(xq,x9,...,2,) = ifoxy =dq,..., 01 = 1j_1, 11 = iy}
(T1y ey Ty, 0, Ty 1y - -y Tpy)
ifoy =dy,..., ;0 =91, 1 = ny;
\w(xl, Tg,...,T,) otherwise.

Then ¢~1(A) € K(ny,...,m_1,m + 1,041, ..., n), thus A) = 0( "1 (A4)) € K(ny, ...,
ni). The sets A; and A; coincide except for sections with the index (iy,2,...,%-1,7). We
obtain [A;]il,i%---,il_l,il = [Al]il,ig,...,il_l,’i” _'C,_ [Al]ilyi%---ail—lail’ and A; g_ Al, which contradicts
to minimality of A;. Thus the assumption is false, and each section [A;];, i, i, is either
minimal or unique and maximal with respect C among [Ai]i, i i 1.0 - -+ [Alli o, i1 mp—1-

For each i; € {1,2,...,711 — 1}, iy € {1,2,...7712 — 1}, R TR = {1,2,...,nl_1 — 1}
choose a permutation o = oy, 4, ;_,: n — ny such that

[Adlissinyit 10tu—1) = [Allivissisrom—2) = 2 Aivia, i 100) = [Allirio,..it_1,0(0)-

We define a mapping ¢;: nqy X ng X - -+ X ngp — ny X ng X -+ X ng by the formula

b1 (11,92, -y in) = (T1, 92, -+ U1y Tig i,y (80)5 G141, k).

Obviously ¢; is a regular bijection, the set 4;,_1 = ¢;(A4;) is in K(nq,na, ..., ng), and for all
ine{l,2,...,ny — 1}, ..., 41 € {1,2,...,ny_1 — 1} the sections satisfy a condition

A1)y ionis =1 = A1 )iy o ipm—2 = S Ao i1 = (A=) o i 1.0

Thus the regular bijection b;_; = ¢; o b, maps the set A to a set A1 € K(ny,ng,...,ng)
such that all sections of the latter of the form [A;_1);, 4, ,_, are regular sets.

To start the induction, note that for [ = k we can take the the identity map of ny x ng x
-+« X ny onto itself as a required bijection, and put Ay = A. Thus, decreasing [, we obtain
for [ = 0 a regular bijection by: nqy X ng X +++ X ng — Ny X ng X - - - X ng such that the section
with the empty index of the set Ay = by(A), i.e. the set Ag itself, is regular. O

Lemma 2. Let A C ny X ng X --- xng, A/ C nj xnhx---xn, and A ~ B. Then
A€ K(ny,ng,...,ng) if and only if A" € K(nf,nb,...,n}).
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Proof. Put m; = max{ny,n}}, my = max{ng,nh}, ..., my = max{ng,n,}, and choose
arbitrary regular surjections f: mj XmgX---Xmy — Ny Xng X---Xng and f': mq Xmg X -+ X
my — nyxnyx---xn,. If B= f~Y(A), B'=(f')"'(A"), then A~ B, A’ ~ B, thus B~ B,
and A € K(ny,ng,...,n,) <= B € K(my,ma,...,my), A € K(ni,nh,...,n,) <= B €
K(mq, ma, ..., my). Therefore it suffices to prove that B € K(my,mg,...,my) < B’ €
K(my,mo,...,my) for B B, B,B' Cmy X mg X -+ X my. Let B” Cmy X mg X -+ X my
be a subset that is the least with respect “<” among all subsets that are weakly equivalent
to B and B’. We will prove that B € K(my,mso,...,my) <= B’ € K(my,ma,...,myg),
B e K(my,ma,...,my) <= B" € K(my,ma,...,mg).

Assume that for some [ € {0,1,2,...,k} a subset B, C my X ma X -+ X my, has been
constructed such that:
1) for any iy € my, is € ma, ..., §; € my the section [Byl;, 4,4 is the least with respect

to “<” among all subsets m;1 X my4o X - - X my, that are weakly equivalent to [Bl;, i, i;

2) BeK(my,ma,...,my) <= By € K(my,ma,...,my).

Then B; &~ B. Define a set B;_1 C my Xmg X - - - X my by the following condition: for each
i1 € my, i2 € My, ..., i1 € my_y the section [Bj_1]i 4y, i, 1S the least with respect to “<”
among all subsets my; X my1 X - - - X my, that are equivalent to [By];, 4, 4,_,- It is obvious that
B,y = B;. We prove that B;_; € K(mq,mg,...,my) <= B, € K(my,ma,...,my). For
any i, € my, ia € ma, ..., 4j—1 € my_y the set of sections {[Bj_1]i 4.4 | 0 < 4 < my — 1}
coincide with the set of sections {[Bl]ii,i/27.,,7i2 | 0 <4 < my —1}. Thus each of the two sets
B;_1 and B, can be obtained from the other one by a sequence of transformations on subsets
of my X mgy X -+ x my of the following two types:

1) fix iy € my,ia € Mo, ..., 41 € my_1, iy, 1) € my, §; # i}, and from a set A C my X mgy X
-+ X my, obtain a set A’ by the permutation of sections [Al;, i, 4,_,.i, and [A]Z-Li%,,ilfl,i;;

2) fix iy € my, io € Mo, ..., 41 € My_1, U, 9,1 € my, i # i}, such that [Al; . i 10 =
[Aliyig,iioriiy 7 [Aliy i,y for aset A C my X mg X -+ X my, replace [A] by
[A] » and obtain a set A’.

