Lorentz type invariant subspaces of unbounded operators in banach spaces

Author
R. Tl Uczek
Institute of Mathematics, Rzeszów University
Abstract
The interpolation properties of Lorentz type invariant subspaces of unbounded operators in Banach spaces are studied.
Keywords
invariant subspace, unbounded operator, Banach space
DOI
doi:10.30970/ms.24.1.107-110
Reference
1. J. Bergh and J. Löfström, Interpolation Spaces, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1976.

2. Dunford N., Schwartz J.~T., Linear Operators, Part I: General Theory, Interscience, New York, 1957.

3. Lopushansky O., Dmytryshyn M., Operator calculus on the exponential type vectors of the operator with point spectrum (in "General Topology in Banach Spaces"), Nova Sci. Publ., Huntingon, New York, 2001.

4. Tuczek R., Invariant subspaces of Lorentz type for unbounded operators on interpolation spaces, Matem. Studii (Proc. Lviv Math. Soc.) 22 (2004), no.~1, 67--72.

5. Triebel H., Interpolation Theory. Function Spaces. Differential Operators., Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1995.

Pages
107-110
Volume
24
Issue
1
Year
2005
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue