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The paper investigates the relation of M -equivalence of mappings. We present functors
preserving this relation. A new method for constructing examples of M -equivalent mappings is
given and, as a corollary, we obtain a list of properties of mappings which are not preserved by
M -equivalence. Some characterizations of M -equivalence of spaces in terms of M -equivalence
of mappings are presented. A complete classification of A-equivalent mappings having right
inverse up to A-equivalent spaces is given.
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Èññëåäóåòñÿ îòíîøåíèå M -ýêâèâàëåíòíîñòè îòîáðàæåíèé. Ïðåäñòàâëåíû ôóíêòîðû,

ñîõðàíÿþùèå ýòî îòíîøåíèå. Ïðèâîäèòñÿ íîâûé ìåòîä ïîñòðîåíèÿ ïðèìåðîâ M -ýêâèâà-

ëåíòíûõ îòîáðàæåíèé. Êàê ñëåäñòâèå, ïîëó÷åí íàáîð ñâîéñòâ îòîáðàæåíèé, íå ñîõðàíÿþ-

ùèõñÿ ïðè M -ýêâèâàëåíòíîñòè. Ïðåäñòàâëåíû íåêîòîðûå ìåòîäû äëÿ îïèñàíèÿ M - ýêâè-

âàëåíòíîñòè ïðîñòðàíñòâ â òåðìèíàõ M -ýêâèâàëåíòíîñòè îòîáðàæåíèé. Ñ òî÷íîñòüþ äî

A-ýêâèâàëåíòíûõ ïðîñòðàíñòâ ïîëó÷åíà ïîëíàÿ êëàññèôèêàöèÿ A-ýêâèâàëåíòíûõ îòîáðà-
æåíèé, èìåþùèõ ïðàâîå îáðàòíîå.

1. Introduction. All spaces are assumed to be Tychonoff. The notion of M-equivalent
mappings was introduced by O.Okunev in [5]. He provided the first method for constructing

such mappings and, as a corollary, some properties which are not preserved by the relati-
on of M-equivalence of mappings. We refer to [7] for examples of categories and functors

in topological algebra and basic results on their isomorphical classification. In Section 2

we give some basic properties preserved by the M-equivalence relation. Section 3 contains

basic constructions preserving the M-equivalence relation. In Section 4 a powerful method

for constructing examples of M-equivalent mappings is presented. We also give a list of

properties which are not preserved by M-equivalence. In Section 5 we give a few methods
to characterize of M-equivalence of spaces in terms of M-equivalence of mappings. In Secti-

on 6 we investigate the A-equivalence of the mappings having right inverse. The main result

of the section is a complete A-classification of the mappings having right inverse up to A-

equivalent spaces. As a corollary, we give some constructions preserving the A-equivalence
of such mappings. The terminology is taken from [5] and [2].
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2. On M-invariant properties of mappings.

Definition 2.1. [5, p.160]. We call two mappings f : X1 → Y1 and g : X2 → Y2 M-

equivalent if there exist topological isomorphisms i : F (X1) → F (X2) and j : F (Y1) → F (Y2)
such that j ◦ f ∗ = g∗ ◦ i where f ∗ : F (X1) → F (Y1) and g∗ : F (X2) → F (Y2) are homomor-

phisms extending f and g (we denote f
M∼ g).

Replacing in the last definition the functor of free topological group by the functor of

free abelian topological group, free locally convex space and free locally convex space in the

weak topology we obtain the definition of A-, L- and l-equivalent mappings.

Proposition 2.2. f
M∼ g =⇒ f

A∼ g =⇒ f
L∼ g.

Proof. For each topological isomorphism i : F (X1) → F (X2) there exists a topological iso-

morphism iA : A(X1) → A(X2) such that iA ◦ p1 = p2 ◦ i where pi : F (Xi) → A(Xi) are

homomorphisms extending the identity map of Xi. We call such iA the abelization of i.

Let f
M∼ g and i : F (X1) → F (X2), j : F (Y1) → F (Y2) be topological isomorphisms such

that j ◦ f ∗ = g∗ ◦ i. Denote by f ∗
A : A(X1) → A(Y1) and g∗

A : A(X2) → A(Y2) the extensions

of f and g to continuous homomorphisms; by iA, jA the abelizations of the topological

isomorphisms i and j. Obviously, from j ◦ f ∗ = g∗ ◦ i it follows that jA ◦ f ∗
A = g∗

A ◦ iA. Hence

f
A∼ g. In the same manner we can prove that f

A∼ g =⇒ f
L∼ g.

