Foncteurs libres et r'etractes absolus (in French)

Author
R.Cauty
Université Paris 6, UFR 920, Boîte courrier 172, 4 place Jussieu, 75252 Paris Cedex 05
Abstract
For a compact space $X$, let $E(X)$ be the free topological vector space which it generates. We study the class of metrisable compacta having the property that every metrisable linear topology on $E(X)$ finer that the free topology makes $E(X)$ an AR.
Keywords
compact space, metrizable compacta, free topological vector space
DOI
doi:10.30970/ms.24.1.89-98
Reference
1. Basmanov V. N. Foncteurs covariants, rétractes et dimension, Dokl. Akad. Nauk SSSR, 271 (1983), 1033–1036 (Russe).

2. Cauty R. Un espace métrique linéaire qui n'est pas un rétracte absolu, Fund. Math. 146 (1994), 85–99.

3. Cauty R. Quelques problèmes sur les groupes contractiles et la théorie des rétractes, Math. Studii 3 (1994), 111–116.

4. Cauty R. Le théorème de point fixe de Lefschetz-Hopf pour les applications compactes des espaces ULC, Prépublication.

5. Dobrowolski T. On extending mappings into nonlocally convex linear metric spaces, Proc. Amer. Math. Soc. 93 (1985), 555–560.

6. Dowker C. H. Homotopy extension theorems, Proc. London Math. Soc. 3 (1956), no. 6, 100–116.

7. Engelking R. Theory of Dimensions Finite and Infinite, Heldermann Verlag, Lemgo, 1995.

8. Gresham J. H. A class of infinite-dimensional spaces. Part II: an extension theorem and the theory of retracts, Fund. Math. 106 (1980), 237–245.

Pages
89-98
Volume
24
Issue
1
Year
2005
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue