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The paper investigates the relation of M-equivalence of mappings. We present functors
preserving this relation. A new method for constructing examples of M-equivalent mappings is
given and, as a corollary, we obtain a list of properties of mappings which are not preserved by
M-equivalence. Some characterizations of M-equivalence of spaces in terms of M-equivalence
of mappings are presented. A complete classification of A-equivalent mappings having right
inverse up to A-equivalent spaces is given.
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Uccnenyerca ornorenne M -3KBHBAJIEHTHOCTH OTODparkenwuii. [Ipencrasiensr (hyHKTODPHI,
COXPAHAIOIIIE ITO OTHOIIEHUE. [IPUBOIUTCS HOBBIM METOJ, MOCTPOeHusT npuMepoB M -3kBuBa-
JIEHTHBIX oToOpazkennit. Kax ciencrsue, momyder HabOp CBOMCTB OTOOparKeHui, HE COXPAHSIIO-
muxcst ipu M-sxBuBasienTHOCTH. [IpeicTaBieHbl HEKOTOPBIE METOABL Jjisi onucanus M- SKBu-
BAJIEHTHOCTHU MPOCTPAHCTB B TepMuHaX M -3KBUBAJIEHTHOCTH OTOOpaxKeuuii. C TOYHOCTHIO 110
A-3KBUBAJICHTHBIX TPOCTPAHCTB MOJIyYeHa TTOJIHAs KJIACCU(DUKALNs A-I3KBUBAJIEHTHBIX OTOOPa-
JKEHUH, NMEIOIINX TTpaBoe 00paTHoe.

1. Introduction. All spaces are assumed to be Tychonoff. The notion of M-equivalent
mappings was introduced by O.Okunev in [5]. He provided the first method for constructing
such mappings and, as a corollary, some properties which are not preserved by the relati-
on of M-equivalence of mappings. We refer to [7] for examples of categories and functors
in topological algebra and basic results on their isomorphical classification. In Section 2
we give some basic properties preserved by the M-equivalence relation. Section 3 contains
basic constructions preserving the M-equivalence relation. In Section 4 a powerful method
for constructing examples of M-equivalent mappings is presented. We also give a list of
properties which are not preserved by M-equivalence. In Section 5 we give a few methods
to characterize of M-equivalence of spaces in terms of M-equivalence of mappings. In Secti-
on 6 we investigate the A-equivalence of the mappings having right inverse. The main result
of the section is a complete A-classification of the mappings having right inverse up to A-
equivalent spaces. As a corollary, we give some constructions preserving the A-equivalence
of such mappings. The terminology is taken from [5] and [2].
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2. On M-invariant properties of mappings.

Definition 2.1. [5, p.160]. We call two mappings f: X; — Y; and g: Xy — Yo M-
equivalent if there exist topological isomorphisms i: F'(X;) — F(X3) and j: F(Y}) — F(Y3)
such that jo f* = g*oi where f*: F(X;) — F(Y1) and ¢*: F(X;3) — F(Y3) are homomor-
phisms extending f and g (we denote f X g)-

Replacing in the last definition the functor of free topological group by the functor of
free abelian topological group, free locally convex space and free locally convex space in the
weak topology we obtain the definition of A-, L- and [-equivalent mappings.

Proposition 2.2. f X g=f S g=f X g.

Proof. For each topological isomorphism i: F'(X;) — F(X3) there exists a topological iso-
morphism i4: A(X;) — A(X3) such that iy o p; = py 0@ where p;: F(X;) — A(X;) are
homomorphisms extending the identity map of X;. We call such 74 the abelization of :.
Let f ~ g and i: F(X,) — F(Xy),5: F(Y1) — F(Y3) be topological isomorphisms such
that j o f* = ¢g* oi. Denote by fi: A(X1) — A(Y1) and ¢%: A(Xs) — A(Y3) the extensions
of f and ¢ to continuous homomorphisms; by 74, j4 the abelizations of the topological
isomorphisms i and j. Obviously, from jo f* = g* oi it follows that j4 o f3 = g% oi4. Hence

f 2 g. In the same manner we can prove that f 2 g=f L qg. O

Recall that two mappings f: X; — Y; and ¢g: Xs — Y5 are said to be homeomorphic if
there exist homeomorphisms i: X; — X5, j: Y] — Y5 such that foi=jo0g.