Recall that two mappings f : X1 → Y1 and g : X2 → Y2 are said to be homeomorphic if
there exist homeomorphisms i : X1 → X2, j : Y1 → Y2 such that f ◦ i = j ◦ g.

Proposition 2.3. [5, Proposition 1.8]. A continuous surjection p : X → Y is R-quotient if

and only if the homomorphism p∗ : F (X) → F (Y ) extending p is open.

Corollary 2.4. [5, Corollary 1.9]. Let f
M∼ g be continuous surjections. If f is R-quotient

then so is g.

One can easily check that any mapping A-equivalent to a surjection is again a surjection.

Definition 2.5. Let f : X → Y be a mapping. Define on X an equivalence relation ∼ by
putting a ∼ b ⇐⇒ f(a) = f(b). From each class of equivalence we take an arbitrary point

and form the set H . The injectivity of the mapping f is the cardinal number i(f) =| X\H |.
Proposition 2.6. Let f

A∼ g. Then i(f) = i(g).

Proof. This follows from the fact that kerf ∗ is algebraically the free abelian group with set
of generators having the cardinality i(f).

The following facts are obvious.

Corollary 2.7. Any mapping A-equivalent to a condensation is again a condensation.

Corollary 2.8. Any mapping A-equivalent to a homeomorphism is a homeomorphism.

3. Constructions preserving M-equivalence.

3.1. Sum of mappings. The sum of Tychonoff spaces is again Tychonoff [2, Theorem

2.2.7].



Proposition 3.1. If fs
M∼ gs for each s ∈ S then ⊕

s∈S
fs

M∼ ⊕
s∈S

gs.

Proof. Let fs : Xs → Xs, gs : Ys → Ys be continuous mappings and is : F (Xs) → F (Ys),
js : F (Xs) → F (Ys) be topological isomorphisms.

First of all note that if we have is : F (Xs) → F (Ys), js : F (Xs) → F (Y s)) then we can

define topological isomorphisms i : F (⊕s∈SXs) → F (⊕s∈SYs), j : F (⊕s∈SXs) → F (⊕s∈SY s)
We can do it in the manner of [1, Proposition 8.8].

One can easily check that j ◦ (⊕s∈Sfs)
∗ = (⊕s∈Sgs)

∗ ◦ i.
Thus ⊕s∈Sfs is M-equivalent to ⊕s∈Sgs.

3.2. Product of mappings. Product of Tychonoff spaces is again Tychonoff [2, Theorem

2.3.11].

There exist Tychonoff spaces X, Y1, Y2 such that Y1
M∼ Y2 while X × Y1

M

6∼ X × Y2 (see [6,

Corollary 2.3]). Then, obviously, idY1

M∼ idY2 while idY1 × idX

M

6∼ idY2 × idX . This shows that

the products of M-equivalent maps are not necessary M-equivalent.

We say that a triple (X, Y, Z) satisfies condition (∗) if either Z is locally compact or

(X ⊕ Y )×Z is a k-space. We say that a quadruple (X1, X2, Y1, Y2) satisfies condition (∗) if
the triples (X1, X2, Y1) and (Y1, Y2, X2) satisfy condition (∗).
Proposition 3.2. Let fi : Xi → Zi, gi : Yi → Ti, fi

M∼ gi, i ∈ {1, 2}, and the quadruples

(X1, X2, Y1, Y2) and (Z1, Z2, T1, T2) satisfy condition (∗). Then f1 × f2
M∼ g1 × g2. The same

is valid for A- and L-equivalence.