01,6201 1]
01,62, 1
It is sufficient to show that transformations 1), 2) preserve the class of elements of
K(mq, ma,...,my). Consider the transformation 1) and define a regular bijection ®: m; x
My X+« X My — My X Mg X -+ X my, by the formula

(i17i2’ T 7i2’jl+1’ to ’]k) lfjl = il) s ajl—l = Z.l—la.jl - Zla
@(jl?j?a Ce 7jk) = (ilaiQ, Ce 7il7jl+1, Ce 7]k> lfjl = 7;1’ Ce 7jl71 = il*lajl — 7/;,
(71,72, - - -, jr) otherwise.

Then ®(A) = A’ thus A € K(my,ma,...,my) <= A" € K(my,mao,...,my).
For transformation 2) define regular surjections

WU my Xomg X - Xy X (my 4+ 1) X mygq X oo X my, — my X mg X - X my,

by the formulae

(1, G2 - - > Ji=1o 0, Juts - - o i) AF
Vit o) =3 di=mu
(j17j27 ce ,jk) otherwise;



A MONAD FOR THE INCLUSION HYPERSPACE FUNCTOR IS UNIQUE 9

(

(jh.j?)' . '7jl—1ai;,7.jl+17' <. a]k) if
jl = my, (.jl)j?a s 7jl—1) 7é (Z'17Z.27 B ail—l);

(’il,iz, R 7il717i27jl+17 c.. 7]k> if
\I]/(jhj?? s 7]k) = (jlaj?a <o 7jl*17jl) = (ilai% s 7Z.lflaml);
(’il,iz, R 7il717ilajl+la c.. 7]k> if

(jl’j27~.-;jl—17jl) = (ilyi%---ail—l)i;);
| (J1,J2, - -+, jk) otherwise.

Then A € K(my,ma,...,my), thus U"1H(A) € K(mq, ma,...,my_1,my+1,mpq, ..., mg),
and A" = U/(U1(A)) € K(my,ma,...,my).

Therefore B,y € K(my,ma,...,my) <= B, € K(my,ma,...,my), and B_; ~ B,
which implies B;_; € K(my,mg,...,my) <= B € K(my,msg,...,mg). For | = k we can
put B; = B and use induction to obtain that there exists a subset B, that is the least with
respect to “<” among all subsets of m; x mgy X - - - X my, that are weakly equivalent to B, and
By € K(my,mg,...,my) <= B € K(my,ma,...,mg). But this implies By = B”, therefore
B € K(my,mg,...,my) <= B" € K(my,ma,...,mg), and B’ € K(mqy,mg,...,my) <
B" € K(mq,ma,...,my) as well. Thus we obtain B € K(mqy,ma,...,my) <= B €

K(my,mo, ... ,my). O
This lemma implies that the inclusion hyperspace K(ny, ng, ..., ng) is uniquely determi-
ned by the set of all sets of sections {[A]o, [A]1,...,[A]s,—1} for regular minimal elements

A€ K(ni,ng, ... ,ng).

For ny,ne € {1,2,...} we denote by V,,, ., the element G(n; X ny) with minimal elements
{0} x ng, {1} X ng, ..., {n1 — 1} x ny. Now by induction define V,,, n, . npp_1my fOr k> 1 as
the element of the space G*(n; X ng X + -+ X ngp_1 X Ngg) with minimal sets of the form

{Gkiljiho(Vn37n47~~7n2k717n2k)7 Gkiljil,l(Vn37n4,---7n2k71,"2k>7 R Gkiljh,nz*l(Vn37n47~~~7n2k717n2k)}

for 0 <@ < ny — 1, where the embeddings j;, i, 73 X ng X -+ X Ngp_1 X Nog — N X Ng X
s X Nok—1 X Nogg are defined by the formulae ji1,i2 (ig, e ,iQk) = (il, ig, ig, e ,iQk).
Let ny,na,...,n0 € {1,2,...}, and for some 1 < l; < ly < --- < Iy < 2k we have
n, = ng, = --- =mn;, = 1. Then the projection p: ny X ny X --+ X ng, — [ n isa
1<I<2k,

l¢{l17127"'7l5}
bijection. We denote the image

ka(vm,m,---,nzk—hn%) = Gk( H n )

1<I<2k,

l%{ll,lg,...,ls}
bY Vi siariion_1.00e, Where the sequence 1, ng, ..., M9,_1, N9, is obtained from ny,no,.. .,
Nok—_1, N2k by replacement of all elements with indices [, 1y, ..., [ (that are equal to 1) by

dots.
E.g. V.yun. € G*(m x n) is the image of the inclusion hyperspace Vi ,,,1 € G*(1 X m x
n x 1) under G? pry;, where pro;: 1 x m x n x 1 — m X n is the projection.

Lemma 3. Let ny,ng, ..., nog—1,n9 € {-,1,2,...}, and ngp_1 = ng, = - for some 1 < p < k.
Then
— (1 k—p
an,m,---,nzk—hnzk =G"nG Hnl (an,n2,---,n2p72,mp+1,---,n%)'

1<I<2k,
mF
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Proof. For p = 1 and arbitrary k& > p the inclusion hyperspace V.. ., ... | n, has the

unique minimal set {Vi, 1,0 .m0 ), therefore is equal to nGF™1 TIny (Vis.noe_y.nae ), and
1<I<2k,

3500y

-
the statement is true. Assume that is holds for all p < py and all £ > p. Consider the case
ni,ne € {1,2,...}, p=po + 1. The inclusion hyperspace V,, n, has minimal sets

----- Nok—1,N2k

{Gk_ljil,O(Vng,n4,...,n2k_1,n2k)7 Gk_ljil,l(VTZB,M,---,nzk—hnzk)?
ceey Gkiljh,nz*l(Vn37n47~~~7n2k71,"2k>}

for 0 < 7 < ny — 1, where the embedding j;, ;, are defined above. But by the inductive
assumption these sets can be written as

k=1, po—1,,Yk—po—1 | |
{G thO(G 77G e (Vn37n47~~~7n2p—27n2p+17~~~7n2k717n2k)>7
3<I<2k,
ny#

k=1, po—1,,Yk—po—1 | |
G 31171(G 77G o) (Vn37n47~~~,n2p—27n2p+17~~~7n2k717n2k))7 SRR
32k,
n#

k=1, po—1, ~k—po—1 | |
G j117n2*1(G nG e (Vn37n47---7n2p—27n2p+17---7n2k717n2k))}'
3<I<2k,
ny#

Note that 7: 1comp, — G is a natural transformation and py — 1 < k, therefore

Gkiljh,ig o Gpoflnkapofl Hnl _ Gpoflnkapofl Hnl o Gk72ji1,i2-
3<I<2k, 1<I<2k,
n# ny#£-
Thus the minimal sets of the inclusion hyperspace Vi, ns.. no_imse are the images of the
minimal sets of the inclusion hyperspace Vi, . .nop onopi1,.onon_1,me, Under the mapping
Gro~lpGF=Po=1 TIn; . Since py + 1 = p, we obtain the required equality

1<I<2k,
n7#
— (w1, k—p ”
Vn17n2,---7n2k—1an2k =G UG n (Vm,n2,---,n2p72,n2p+1,---,n2k—1,n2k)'
1<I<2k,
ny#

W

Passing to cases, when one or two of the indices ny,ny are equal to “-”, is trivial.

Thus the statement of the lemma holds for all natural p.
O

3. Proof of the main result. In the sequel we assume that G = (G, 7, i) is a monad in the
category of compacta with the inclusion hyperspace functor as the functorial part, and the
natural transformations n and p are arbitrary. As we remarked above, ambiguity is possible
only in the choice of the natural transformation u: G* — G.

We investigate images under this transformation of certain simple inclusion hyperspaces.
By Lemma 3 we have p(m xn)(V.. mn) = p(m x n) onG(m x n)(Vin) = Vipn. Analogously
u(m xn)(Vin..) = p(m x n) o Gn(m x n)(Vin) = Viun.

It is obvious that for any regular surjection f: mxn — m/xn’ the equality G*f (V. ;nn.) =
V,m’,n’,~a sz(Vm,.,m.) = Vm/,.,n/,., GQf(V,m,.,n) = V,m/,.,n/, GQf(Vm,.’.’n) = Vm’,-,-,n’ holds. Thus
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each of the collections of inclusion hyperspaces p(m X n)(V.pn.), p(m x n) (Vi n.), ppm x
n)(Vomn)s (m X n)(Vi,...n), where m,n € N, satisfies condition (!). Therefore all minimal
sets of any of these inclusion hyperspaces can be obtained by regular bijections mxn — mxn
from its regular minimal elements.

Let Ay = pu(m x n)(Vy,..n). Since

Gpry(A)) = Gpryou(m x n)(Vi..n) = pmo G? Py (Vi) = i (Vin...) = Vi € Gm

is the inclusion hyperspace with minimal sets {0}, {1}, ..., {m—1}, the inclusion hyperspace
A; contains all sets pr; “1({0}) = {0} x n, pr; *({1}) = {1} xn, ..., pr; '({m —1}) =
{m—1} xn. If the regular set C; = {0} X n is not minimal, it should contain a less set X that
is in A; and is equivalent to a regular set. The unique possible form of this set X is {(0,7)} for
0 < i < ny—1. Thus all singletons in m xn are minimal in A;. Then the inclusion hyperspace
G pry(A) € Gn also should contain all singletons in n, which is impossible because

Gpry(Ar) = Gpryou(mxn)(Vi,..n) = pmoG? pro(Vinom) = um(V.. ) =V.,, = {n} € Gn.

Thus the set {0} x n, as well as the sets {1} x n, ..., {m — 1} x n that are equivalent to
it, is minimal in A;. Assume that A; contains a minimal set Y that is not equivalent to C.
Then Y is equivalent to a regular set that in incomparable with C; with respect to “C”, i.e. is
equivalent to Co. But the assumption C € A; is also incompatible with the form of G pry(Ay).
Thus the collection of minimal elements of A; has the form {{0} xn, {1} xn,...,{m—1}xn},
ie. Ay = Vin.

Let Ay = pu(m X n)(V.p.). We have

Gpri(Az) = Gpryopu(m x n)(V.mn,) =
= um o G2 pry(Von) = um(V . ) = V. ={m} € Gm,

therefore all elements of Ay under the first projection should map onto m. We also have

G pry(Az) = G pryop(m X n)(Vmn,.) =
=unoG?pro(V. n)=pn(V. )=V, =expn € Gn,
therefore Ay contains all sets pry ~1({0}) = m x {0}, pry '({1}) =m x {1}, ..., pry, *({n—
1}) = mx{n—1}, i.e. sets that are equivalent to Cy. Since all subsets of m xn with surjective
projection to m contain subsets that are equivalent to Co, the set of minimal elements of A,
consists only of these sets. In other words, Ay consists of all subsets of m x n that contain
subsets of the form {(0,4), (1,71),...,(m — 1,4m-1)}, where 0 < i <nfor 0 <k <m— 1.
Let Ag = pu(m x n)(Vi,.n.). We have

Gpri(As) = Gpryopu(m x n) (Vi n,:) =
= pmo G2 prl(vm,-,n;) = Mm(vm,-,-,-) = Vm,- =expm € Gm,

therefore A3 contains all sets pr; ~1({0}) = {0} x n, pr; '({1}) = {1} xn, ..., pr; *({m—
1}) = {m — 1} x n. Analogously G pry(A;) = V,,. = expn € G'n implies that A3 contains
the set pr, “1({0}) = m x {0}, as well as all subsets m x n that are equivalent to it, i.e. sets
of the form {(0,14), (1,41),...,(m — 1,4,,—1)}, where 0 < ig,i1,...,%m—1 < n — 1.

Only two mutually exclusive assumptions are possible:
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(%) sets {0} x n, {1} xn, ..., {m —1} x n and m x {0}, m x {1}, ..., m x {n — 1}
exhaust the collection of all minimal sets of the inclusion hyperspace As;

(+5) there exists a minimal set X € Ag that is distinct from {0} x n, {1} xn, ...,
{m —1} x nand m x {0}, m x {1}, ..., m x {n — 1}.

In the case (**) only X = {(i,7)}, where 0 < i < m —1,0 < j < n— 1, is possible.
Therefore minimal elements of Az are all singletons {(7,7)},0<i<m—-1,0<j<n—1,
i.e. for (**) we have Ay = exp(m x n).

Let Ay = pu(m x n)(V. .n). We have

G pri(As) = Gpryop(m X n) (V. n) =
=umoG?pry(Viop.n) = um(V.) =V, = {m} € Gm.

Analogously

G pry(Ay) = Gpryou(m x n)(V.pm.n) =
=unoG*pro(Voyon) = pun(Von..) =V, ={n} € Gn.

Thus both the first and the second projections of any element of As should be surjective.
Therefore we can obtain two cases:
(+)

minimal elements of the inclusion hyperspace A4 are equivalent to A = m X n, i.e.
Ay ={m x n};

minimal elements of the inclusion hyperspace A, are equivalent to B = {0} x
nUm x {0}, i.e. Ay consists of all subsets of m x n that contain subsets of the
form {I} x n U {(0,40),(1,41),...,(m — 1,4y1)}, where 0 < I < m —1, 0 <
io,il,...,im_l < n— 1.

(++)

We omit an easy proof of the following

Lemma 4. If any of the statements (*), (**), (+), (++) holds for some m,n > 2, then it
holds for all m,n > 2.

Similar arguments are applicable also to the inclusion hyperspace B; = p(m x n X
E)Y(V.imnx). We have

G prog(Bi) = G progop(m X n X k)(V.mni) = p(n X k) o G? Proz (V. mnk) =
=pu(n X k)Y(V..nk) = Var, Gpria(B1) = Gprigou(m x n X k) (V. k) =
= N(m X n) o G® prlz(V,m,mk) = M(m X n)(V,m,n,-) = Ay,

G pri3(B1) = Gprigop(m X n X k)(V.pmnk) =
=u(m x k)o G? Pris(Vomnk) = p(m X E)(V . k) = Ag

(if we replace n — k).

For each set of the form X = {(0,40), (1,41),...,(m — 1,ipm—1)} C m X n, where 0 <
G0y 01, -+ -5 Im_1 < n — 1, the preimage pri, (X) = {0} x {ig} x kU{1} x {i1} xkU---U
{m — 1} x {i;,—1} x k is in B;. This preimage is equivalent to a regular set Y C m x n x k,
such that all its sections [Y]; are equal to {0} x k, i.e. have the type C;. If we assume that
there is a regular element Z € B; that is incomparable with Y with respect to “C”, then one
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of its sections [Z]; should not contain [Y];, i.e. should have the type Co, D or €. In all this
cases priy(Z) C m X n.

If we assume (+), then each elements B; under pr,; should map to m x k, that contradicts
to the existence of Z. Thus under (+) the set of minimal sets of the inclusion hyperspace B,
consists of all sets of the form {0} x {ip} x kU {1} x {is} x kU---U{m — 1} X {im-1}X,
i.e. of all sets equivalent to m x {0} x k. Consider the case (++).

Lemma 5. Let Y € By is a regular minimal element, n > 2, k > 2. Then among the sections
{[Y]o,[Y]1,--,[Y]m_1} there are no sets of the types A, D and .

Proof. Presence of £ = @ among the sections is impossible because of the form of G pry,(By).
Define for n, k > 3 a mapping ¢: n x k — (n — 1) x k by the formula:

(i) ifi<n—2j<k—2
(i—1,5)ifi=n—1.

This mapping has the following property: if A, B, Ag, By C n X k, A ~ Ay, B ~ By, the sets
Ay, By are regular, and ¢(A) C ¢(B), then Ag C By. Put ®: m xnxk —mx (n—1) x k,
® = 1,, x ¢. Note that ® is not a surjection, but G*®(V. . n1) = G*e(V. yun14-1), where
e:mx (n—1)x (k—1)— m xn x k is the embedding. Thus

GO(By) =GPoumxnxk)(V nk) =
=pumx (n—1)x k) o G*®(V. pnr) = p(m x (n—1) x k) o G®e(V.pn_15-1)-

Therefore all minimal elements of G®(B;) are contained in e(m x (n —1) x (k —1)) =
mx (n—1)x (k—1).

Construct a set Y/ C m x n x k as follows: if 0 < ¢ < m — 1, for [Y]; # {(0,0)} let
[Y']; = [Y];, and for [Y]; = {(0,0)} let [Y']; = {(n — 1,k — 1)}. Then Y' ~ Y, therefore Y’
also is minimal in B;. If one of the sections [Y7]; is equal to A =n x k or D = {(0,0)}, then
the corresponding section [Y']; contains {(n — 1,k — 1)}, therefore ®'(Y’) 5 (i,n — 2,k — 1),
and ®(Y') & mx (n—1) x (k—1). Thus the element ®(Y”) is not minimal in G®(B;). Then
there is a minimal element Z’ € By, such that ®(Z’) C ®(Y')Nm x (n—1) x (k—1). By the
above Z' is equivalent to a regular set Z C m xn x k. For any ¢ € {0,1,...,m — 1} we have
O(Z'N{i} xnxk)C®Y' N{i} xnx k), therefore prog(®(Z' N{i} x n x k)) = ¢([Z'];) C
prog (@Y N {i} x n x k)) = o([Y']s), [Y']: ~ [Y], [Z']; ~ [Z], and due to the mentioned
above property of ¢ we obtain [Z]; C [Y]; for 0 < i < m — 1. Thus Z C Y, Z € By, that
contradicts to minimality of Y. Therefore for n, k > 3 a minimal set Y € B; can not have
sections of the types A and D. In order to extend the arguments onto the cases when n = 2
or k = 2, it is sufficient to use a regular surjection m x (n+1) x (k+1) > mxnx k. O

Thus under (++) the sets of sections {[Y]o,[Y]1,...,[Y]m-1} of any regular minimal
element Y € By are: {C;} and one or several of the sets {C1,Ca}, {B,Ca}, {B,C1,Ca}.

Let By = p(m x n X k)(Vi,.nk)- It is easy to prove analogously to the proof of Lemma 5
that there are no sets of the types A and D among the sections Y;, 0 < i < m — 1, of any
regular minimal element Y € B,. Take into consideration that

G prog(B2) = Gprogou(m x n X k)(Vi.nk) =
=pu(n x k)o G? Pros(Vinmk) = pp(n X k) (V.. k) = Vi,
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Gpryp(Bz) = Gprypop(m x n X k) (Vi k) =
= u(m xn)o G? Prio(Vin.mk) = p(m x n) (Vi n.) = As,

Gpri3(B2) = Gprisou(m xn X k) (Vi nk) =
=u(m x k)o G? Prs(Vinmg) = p(m X k) (Vi) = Ay

(if we replace n « k), which implies G pry5(B2) = V,,.. If we assume (**), then all minimal
elements of By are of the form {i} x {j} x k, where 0 <i<m —1,0<j <n-—1,1ie. these
are sets equivalent to a regular set with sections of the types Cy, €. If (*) is true, we have
regular minimal elements with the sets of sections {C;}, {B, €} and, probably, {C;,Cs} or
{C1,Cy, EY.

Let By = pu(m x n X k) (V. k). We have

G pryg(Bs) = Gprogou(m x n X k) (Vi k) =
= pu(n x k) o G prog (Vi) = pu(n X k)(Von.n) = Ay

(if we replace m «— n, n «— k),

G pri3(Bs) = Gprigou(m xn X k) (Vi 1) =
- :U’(m X n) © G2 prlQ(Vm,n,~,k) = M(m X n)(vm,n,~,~) = Vm,na

G pri3(Bs) = Gprigop(m X n X k)(Vin, k) =
=u(m x k)o G? Pris(Vinnok) = p(m X k) (Vi . k) = Ay
)

(if we replace n « k), thus G pry53(Bs) = Vi

This implies that Bs contains all preimages of minimal elements of V,, ,, under pry,, i.e.
sets of the form pry, “1({i} x n) = {i} x m x k, 0 <7 < m — 1. If we assume (-+), then the
form of G pry;(B3) implies that there are no other minimal elements. If () holds, then in
addition to {A, &} the following sets of sections of regular minimal elements are possible:
{B}, {B, D}, {B, 5}, {Cl, CQ, 5}, {Cl, CQ}, {B, Cl}, {B, CQ}, {B, Cl, CQ}, {Cl, Cg, D}, and at
least one of them should be present.

Consider the set of inclusion hyperspaces

Ci=pumxnxk)oGumxnxk)(V.n..x)=pmxnxk)ouGmxnxk)(V.n. k-

It is obvious that it also satisfies (!). On the one hand, Gu(m xn X k)(V.pmn..k) = (Vomnk)s
thus C; = pu(m x n x k)(V. nik) = Bi.
To calculate C; in a different way, we fix a bijection £: n™ — n x n x --- x n and note

-~

that V. ..k = G*(V.0.), where ¥: mxn — G(mxnx k) is the mapping that is defined
by the formula (i, j) = r(m x n x k)({(i,7)} x k). Thus

,uG(m X 1n X k)(V,m,n,-,-,k) =
=uG(mxnx k) o G* (V. yun.) = G o u(m x n) (V. ma.) = G(Ay).

Besides, Gi(Ay) = G*U(Vym . 1), where W: n™ x m X k — m X n x k is the surjection
defined by the formula W(l,4,5) = (i,t(l)(¢), 7). Therefore

Ci=p(mxnxk)oG*U(Vym . 1) = GUopu(n™ xmxk)(Vym ) = GU(Bs)

(if we replace m <« n™, n «— m).
Investigate how W acts on possible minimal sets of the inclusion hyperspace Bs.



A MONAD FOR THE INCLUSION HYPERSPACE FUNCTOR IS UNIQUE 15

Lemma 6. A subset Z C m x n x k contains the image V(X)) of some set X C n™ xm X k,
that is equivalent to a regular set X' with the set of sections M, if and only if Z contains a
set Y C m X n x k that is equivalent to a regular set Y’ with the set of sections N or (for
items (1), (2)) N, for any of the following combinations: 1) M = {C;,C2}, N = {A, D},
N'={B,C}; 2) M ={B,C,C2}, N = {A, D}, NV = {B,Co}; ) M = {A,E}, N ={C,}; 4)
M ={B, £}, N ={C,,D}; 5) M ={C1,C2, €}, N ={C1, D}; 6) M = {B,Co}, N = {B,Cz};
)M = {B,C.}, N = {A,D}; 8) M = {B}, N = {A4,C,}; 9) M = {B,D}, N = {C1,Cs, D};
10) M ={Cy,Cy, D}, N = {C1,Co, D}.

Proof. Let us prove (1). Assume that Z D W(X), where X satisfies the condition of the
lemma. Then the set n™ is the union of two nonempty disjoint subsets L; and L,, and for
any | € Ly we have [X]; = {i;} x k for some i, € {0,1,...,n—1}. For any | € L, the section
[X]l has the form {(0, k’o), (1, k’l), ey (TL - 1, kn—l)}a where 0 < k?(), k?l, ceey kn—l < k— 1.
Denote P = m x n\ {(i;, t(1)())) | | € L1}, @ = pri,(V(X)) = {(i,t(D)(4)) | | € L1} U
{(6,t()(@)) | I € La}. If pry(P) = m, we choose (0,po),(1,p1),...,(m — 1,pm_1) € P.
Assume that (i,7) € m x n, (i,5) ¢ Q, and let | € n™ be determined by the equality
t(l) = (po,P1,- -+ Pi-1,J, Pit1s---»Pm—1. Then both [ € L; and [ € Ly are impossible, that
is a contradiction. Therefore for pr;(P) = m we have pri,(¥(X)) = m x n, and L, # @
implies that W(X) D {(i,7)} x k for some 0 < i < m—1,0 < j < n— 1. Thus U(X)
contains a subset Y that is equivalent to a regular set with sections {B,Cs}. If pr,(P) # m,
we choose i € m \ pr;(P) and obtain U(X) D {i} x n x k. Moreover, Ly # & implies
U (X) D {(0, 70, ko), (1,51, k1), ..., (m—1, Jpm—1, km—1)}, for some 0 < jo, 41, - jm—1 < n—1,
0 < ko, k1,...,kn_1 < k — 1. Therefore U(X) contains a subset Y that is equivalent to a
regular set with sections {A, D}.