Proposition 2.3. [5, Proposition 1.8]. A continuous surjection p: X — Y is R-quotient if
and only if the homomorphism p*: F(X) — F(Y) extending p is open.

Corollary 2.4. [5, Corollary 1.9]. Let f X g be continuous surjections. If f is R-quotient
then so is g.

One can easily check that any mapping A-equivalent to a surjection is again a surjection.

Definition 2.5. Let f: X — Y be a mapping. Define on X an equivalence relation ~ by
putting a ~ b <= f(a) = f(b). From each class of equivalence we take an arbitrary point
and form the set H. The injectivity of the mapping f is the cardinal number i(f) =| X\ H |.

Proposition 2.6. Let f 2 g. Then i(f) =i(g).

Proof. This follows from the fact that ker f* is algebraically the free abelian group with set
of generators having the cardinality i(f). O

The following facts are obvious.
Corollary 2.7. Any mapping A-equivalent to a condensation is again a condensation.

Corollary 2.8. Any mapping A-equivalent to a homeomorphism is a homeomorphism.
3. Constructions preserving M-equivalence.

3.1. Sum of mappings. The sum of Tychonoff spaces is again Tychonoff [2, Theorem
2.2.7|.



Proposition 3.1. If f, ~ gs for each s € S then @st d 69 ) Js-

se
Proof. Let fo: X, — X, gs: Yy — Y, be continuous mappings and i,: F(X,) — F(Y;),
js: F(X,) — F(Y,) be topological isomorphisms.

First of all note that if we have i,: F(X,) — F(Y}), js: F(X,) — F(Y,)) then we can
define topological isomorphisms i: F(PsesXs) — F(@SGSY) G F(®sesXs) — F(®sesYs)
We can do it in the manner of [1, Proposition 8.8].

One can easily check that j o (Bgesfs)* = (Psesgs)” ©

Thus @sesfs is M-equivalent to ©secs9s. O

3.2. Product of mappings. Product of Tychonoff spaces is again Tychonoff [2, Theorem
2.3.11].

M
There exist Tychonoff spaces X, Y7, Ys such that Y; N Ys while X x Y] £ X X Y; (see [6,

Corollary 2.3]). Then, obviously, idy, X idy, while idy, x idx 1\/; idy, x idx. This shows that
the products of M-equivalent maps are not necessary M-equivalent.

We say that a triple (X,Y, Z) satisfies condition (x) if either Z is locally compact or
(X ®Y) x Z is a k-space. We say that a quadruple (X, X», Y1, Ys) satisfies condition () if
the triples (X7, Xo,Y7) and (Y7, Y, X») satisfy condition (x).

Proposition 3.2. Let f;: X; — Z;, g;: Y, — T}, f; X gi, © € {1,2}, and the quadruples
(X1, X9, Y1,Y5) and (21, Z5, Th, T3) satisfy condition (). Then fi X fy M g1 X go. The same
is valid for A- and L-equivalence.

Proof. Let h;: F(X;) — F(Y;) be topological isomorphisms. In virtue of |6, Proposition
1.2] we can construct isomorphisms A} : F(X; x Y;) — F(Xy x Y7) and hy: F(Xo x Y]) —
F(X5 x Y3), in the same way having isomorphisms v;: F(Z;) — F(T;) we can construct
isomorphisms v} : F(Z; x T1) — F(Zy x T1) and vh: F(Zy X Th) — F(Zy x Ty).
One can get M-equivalence of f; x f and g; X go from the diagram:
h}oh),
F(X; x X5) — F(Y; xY,)
(fixf2)* | 1 (g1xg2)*

/ /
V1005

F(Zyx Zy) = F(Px P)
O

Example 3.3. If f: X; — Y, and g: Xo — Y5 are M-equivalent and (X, ®Y1)"®(XoPYs)"
15 a k-space, then fm™ X q".

Proof. Follows from [6, Corollary 1.5]. We only note that in the proof of the corollary we
actually need X7 x Y77 to be a k-space for each 0 < j < n. The latter is equivalent to the
fact that (X @ Y)" is a k-space. O

3.3. G-symmetric power functor. Let G be a subgroup of the n-symmetric group 5,.
Recall that SPj denotes the G-symmetric power functor defined as follows. For a space
X the space SPZX is the orbit space of the n-th power X" by the action of G defi-
ned as follows (21, %2,..2n) — (Zo(1), To(2), ---To(n)), Where o € G. The orbit containing
(21, T2, ...x,) is denoted by [z, za,...2,]q. The set {1, s, ...z, } is called the support of an
element [x1, 2, ...2,]¢ and is denoted by supp([z1, 22, ..., ]q)-



Proposition 3.4. If X 2 Y and (X @Y)" is a k-space then SPiX A SPEY.

Proof. Having a topological isomorphism i: A(X) — A(Y') we can “extend” it to a topologi-
cal isomorphism ¢, : A(X") — A(Y™). Denote by sx: X" — SPZX,sy: Y" — SPLY the
quotient mappings, s%: A(X") — A(SPLX),sy: A(Y™) — A(SPLY) their homomorphic
extensions. One can easy check that there exists a unique topological isomorphism
ispn: A(SPEX) — A(SPEY) such that sy, o, = igpy o sk.

U

For amap f: X — Y the map SPLf: SPEX — SPLY is defined as follows

SPGflwy, xa, o wn]a = [f(71), f(22), .. f(7n)]a

Proposition 3.5. If f: X; — Y; and g: Xy — Y5 are A-equivalent and (X; ®Y7)" @ (X, ®
Ys)™ is a k-space then SPLf A SPLg.

Proof. For every topological isomorphism i: A(X) — A(Y) let
ispp: A(SPG(X1)) — A(SPG(X2))

be a topological isomorphism as in Proposition 3.4. One can easily check that from jo f* =
g* o it follows that jspn o (SPGf)" = (SPLg)* o ispn. Hence SPG f S SPLg.
O

3.4. Spaces of quasicomponents. Denote by Q(X) the space of quasicomponents of a
Tychonoff space X, by gx we denote the quotient map X — Q(X) [4, page 159].
For the mapping f: X — Y we denote by Qf: Q(X) — Q(Y) the mapping for which

qvof=Qfoqx.

Proposition 3.6. Let X X Y, such that Q(X) and Q(Y") are Tychonoff. Then the mappings
qx and gy are M-equivalent. In particular, the spaces Q(X) and Q(Y') are M-equivalent.

Proof. Let i: F(X) — F(Y) be a topological isomorphism, gy: X — Q(X),qy: Y —
Q(Y) be the quotient maps and Qx: FM(X) — F(Q(X)),FY: F(Y) — F(Q(Y)) their
homomorphic extensions. Let us show that there exist a continuous map f such that @)y o
(i]x = fogqx.If z € Q(X) and gx(x1) = z then denote by f(z) = Qy (i(z1)). Let us show that
such f is well-defined. Suppose that we have another zo with ¢x(z2) = z. Then 21 € Q,,.
The space Q(Y) is totally disconnected [4, pages 159,161|, hence [3] F(Q(Y)) is totally
disconnected. Thus Qy (i(Q,)) is single. Since for any continuous f we have f(Q.) € Q).
we can conclude that Qy (i(z1)) = Qy (i(x2)) and therefore f is well-defined. The continuity
of f follows from the continuity of ¢« and (Qy and from the fact that gx is quotient.

In the same manner we can define g: Q(Y) — F(Q(X)).

Let us extend f, g to continuous homomorphisms f* and g*.

Then from the diagram

FX) -5 Fy) 5 FX)
oxl ley 10«
FQWX) - FQY)) > FQX)
we have that f* o g* = 1p(x)). Similarly we can prove that g* o f* = 1pg(y)). The above
shows that the map f*: F(Q(X)) — F(Q(Y)) is a topological isomorphism. O



Proposition 3.7. Let f d g. Then Qf rd Qg.

Proof. For every topological isomorphism i: F(X) — F(Y) a topological isomorphism
ig: F(Q(X)) — F(Q(Y)) is constructed in Proposition 3.6. One can easy check that from

jo f*=g"oifollow jg o (Qf)* = (Qg)* o ig. Hence Qf X Qg. O

The same is valid for A-equivalence relation.

3.5. Suspension, cone, open cone. Denote by X the suspension, by C' the cone, by O the
open cone [13]. For a continuous mapping f: X — Y let us denote by Yf: XX — XY its
continuous extension.

Definition 3.8. We say that a topological isomorphism i: F(X) — F(Y) is special if the
composition h o is constant on X, where h: F(Y) — Z is a homomorphism extending the
mapping equal 1 on Y.

Proposition 3.9. Let f: X; — Y, g9: X5 — Y5 be M-equivalent mappings, then there exist
special isomorphisms i1: F(X;) — F(X3) and j,: F(Y1) — F(Y3) such that j; o f* = g* 0.

Proof. Let f ~ g and i: F(X)) — F(X3),5: F(Y1) — F(Y3) be topological isomorphisms
such that jo f* = ¢g* o4. Using |6, Lemma 3.5| we can construct a topological automorphism
u: F(X) — F(X) such that i; = iowu is a special isomorphism. One can easily check that the
map f; = uo f|x is topologically equivalent to f and there exists a topological isomorphism
v: F(Y) — F(Y) such that vo ff = f* ou. Denote by j; = jowv. Then j; o f = g* o iy.
Since i is special, so is 7;. O

Proposition 3.10. If f X g then : X f d g, Cf i Cqg, Of d Og. The same is true for the
relations of A- and L-equivalence.

Proof. First we apply Proposition 3.9. For every special topological isomorphism i: F(X;) —
F(X5) we can define topological isomorphisms: ix: FI(XX;) — F(XXy),ic: F(CX;) —
F(CXs),i0: F(OX;,) — F(OX3) see |6, Proposition 4.4, 4.5|. One can easily check that from
jof* = groiitfollows jso(Xf)* = (Xg)*oix, joo(Cf)* = (Cg)*oic, joo(Of)* = (Og)*oio.
Hence Sf X ¥g, Cf X g, 0f X 0Og. O

3.6. Dieudonné completion. For a topological space X, denote by uX the Dieudonné
completion of X (see |2, section 8.5.13]). For a continuous mapping f denote by uf: uX —
uY its unique extension. The space admitting uniformity is Tychonoff, hence pX is Tycho-
noff for each X. It was proved in [11] that the functors Aoy and Ro A (where A is the
functor of free abelian topological groups, R is the functor of Raikov completion) are naturally

equivalent. From this fact it follows that f 2 g follows uf ~ 1g. The same proposition for
M-equivalence follows from the results of [10].

4. Construction of examples of M-equivalent spaces. Two retractions r1, 79 of a space
X are called parallel if ri ory =71 and ry 01y = 9.

Proposition 4.1. |5, Theorem 2.2|. Assume that K, and K, are parallel retracts of a space
X, YY) = X/K; and Yy = X/K, are R-quotient spaces and p1: X — Y; and py: X — Y,
are the natural mappings. Then the mappings p; and py are M-equivalent. In particular, the
spaces Y, and Y, are M-equivalent.



Okunev’s construction was generalized in [9].

Proposition 4.2. Let X be a Tychonoff space and r, and ry its retractions onto the same
M

retract K. Then ry ~ ry.

Proof. Obviously r1 o7y =79 and ry 07y = 73.

Consider the continuous mapping i(z): X — F(X) defined by the formula i(x) =
ri(z)x " ry(z). Extend i(x) to a continuous homomorphism I(z): F(X) — F(X). Then

Toi(x) =ri[ri(z)z ry(z)] x [ri(z)z re(z)] ™ X rofri(z)z ™ty (2)] =

=ryory(x) xri(x) P xriory(z) X ro(z) T x X ry(x) Tt xryor () X () X rpory(n) =

Hence I oI = 1p(x)

ro 01 =r90r(T) X 7“2(95)_1 X 190 19(x) = 11(2)
X r

rioi=ryor(z) xr(z)"t xr ory(z) = ri(z)

From this fact we can conclude that r; X 9. O

Corollary 4.3. Since any two parallel retractions are homeomorphic mappings, any two
retractions onto parallel retracts are M-equivalent.

A map f: X — Y is called finite-to-one (compact, pseudocompact) if any f=1(y) is
finite (compact, pseudocompact). A closed compact map is called perfect.

Example 4.4. Let X ={1,2,3,....,n,.....} be the space of positive integers with usual order.
Consider the mappings f = max(z,y), ¢ = min(z,y). Obviously f~'(n) = ({1..n},n) U
(n,{1..n}) is finite for all n and g7'(n) = ({n,n +1,...},n) U (n,{n,n+1,....) is infinite
for all n.
Corollary 4.5. The following properties are not preserved by the relation of M-equivalence
within the class of clopen mappings :

1) perfectness;

2) compactness;

3) pseudocompactness;

4) finite-to-one property.

A map f: X — Y is called monotone, (easy, zero-dimensional, discrete) |2, p.526,538|
if any f~1(y) is connected (respectively hereditary disconnected, zero-dimensional, discrete).
A map f: X — Y is called functionally open(closed) if the preimage of every functionally
open(closed) subset in Y is functionally open(closed) in X. A map which is functionally closed
and functionally open is called functionally clopen. We say that dim(f) < n if dim(f~!(y)) <
n for any y. We say that card(f) < n if card(f~'(y)) < n for any y.

Example 4.6. Let X = R. Then the mappings f(z) = |z| and g(x) = 27 = (z + f(x))/2
are retractions from R to RT =[0,00) so f X g.
Corollary 4.7. The following properties of maps are not preserved by the M-equivalence

relation within the class of closed quotient retractions: monotonicity, easyness, dimension,
zero-dimensionality, discreteness, cardinality, functional openness, functional clopenness.



A map f is called a local homeomorphism if for any x € X there exist its neighbourhood
U(x) such that f|y () is a homeomorphism of U(x) onto an open subspace of Y.

Corollary 4.8. Let X = [-2,—1]U {0} U [1,2] then consider the restrictions of the above
defined mappings f and g. The restriction of f is a local homeomorphism, while the restri-
ction of g is not. Both f and g are clopen mappings.

5. On certain classes of M-equivalent mappings. Let X be a Tychonoff space. We
denote by ex the quotient mapping of X to the one-point space e, by idx the identity of
X, by Dx the condensation from a discrete space D)x| of cardinality | X| onto X, by gx the
quotient mapping from the space X to the space Q(X) of the quasicomponents of the space
X, by px the embedding X — uX.

Let M[X] denote the class of Tychonoff spaces Y such that X Xy and by M|f] the
class of continuous mappings g between Tychonoff spaces such that f X qg.
Proposition 5.1. For arbitrary Tychonoff X
a) Mlex] ={ey | Y € M[X]};
b) Mlidx] = {idy | Y € M[X]};
¢) M[Dx] ={Dy | Y € M[X]};
d) Mlgx] ={av | Y € M[X]};
e) Mlux]={py |Y € M[X]}.
Similar statements hold for A-equivalent spaces and mappings.
Proof. d) The inclusion M[gx] 2 {qv | Y € M[X]} follows from Proposition 3.6.
Let us prove the inclusion Mgx] C {q¢v | Y € M[X]}. Let f: Y — Z be such

that f ~ gx. Then YV € M[X] and Q(f) ~ Q(gx) by Proposition 3.7. Since Q(gx) is a
homeomorphism, so is Q(f). Hence f = gy

e) The inclusion M[ux] 2 {uy | Y € M[X]} follows from the fact that the extension
ix is the embedding of the free topological group F(X) into its Weil completion. Let us
prove the inclusion M[ux]| C {uy | Y € M[X]}. Let f: Y — Z be such that f ~ jix. Then
Y € M[X], Z is Dieudonné complete and p(f) d p(px). Since pu(py) is a homeomorphism,
so is u(f). Thus f = py. O

Proposition 5.2. Let X and Y be A-equivalent spaces, a € X, b € Y be arbitrary points.
Then there exists a special topological isomorphism h: Ay (X) — Ay (Y) such that h(a) = b.

Proof. By [6, Proposition| there exists a special isomorphism j: Ap(X) — Apn(Y). Let
A = x4+ Aaxo + ... + Az, be j7H(D). Since j is special, Y i, A; = 1. Consider the
mappings f,g: X — Ap(X) defined as follows: f(z) =2+ A —a, g(x) =2 — A+ a. Let
%% Ay (X) — Ap(X) be their homomorphic extensions. Then

ffog(x)=f(e—A4+a)=(x+A—a)— [M@m1+A—a)+ X(za+A—a)+ -+
Az, +A—a)+(a+A—a)=z+A—a— [Nz + dowg + -+ Ny —

_<Z)\Z-> X(A—a)+A=2x+A—-a—-A—-1x(A—a)+A=u.
i=1

Thus f*og* = g* o f* = 14,,(x). Therefore f* is a special isomorphism and f*(a) = A.
Then h = j o f* is a topological isomorphism and h(a) = j o f*(a) = j(A) = b. O



Let {X}ses be a family of spaces with base point z, € X, for each s € S. Let
Vies(Xs, 5) = (PsesXs)/(Bsests) be the bouquet of this family.

Corollary 5.3. Let X, 2 Y, for each s € S. Then VcsX, 2 ViesYs.
In the same manner we can prove

Proposition 5.4. Let X and Y be L-equivalent spaces, a € X, b €Y be arbitrary points.
Then there exists a special linear homeomorphism h: L(X) — L(Y') such that h(a) = b.

Denote by t(x 4, the embedding of the one point space e into X such that t(x ;.)(e) = .
Consider the continuous mapping i: X — F(X) such that i(z) = a x 27! x b. Denote by
I: F(X) — F(X) its extension. Then I o t(xq) = t(x). Hence t(x ., does not depend, up
to M-equivalence, on the base point zy so we will write shortly x.

Proposition 5.5. For arbitrary Tychonoff space X, Altx] = {ty | Y € A[X]}.

6. On A-equivalence of the mappings having right inverse.

Proposition 6.1. Let r: X — K be a retraction. Then r is M-equivalent to the R-quotient
mapping p: (X/K)V. K — K.

Proof. Considering Okunev’s construction [5] we can construct a topological isomorphism
i: X — X/K V., Ky, where K; is a homeomorphic copy of K (we fix a homeomorphism
h: K — Kj).

Applying this construction we came to the conclusion that the point a € X is mapped
onto the point i(a) = p1(a) x e x ry(a), where p;: X — X/K is the R-quotient mapping,
e = p1(K), and 7y is the composition of the retraction r: X — K and the homeomor-
phism h: K — Kj. Denote by p*: F(X/K V. K) — F(K) the extension of p to a group
homomorphism.

Then p*oi=p*opi(a) x pro(e) P xp ory(a) =exe xri(a)=ria). O

In the same manner one can prove the following proposition.

Proposition 6.2. Let r: X — K be a retraction, p: X — X/K the R-quotient mapping.
Then p is M-equivalent to the R-quotient mapping q: X/K V. K — X/K.

Proposition 6.3. For two retractions r;: X; — K; the following are equivalent:
1) r 2 To;
IT) The R-quotient maps q;: X; — X;/K; are A-equivalent;

) K, 2 Ky and X1 /K, 2 Xy /K.

Proof. (I = II) X, 2 X, follows from the definition of A-equivalent mappings. By
Proposition 6.1 the retractions r; are A-equivalent to R-quotients p;: X;/K; V. K; — K.
Since ker(p?) = Ao(X;/K;) and Ay ((X;/K;) = Ao((Xi/K;) X Z, we have Ay ((X1/K;) ~
Ap((Xo/Ky).

(I = II) X;/K, 9 Xy /K, follows from the definition of A-equivalent mappings. By
Proposition 6.2, the R-quotients ¢;: X; — X;/K; are A-equivalent to quotients p;: X;/K; V.



Ki — )(Z/I(Z Since ker(pj) = AO(Kz) and AM(Kz) = AO(Kz) X Z, we have AM(Kl) ~

(IIT = I) By Proposition 6.1 it suffices to prove that the R-quotients f;: X;/K; V., K; —
K; are A-equivalent. By Proposition 5.2 there exist topological isomorphisms u: A(X;/K;) —
A(Xy/Ks) and v: A(K;) — A(K>) such that u(e;) = es and v(e;) = ey. Consider the mappi-
ng si: X1/K1Ve, K1 — A(X2/ Ky Ve, K3) by putting s1(x) = u(z) if x € X;/K; and s1(x) =
v(x) if z € K. In the same manner we can define so: Xo/ Ky Ve, Ko — A(X1/K; Ve, K1).
Then the extensions s; of s; are inverse continuous homomorphisms. So s; is topological
isomorphism. Denote by

Ao(Xy/Ky) = {W € A(Xy) W =gy + gy + -+ - + €y, x; € X1/ Ky, Zai = O} .
i=1
Obviously ker(rf) = Ao(X;/K;) and s1(Ap(X:1/K1)) = (Ao(X2/K3)), therefore by |5, Theo-

rem 1.10] we have r; 2 .
(IIT = 1II) Using Proposition 6.2 we can prove the implication similary to the previous
one. 0

We call two retractions r; and 75 of a space X are orthogonal [8] if the mappings ry o ry
and r5 o ry are constant.

Corollary 6.4. Two orthogonal retractions r;: X — K;, i € {1,2} are A-equivalent iff
K 2 K.

Proof. Since K; & K, by [8, Propositions 3.2,3.7.] we have X/K; & X/K,. by Proposi-
tion 6.3 we see that rq 2 9. O
Proposition 6.5. Let X ~ Y and a triple (X,Y, Z) satisfies condition (*). Consider the
projection mappings px: X X Z = X, py: Y X Z =Y, fx: XX Z—-Z, fy:Y X7 — Z.

M M
Then px ~ py, fx ~ fv-

Proposition 6.6. Let f; 2 fo, n 2 go be the mappings that have right inverse. Then

A
gio fi ~gao fo

Proof. Let fi: X; — Yi, g1 Y; — Zi, i € {1,2}. By Proposition 6.1, g1 o fi ~ gs 0 fo iff
X/Zy A X/ Zy and 2, 2 7.

Let us show that X/Z+ A X/Y ®Y/Z. The space X/Z contains a retract homeomorphic
to Y/Z. Hence by [5, Theorem 2.4] X/Z+ A X/Y & Y/Z.

Since fi A f, implies X;/Y; & Xo/Ya, g1 ~ go implies Yi/Z1 2 Y3/Z,, we have
(X1/21)* & (X2/Z5)" so from [8, Proposition 3.7] we can conclude that X;/7; & Xo/Zs.
Hence ¢, o f; 2 go 0 fo. U

Denote by fVg the sum combination |2, page 126] of the mappings f and g.

Proposition 6.7. Let f; 2 fo, n 2 go be mappings such that f; has right inverse. Then

iV ’é f2Vgo.



Proof. Let fi: X; — Z;,9;:Y; — Z;, i € {1,2}. Since f; has right inverse, f;Vg; also has
right inverse. Then f;Vg; 2 faVgs if and only if Y; 2 Yo and Xy /Z; & Y) 2 Xo/Zy @ Ys.

Since fi 2 f, implies X1/Z, & X»/Z, and ¢; ~ g» implies ¥; 2 Y,, we obtain

X2 @Y\~ Xo[Zy ® Yo O
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