Proof. Let hi : F (Xi) → F (Yi) be topological isomorphisms. In virtue of [6, Proposition
1.2] we can construct isomorphisms h′

1 : F (X1 × Y1) → F (X2 × Y1) and h′
2 : F (X2 × Y1) →

F (X2 × Y2), in the same way having isomorphisms vi : F (Zi) → F (Ti) we can construct

isomorphisms v′
1 : F (Z1 × T1) → F (Z2 × T1) and v′

2 : F (Z2 × T1) → F (Z2 × T2).
One can get M-equivalence of f1 × f2 and g1 × g2 from the diagram:

F (X1 × X2)
h′
1◦h′

2−→ F (Y1 × Y2)
(f1×f2)∗ ↓ ↓ (g1×g2)∗

F (Z1 × Z2)
v′1◦v′2−→ F (P1 × P2)

Example 3.3. If f : X1 → Y1 and g : X2 → Y2 are M-equivalent and (X1⊕Y1)
n⊕(X2⊕Y2)

n

is a k-space, then fn M∼ gn.

Proof. Follows from [6, Corollary 1.5]. We only note that in the proof of the corollary we

actually need Xj × Y n−j to be a k-space for each 0 ≤ j ≤ n. The latter is equivalent to the
fact that (X ⊕ Y )n is a k-space.

3.3. G-symmetric power functor. Let G be a subgroup of the n-symmetric group Sn.

Recall that SP n
G denotes the G-symmetric power functor defined as follows. For a space

X the space SP n
GX is the orbit space of the n-th power Xn by the action of G defi-

ned as follows (x1, x2, ...xn) 7→ (xσ(1), xσ(2), ...xσ(n)), where σ ∈ G. The orbit containing

(x1, x2, ...xn) is denoted by [x1, x2, ...xn]G. The set {x1, x2, ...xn} is called the support of an

element [x1, x2, ...xn]G and is denoted by supp([x1, x2, ...xn]G).



Proposition 3.4. If X
A∼ Y and (X ⊕ Y )n is a k-space then SP n

GX
A∼ SP n

GY .

Proof. Having a topological isomorphism i : A(X) → A(Y ) we can �extend� it to a topologi-

cal isomorphism in : A(Xn) → A(Y n). Denote by sX : Xn → SP n
GX, sY : Y n → SP n

GY the

quotient mappings, s∗X : A(Xn) → A(SP n
GX), s∗Y : A(Y n) → A(SP n

GY ) their homomorphic

extensions. One can easy check that there exists a unique topological isomorphism

iSP n
G

: A(SP n
GX) → A(SP n

GY ) such that s∗Y ◦ in = iSP n
G
◦ s∗X .

For a map f : X → Y the map SP n
Gf : SP n

GX → SP n
GY is defined as follows

SP n
Gf [x1, x2, ...xn]G = [f(x1), f(x2), ...f(xn)]G.

Proposition 3.5. If f : X1 → Y1 and g : X2 → Y2 are A-equivalent and (X1 ⊕Y1)
n ⊕ (X2 ⊕

Y2)
n is a k-space then SP n

Gf
A∼ SP n

Gg.

Proof. For every topological isomorphism i : A(X) → A(Y ) let

iSP n
G

: A(SP n
G(X1)) → A(SP n

G(X2))

be a topological isomorphism as in Proposition 3.4. One can easily check that from j ◦ f ∗ =

g∗ ◦ i it follows that jSP n
G
◦ (SP n

Gf)∗ = (SP n
Gg)∗ ◦ iSP n

G
. Hence SP n

Gf
A∼ SP n

Gg.

3.4. Spaces of quasicomponents. Denote by Q(X) the space of quasicomponents of a
Tychonoff space X, by qX we denote the quotient map X → Q(X) [4, page 159].

For the mapping f : X → Y we denote by Qf : Q(X) → Q(Y ) the mapping for which
qY ◦ f = Qf ◦ qX .

Proposition 3.6. Let X
M∼ Y , such that Q(X) and Q(Y ) are Tychonoff. Then the mappings

qX and qY are M-equivalent. In particular, the spaces Q(X) and Q(Y ) are M-equivalent.

Proof. Let i : F (X) → F (Y ) be a topological isomorphism, qX : X → Q(X), qY : Y →
Q(Y ) be the quotient maps and QX : FM(X) → F (Q(X)), FY : F (Y ) → F (Q(Y )) their

homomorphic extensions. Let us show that there exist a continuous map f such that QY ◦
(i|X = f◦qX . If z ∈ Q(X) and qX(x1) = z then denote by f(x) = QY (i(x1)). Let us show that
such f is well-defined. Suppose that we have another x2 with qX(x2) = z. Then x1 ∈ Qx2 .

The space Q(Y ) is totally disconnected [4, pages 159,161], hence [3] F (Q(Y )) is totally

disconnected. Thus QY (i(Qx2)) is single. Since for any continuous f we have f(Qx) ⊆ Qf(x),
we can conclude that QY (i(x1)) = QY (i(x2)) and therefore f is well-defined. The continuity

of f follows from the continuity of i and QY and from the fact that qX is quotient.
In the same manner we can define g : Q(Y ) → F (Q(X)).
Let us extend f, g to continuous homomorphisms f ∗ and g∗.
Then from the diagram

F (X)
i−→ F (Y )

i−1−→ F (X)
QX ↓ ↓ QY ↓ QX

F (Q(X))
f∗−→ F (Q(Y ))

g∗−→ F (Q(X))

we have that f ∗ ◦ g∗ = 1F (Q(X)). Similarly we can prove that g∗ ◦ f ∗ = 1F (Q(Y )). The above

shows that the map f ∗ : F (Q(X)) → F (Q(Y )) is a topological isomorphism.



Proposition 3.7. Let f
M∼ g. Then Qf

M∼ Qg.

Proof. For every topological isomorphism i : F (X) → F (Y ) a topological isomorphism

iQ : F (Q(X)) → F (Q(Y )) is constructed in Proposition 3.6. One can easy check that from

j ◦ f ∗ = g∗ ◦ i follow jQ ◦ (Qf)∗ = (Qg)∗ ◦ iQ. Hence Qf
M∼ Qg.

The same is valid for A-equivalence relation.

3.5. Suspension, cone, open cone. Denote by Σ the suspension, by C the cone, by O the

open cone [13]. For a continuous mapping f : X → Y let us denote by Σf : ΣX → ΣY its

continuous extension.

Definition 3.8. We say that a topological isomorphism i : F (X) → F (Y ) is special if the

composition h ◦ i is constant on X, where h : F (Y ) → Z is a homomorphism extending the

mapping equal 1 on Y .

Proposition 3.9. Let f : X1 → Y1, g : X2 → Y2 be M-equivalent mappings, then there exist

special isomorphisms i1 : F (X1) → F (X2) and j1 : F (Y1) → F (Y2) such that j1 ◦ f ∗ = g∗ ◦ i1.

Proof. Let f
M∼ g and i : F (X1) → F (X2), j : F (Y1) → F (Y2) be topological isomorphisms

such that j ◦ f ∗ = g∗ ◦ i. Using [6, Lemma 3.5] we can construct a topological automorphism

u : F (X) → F (X) such that i1 = i◦u is a special isomorphism. One can easily check that the
map f1 = u ◦ f |X is topologically equivalent to f and there exists a topological isomorphism
v : F (Y ) → F (Y ) such that v ◦ f ∗

1 = f ∗ ◦ u. Denote by j1 = j ◦ v. Then j1 ◦ f ∗
1 = g∗ ◦ i1.

Since i1 is special, so is j1.

Proposition 3.10. If f
M∼ g then : Σf

M∼ Σg, Cf
M∼ Cg, Of

M∼ Og. The same is true for the

relations of A- and L-equivalence.

Proof. First we apply Proposition 3.9. For every special topological isomorphism i : F (X1) →
F (X2) we can define topological isomorphisms: iΣ : F (ΣX1) → F (ΣX2), iC : F (CX1) →
F (CX2), iO : F (OX1) → F (OX2) see [6, Proposition 4.4, 4.5]. One can easily check that from

j◦f ∗ = g∗◦i it follows jΣ◦(Σf)∗ = (Σg)∗◦iΣ, jC ◦(Cf)∗ = (Cg)∗◦iC , jO◦(Of)∗ = (Og)∗◦iO.

Hence Σf
M∼ Σg, Cf

M∼ Cg, Of
M∼ Og.

3.6. Dieudonn�e completion. For a topological space X, denote by µX the Dieudonn�e
completion of X (see [2, section 8.5.13]). For a continuous mapping f denote by µf : µX →
µY its unique extension. The space admitting uniformity is Tychonoff, hence µX is Tycho-
noff for each X. It was proved in [11] that the functors A ◦ µ and R ◦ A (where A is the

functor of free abelian topological groups, R is the functor of Raikov completion) are naturally

equivalent. From this fact it follows that f
A∼ g follows µf

A∼ µg. The same proposition for

M-equivalence follows from the results of [10].

4. Construction of examples of M-equivalent spaces. Two retractions r1, r2 of a space

X are called parallel if r1 ◦ r2 = r1 and r2 ◦ r1 = r2.

Proposition 4.1. [5, Theorem 2.2]. Assume that K1 and K2 are parallel retracts of a space

X, Y1 = X/K1 and Y2 = X/K2 are R-quotient spaces and p1 : X → Y1 and p2 : X → Y2

are the natural mappings. Then the mappings p1 and p2 are M-equivalent. In particular, the

spaces Y1 and Y2 are M-equivalent.



Okunev's construction was generalized in [9].

Proposition 4.2. Let X be a Tychonoff space and r1 and r2 its retractions onto the same

retract K. Then r1
M∼ r2.

Proof. Obviously r1 ◦ r2 = r2 and r2 ◦ r1 = r1.

Consider the continuous mapping i(x) : X → F (X) defined by the formula i(x) =
r1(x)x−1r2(x). Extend i(x) to a continuous homomorphism I(x) : F (X) → F (X). Then

I ◦ i(x) = r1[r1(x)x−1r2(x)] × [r1(x)x−1r2(x)]−1 × r2[r1(x)x−1r2(x)] =

= r1 ◦r1(x)×r1(x)−1×r1 ◦r2(x)×r2(x)−1×x×r1(x)−1×r2 ◦r1(x)×r2(x)−1×r2 ◦r2(x) = x

Hence I ◦ I = 1F (X)

r2 ◦ i = r2 ◦ r1(x) × r2(x)−1 × r2 ◦ r2(x) = r1(x) × r2(x)−1 × r2(x) = r1(x)

r1 ◦ i = r1 ◦ r1(x) × r1(x)−1 × r1 ◦ r2(x) = r1(x) × r1(x)−1 × r2(x) = r2(x)

From this fact we can conclude that r1
M∼ r2.

Corollary 4.3. Since any two parallel retractions are homeomorphic mappings, any two

retractions onto parallel retracts are M-equivalent.

A map f : X −→ Y is called finite-to-one (compact, pseudocompact) if any f−1(y) is
finite (compact, pseudocompact). A closed compact map is called perfect.

Example 4.4. Let X = {1, 2, 3, ...., n, .....} be the space of positive integers with usual order.

Consider the mappings f = max(x, y), g = min(x, y). Obviously f−1(n) = ({1...n}, n) ∪
(n, {1..n}) is finite for all n and g−1(n) = ({n, n + 1, ....}, n) ∪ (n, {n, n + 1, ....) is infinite

for all n.

Corollary 4.5. The following properties are not preserved by the relation of M-equivalence

within the class of clopen mappings :

1) perfectness;

2) compactness;

3) pseudocompactness;

4) finite-to-one property.

A map f : X −→ Y is called monotone, (easy, zero-dimensional, discrete) [2, p.526,538]

if any f−1(y) is connected (respectively hereditary disconnected, zero-dimensional, discrete).

A map f : X −→ Y is called functionally open(closed) if the preimage of every functionally

open(closed) subset in Y is functionally open(closed) in X. A map which is functionally closed

and functionally open is called functionally clopen. We say that dim(f) ≤ n if dim(f−1(y)) ≤
n for any y. We say that card(f) ≤ n if card(f−1(y)) ≤ n for any y.

Example 4.6. Let X = R. Then the mappings f(x) = |x| and g(x) = x+ = (x + f(x))/2

are retractions from R to R
+ = [0,∞) so f

M∼ g.

Corollary 4.7. The following properties of maps are not preserved by the M-equivalence

relation within the class of closed quotient retractions: monotonicity, easyness, dimension,

zero-dimensionality, discreteness, cardinality, functional openness, functional clopenness.



A map f is called a local homeomorphism if for any x ∈ X there exist its neighbourhood
U(x) such that f |U(x) is a homeomorphism of U(x) onto an open subspace of Y .

Corollary 4.8. Let X = [−2,−1] ∪ {0} ∪ [1, 2] then consider the restrictions of the above

defined mappings f and g. The restriction of f is a local homeomorphism, while the restri-

ction of g is not. Both f and g are clopen mappings.

5. On certain classes of M-equivalent mappings. Let X be a Tychonoff space. We

denote by eX the quotient mapping of X to the one-point space e, by idX the identity of

X, by DX the condensation from a discrete space D|X| of cardinality |X| onto X, by qX the

quotient mapping from the space X to the space Q(X) of the quasicomponents of the space
X, by µX the embedding X −→ µX.

Let M [X] denote the class of Tychonoff spaces Y such that X
M∼ Y and by M [f ] the

class of continuous mappings g between Tychonoff spaces such that f
M∼ g.

Proposition 5.1. For arbitrary Tychonoff X

a) M [eX ] = {eY | Y ∈ M [X]};
b) M [idX ] = {idY | Y ∈ M [X]};
c) M [DX ] = {DY | Y ∈ M [X]};
d) M [qX ] = {qY | Y ∈ M [X]};
e) M [µX ] = {µY | Y ∈ M [X]}.
Similar statements hold for A-equivalent spaces and mappings.

Proof. d) The inclusion M [qX ] ⊇ {qY | Y ∈ M [X]} follows from Proposition 3.6.

Let us prove the inclusion M [qX ] ⊆ {qY | Y ∈ M [X]}. Let f : Y → Z be such

that f
M
∼ qX . Then Y ∈ M [X] and Q(f)

M
∼ Q(qX) by Proposition 3.7. Since Q(qX) is a

homeomorphism, so is Q(f). Hence f ∼= qY .

e) The inclusion M [µX ] ⊇ {µY | Y ∈ M [X]} follows from the fact that the extension

µX is the embedding of the free topological group F (X) into its Weil completion. Let us

prove the inclusion M [µX ] ⊆ {µY | Y ∈ M [X]}. Let f : Y → Z be such that f
M
∼ µX . Then

Y ∈ M [X], Z is Dieudonn�e complete and µ(f)
M
∼ µ(µX). Since µ(µX) is a homeomorphism,

so is µ(f). Thus f ∼= µY .

Proposition 5.2. Let X and Y be A-equivalent spaces, a ∈ X, b ∈ Y be arbitrary points.

Then there exists a special topological isomorphism h : AM(X) → AM(Y ) such that h(a) = b.

Proof. By [6, Proposition] there exists a special isomorphism j : AM (X) → AM(Y ). Let

A = λ1x1 + λ2x2 + ... + λnxn be j−1(b). Since j is special,
∑n

i=1 λi = 1. Consider the

mappings f, g : X → AM(X) defined as follows: f(x) = x + A − a, g(x) = x − A + a. Let
f ∗, g∗ : AM(X) → AM(X) be their homomorphic extensions. Then

f ∗ ◦ g∗(x) = f ∗(x − A + a) = (x + A − a) − [λ1(x1 + A − a) + λ2(x2 + A − a) + · · ·+
+λn(xn + A − a)] + (a + A − a) = x + A − a − [λ1x1 + λ2x2 + · · ·+ λnxn]−

−
(

n∑
i=1

λi

)
× (A − a) + A = x + A − a − A − 1 × (A − a) + A = x.

Thus f ∗ ◦ g∗ = g∗ ◦ f ∗ = 1AM (X). Therefore f ∗ is a special isomorphism and f ∗(a) = A.

Then h = j ◦ f ∗ is a topological isomorphism and h(a) = j ◦ f ∗(a) = j(A) = b.



Let {Xs}s∈S be a family of spaces with base point xs ∈ Xs for each s ∈ S. Let
∨s∈S(Xs, xs) = (⊕s∈SXs)/(⊕s∈Sxs) be the bouquet of this family.

Corollary 5.3. Let Xs
A∼ Ys for each s ∈ S. Then ∨s∈SXs

A∼ ∨s∈SYs.

In the same manner we can prove

Proposition 5.4. Let X and Y be L-equivalent spaces, a ∈ X, b ∈ Y be arbitrary points.

Then there exists a special linear homeomorphism h : L(X) → L(Y ) such that h(a) = b.

Denote by t(X,x0) the embedding of the one point space e into X such that t(X,x0)(e) = x0.

Consider the continuous mapping i : X → F (X) such that i(x) = a × x−1 × b. Denote by

I : F (X) → F (X) its extension. Then I ◦ t(X,a) = t(X,b). Hence t(X,x0) does not depend, up

to M-equivalence, on the base point x0 so we will write shortly tX .

Proposition 5.5. For arbitrary Tychonoff space X, A[tX ] = {tY | Y ∈ A[X]}.

6. On A-equivalence of the mappings having right inverse.

Proposition 6.1. Let r : X → K be a retraction. Then r is M-equivalent to the R-quotient

mapping p : (X/K) ∨e K → K.

Proof. Considering Okunev's construction [5] we can construct a topological isomorphism

i : X → X/K ∨e K1, where K1 is a homeomorphic copy of K (we fix a homeomorphism
h : K → K1).

Applying this construction we came to the conclusion that the point a ∈ X is mapped
onto the point i(a) = p1(a) × e−1 × r1(a), where p1 : X → X/K is the R-quotient mapping,
e = p1(K), and r1 is the composition of the retraction r : X → K and the homeomor-

phism h : K → K1. Denote by p∗ : F (X/K ∨e K) → F (K) the extension of p to a group
homomorphism.

Then p∗ ◦ i = p∗ ◦ p1(a) × p∗ ◦ (e)−1 × p∗ ◦ r1(a) = e × e−1 × r1(a) = r1(a).

In the same manner one can prove the following proposition.

Proposition 6.2. Let r : X → K be a retraction, p : X → X/K the R-quotient mapping.

Then p is M-equivalent to the R-quotient mapping q : X/K ∨e K → X/K.

Proposition 6.3. For two retractions ri : Xi → Ki the following are equivalent:

I) r1
A
∼ r2;

II) The R-quotient maps qi : Xi → Xi/Ki are A-equivalent;

III) K1
A
∼ K2 and X1/K1

A
∼ X2/K2.

Proof. (I =⇒ III) X1
A
∼ X2 follows from the definition of A-equivalent mappings. By

Proposition 6.1 the retractions ri are A-equivalent to R-quotients pi : Xi/Ki ∨e Ki → Ki.

Since ker(p∗i ) = A0(Xi/Ki) and AM ((Xi/Ki) = A0((Xi/Ki) × Z, we have AM((X1/K1) '
AM((X2/K2).

(II =⇒ III) X1/K1
A
∼ X2/K2 follows from the definition of A-equivalent mappings. By

Proposition 6.2, the R-quotients qi : Xi → Xi/Ki are A-equivalent to quotients pi : Xi/Ki∨e



Ki → Xi/Ki. Since ker(p∗i ) = A0(Ki) and AM(Ki) = A0(Ki) × Z, we have AM(K1) '
AM(K2).

(III =⇒ I) By Proposition 6.1 it suffices to prove that the R-quotients fi : Xi/Ki∨ei
Ki →

Ki are A-equivalent. By Proposition 5.2 there exist topological isomorphisms u : A(X1/K1) →
A(X2/K2) and v : A(K1) → A(K2) such that u(e1) = e2 and v(e1) = e2. Consider the mappi-

ng s1 : X1/K1∨e1 K1 → A(X2/K2∨e2 K2) by putting s1(x) = u(x) if x ∈ X1/K1 and s1(x) =
v(x) if x ∈ K1. In the same manner we can define s2 : X2/K2 ∨e2 K2 → A(X1/K1 ∨e1 K1).
Then the extensions s∗i of si are inverse continuous homomorphisms. So s1 is topological

isomorphism. Denote by

A0(X1/K1) =

{
W ∈ A(X1) : W = ε1x1 + ε2x2 + · · ·+ εnxn, xi ∈ X1/K1,

n∑
i=1

εi = 0

}
.

Obviously ker(r∗i ) = A0(Xi/Ki) and s1(A0(X1/K1)) = (A0(X2/K2)), therefore by [5, Theo-

rem 1.10] we have r1
A
∼ r2.

(III =⇒ II) Using Proposition 6.2 we can prove the implication similary to the previous

one.

We call two retractions r1 and r2 of a space X are orthogonal [8] if the mappings r1 ◦ r2

and r2 ◦ r1 are constant.