Now let Z contain a subset Y equivalent to a regular set with sections {B,Cy}. Then Y
has the form {(ig, jo)} X kU {(4, 4, ki;) |0 <i<m—1,0<j<n}. Weput Ly ={l € n™ |
t(l)(’&o) = jo}, Ly, = nm\Ll, Xcnmxmxk, X =1L X {ZO} x kU {(l,i, ki,t(l)(i))}- Then X
is equivalent to a regular set with sections {C;,Cs}, and V(X)) =Y C Z.

If Z contains a subset Y equivalent to a regular set with sections {A, D}, then Y =
{’Lo} xn X kU {(O,jo,k’o), (1,j1,k31),. ce (m — ]_,jm_l,k’m_l)}, for some 0 < i() <m — 1,
0 < Jos jts- s dme1 <n—1,0< ko, kn, ..., ko1 < k—1. We put lo =t~ ((jo, ji, - - - Jm—1)),
Ly =n™\A{l}, Ly = {lo}, X = L1 x {io} x kU {(1,0,ko), ([, 1,k1),...,({,m — 1, ky_1)}.
Then X is equivalent to a regular set with sections {C;,Cs}, and V(X) =Y C Z.

Other items can be proved by analogous not very difficult, but cumbersome arguments.

U

We compare the obtained sets of sections with possible sections of regular minimal
elements of B;. Since there cannot be sets of the types D and £ among sections of regular
elements of By, only three possible types of regular minimal elements of B3 remain, namely
with sections {A,E}, {B,Cy} and {B}. They correspond respectively to regular minimal
elements with sections of the types {C;}, {B,Ca} and {A,Cy} of the inclusion hyperspace B;.
A minimal regular element with sections of the type {B} is also impossible because in this
case a regular element with sections of the types {A, Co} is minimal in B; and has a section
of the type A, which is also impossible by Lemma 5. Therefore we can have only regular
minimal elements with sections {A, £} and {B,C,} in Bs and regular minimal elements with
sections {C;} and {B,C,} in B;.

Summing up, we have two possibilities (everywhere all parameters m,n, k are not less
than 2) :
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1) (+) holds, the inclusion hyperspace B; has regular minimal elements with sections
{C:}, and the inclusion hyperspace Bz has regular minimal elements with sections {A, £};

2) (++) holds, the inclusion hyperspace B; has regular minimal elements with sections
{C1} and {B, C,}, and the inclusion hyperspace B; has regular minimal elements with sections
{A, &} and {B,Cs}.

Consider the family of inclusion hyperspaces

7777777

It also satisfies condition (!). On the one hand, Co = u(m xn xk)oGu(mxnxk)oGe(V,y,.),
where the mapping ¢: m — G?(mxnxk) sends each i € m to G?¢;(V,,... 1), where ¢;: nxk —
m x n Xk, e(j,l) = (i,7,1). We obtain

pim xn x k)oe(i) = u(mxnxk)oG?;(V,..x) =
= Gejoun X k)(Vi..k) = Gei(Ar) = Gey (Vi k).

Therefore Co = p(m x n x k)GO(V,,,.), where 6: m — G(m x n x k), 0(i) = Ge;(V,, k), thus
Co=pu(mxnxk)(Vim.nx) = Bo.
On the other hand, C; = pu(m xn x k)ouG(m xn x k)oG?(V,,.,.), where the mapping

:mxn— G(m xnXxk)is again defined as ¥ (i,7) =r(m x n x k)({(i,j)} x k). Here

pGm x n X k) Vi) = uG(m xn x k) o G*p(Vy, ) =
=Gy op(m xn) (V. n.) = G(As).

Consider the both possibilities (*) and (**). If (**) holds, then Gi(A3) = Vipn...k (We
identify m x n and mn), which implies Co = p(m x n X k)(Viun.. k) = Vinnk. It is the
inclusion hyperspace in m X n x k with minimal sets of the form {i} x {j} x k, where
0<i<m-—1,0<j<n—11If (*) is true, we put m' = m +n™, n’ = max{m,n} and
fix a bijection p: n™ — n x n x --- x n. Then Gi(A3) = G*O(Vyy .. k), where the mapping

v~

O:m'xn' xk—-mxnxk ismdefined by the formula:

{(min{j, m}, p(i)(min{j,m}), k) if i <n™;

O®i.j.1) =
(0:5,1) (¢ —n™, min{j,n}, k) if i > n™.

Thus
Co=pu(mxnxk)oG*OVn.1) =GO ou(m' xn' x k) Vi) = GO(B3)

(if we replace m «— m/, n «— n’).
Assume (*) and consider the images under GO of possible minimal elements of Bj.

Lemma 7. A subset Z C m x n x k contains the image ©(X) of some set X C n™ x m x k,
that is equivalent to a regular set X' with the set of sections M, if and only if Z contains a
set Y C m X n x k that is equivalent to a regular set Y’ with the set of sections N or (for
item (1)) N, for each of the following combinations:

L M= {AELN = {AELN' = {C1):
2. M ={B,C}, N ={B,Cs};
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We omit a straightforward proof. Since no subset Y C m xn xk equivalent to a regular set
Y’ with sections {A,E}, {C1} or {B,C2} can be a subset of a minimal set Z of the inclusion
hyperspace By with sections {B,£}, we obtain that under (*) the equality GO(B3) = Bs
is impossible, which is a contradiction. Thus (**) holds, and the unique regular minimal
element of By has sections of the types Ci, £, i.e. minimal elements of By have the forms
{i} x {j} xk, where 0 <i<m—-1,0<j<n—1

Consider the family of inclusion hyperspaces

33333333333

It satisfies (!) as well. On the one hand, C3 = pu(m x n x k) o uG(m x n X k) o G*p(Vyn.... ),
where we again define the mapping ¢¥: m x n — G(m x n X k) by the formula (i, j) =
rimxnxk)({(i,7)} x k). Thus uG(mxnxk)(Vin..n-x) = uGmxn x k) o G*Y(Vin..n) =
Gy opum xn)(Vi..n) = GU(A1) = GY(Vinn) = Vinn.k. Therefore C3 = p(m x n x
k) (Vi) = Ba.

On the other hand, C3 = p(m x n x k) o Gu(m x n x k) o Gé(V,,..), where the mapping
é:m — G*m x n x k) sends each i € m to G%¢;(V.,,.1), where e;: n X k — m X n x k,
ei(4,1) = (4,7,1). We have u(m x n x k) o é(i) = u(m x n x k) o G?*¢;(V.,,..x) = Ge; o u(n x
E)(V.n.k) = Gei(Ay). Thus C3 = p(m x n x k)GE(V,,,..), where £&: m — G(m x n x k),

Under (+) we have GE(Vin.) = Vinnk-

If (++) is true, we put n’ = n - k", k' = n + k and fix a bijection ¢: n - k" —
kxkx---xkxn. Then G¢(V;,.) = GPE(Vin,. i), where Z:m x 0/ x k' — m X n X k is

n

(¢,1,q()(1) it 1 < n;
(1,q9(7)(n),l —n) if | > n.

Therefore C3 = pu(m x n x k) o G*E(Vy. i) = GZ o pu(m x 0/ X K') (Vi i) = GZ(B2)
(if we replace n «— n', k < k’). Thus we obtain G=(By) = Bs. Choose a minimal element
Y € By equivalent to a regular set with sections B, £ and equal to {0} x n’ x {0} U {0} x
{g71((0,0,...,0))} x k. Tt is easy to verify that Z(Y) = {0} x n x {0} U {0} x {0} x k is a
regular set with sections of the types B, &£, that cannot be in Bz. Thus the assumption (++)
is false, and the only possible variant is (+), (**).

Now we know that the inclusion hyperspace B; has regular minimal elements with sections
{C1}, the inclusion hyperspace By has regular minimal elements with sections {C;, £}, and
the inclusion hyperspace Bz has regular minimal elements with sections {A4, £}.

Consider the family of inclusion hyperspaces D = p(s x m x n x k)(Vimni) that is
parameterized by natural s, m,n, k. It is obvious that D satisfies (!) and G pryq,(D) = By,
G pry34(D) = By, G pryy(D) = Bs. This implies that the only regular minimal element of D
has the form {0} x m x {0} x k.

defined by the formula: =Z(1, j, 1) = {

Lemma 8. If o, 3: G*> — G are natural transformations, and for all natural s, m,n,k the
equality a(s x m xn X k)(Vsmnk) = B(s x m x n X k)(Vymnx) holds, then a = (3.

Proof. First we will prove that for any F € G2X, where X is a finite compactum, there are
natural s, m,n,k and a mapping f: s X m x n x k — X such that G*f(V, nx) = F. Put
k=|X|,n=|expX|, m =|GX|, s = |expGX]|, and for any F' € exp X fix a surjection
ap: k — F. For each F € GX fix a surjection Sz: n — F, and put hr: n X k — X,
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hr(j,1) = ag.;)(k). It is easy to see that Ghr(V, ) = F. Now for each H € exp GX fix
a surjection yg: m — H, and put gg: m xn x k, gg(i,7,k) = hy, (4, 1). Fix a surjection
Op:s — Fand put f:s xm xnxk, f(p,i,j,l) = gs,4)(, 7, k). It is straightforward
to verify that the mapping f is required. Thus we obtain aX(F) = aX o G*f(V,mnk) =
Gfoa(sxmxnxk)(Vymnr) = GfoB(sxmxnxk)(Vimnr) = BXoG*f(Vemni) = BX(F).
This implies that the components of the natural transformations o and ( coincide on finite
compacta. Since any zero-dimensional compactum can be represented as the inverse limit of
finite compacta [6], and the inclusion hyperspace functor G is continuous, i.e. it preserves
limits of inverse spectra, we have X = X for each zero-dimensional compactum X. Each
compactum is a continuous image of a zero-dimensional compactum, and the functor G is
epimorphic, i.e. it preserves the class of continuous surjections, therefore a X = X for any
compactum X. [

This implies that the main result is true:

Theorem. There exists a unique monad in the category of compacta with the inclusion
hyperspace functor as the functorial part.
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