Corollary 6.4. Two orthogonal retractions ri : X → Ki, i ∈ {1, 2} are A-equivalent iff

K1
A
∼ K2.

Proof. Since K1
A
∼ K2, by [8, Propositions 3.2,3.7.] we have X/K1

A
∼ X/K2. by Proposi-

tion 6.3 we see that r1
A
∼ r2.

Proposition 6.5. Let X
M
∼ Y and a triple (X, Y, Z) satisfies condition (*). Consider the

projection mappings pX : X × Z → X, pY : Y × Z → Y , fX : X × Z → Z, fY : Y × Z → Z.

Then pX
M
∼ pY , fX

M
∼ fY .

Proposition 6.6. Let f1
A
∼ f2, g1

A
∼ g2 be the mappings that have right inverse. Then

g1 ◦ f1
A
∼ g2 ◦ f2.

Proof. Let fi : Xi → Yi, gi : Yi → Zi, i ∈ {1, 2}. By Proposition 6.1, g1 ◦ f1
A
∼ g2 ◦ f2 iff

X/Z1
A
∼ X/Z2 and Z1

A
∼ Z2.

Let us show that X/Z+ A
∼ X/Y ⊕Y/Z. The space X/Z contains a retract homeomorphic

to Y/Z. Hence by [5, Theorem 2.4] X/Z+ A
∼ X/Y ⊕ Y/Z.

Since f1
A
∼ f2 implies X1/Y1

A
∼ X2/Y2, g1

A
∼ g2 implies Y1/Z1

A
∼ Y2/Z2, we have

(X1/Z1)
+ A

∼ (X2/Z2)
+ so from [8, Proposition 3.7] we can conclude that X1/Z1

A
∼ X2/Z2.

Hence g1 ◦ f1
A
∼ g2 ◦ f2.

Denote by f∇g the sum combination [2, page 126] of the mappings f and g.

Proposition 6.7. Let f1
A
∼ f2, g1

A
∼ g2 be mappings such that fi has right inverse. Then

f1∇g1
A
∼ f2∇g2.



Proof. Let fi : Xi → Zi, gi : Yi → Zi, i ∈ {1, 2}. Since fi has right inverse, fi∇gi also has

right inverse. Then f1∇g1
A
∼ f2∇g2 if and only if Y1

A
∼ Y2 and X1/Z1 ⊕ Y1

A
∼ X2/Z2 ⊕ Y2.

Since f1
A
∼ f2 implies X1/Z1

A
∼ X2/Z2 and g1

A
∼ g2 implies Y1

A
∼ Y2, we obtain

X1/Z1 ⊕ Y1
A
∼ X2/Z2 ⊕ Y2.

REFERENCES

1. Guran I. Y., Zarichnyi M. M. Elements of theory of topological groups, Inst. System Stud. Education,

Kyiv, 1991.

2. Ýíãåëüêèíã Ð. Îáùàÿ òîïîëîãèÿ, Ì.: Ìèð, 1986.

3. Yunusov A. S. On quasicomponent of free topological groups, Mat. Issledovania 74 (1983), Kishinev,

163�165. (Russian)

4. Êóðàòîâñêèé Ê. Òîïîëîãèÿ, Ì.: Ìèð. Ò.1. 1966, Ò.2. 1969.

5. Okunev O. G. A method for consructing examples of M-equivalent spaces, Topology Appl 36 (1990),

157�171; Correction, Topology Appl 49 (1993), 191�192.

6. Okunev O. G. M-equivalence of products, Trudy Mosc. Math. Obsch. 56 (1995), 192�205.

7. Pestov V. G. Universal arrows to forgetful functors from categories of topological algebra, Bull. Austr.

Math. Soc. 48 (1993), 209�249.

8. Pyrch N. M. Orthogonal retractions and the relations of M-equivalence, Matematychni Studii, 20, No. 2

(2003), 151�161.

9. Pyrch N., Zarichnyi M. On a generalization of Okunev's construction, Algebraic structures and their

applications, Proceedings of the Institute of Math.: Kiev, 2002, 346�350.

10. Sipacheva O. V. Free topological groups of spaces and their subspaces, Topology Appl., 101 (2000),

181�212.

11. Tkachenko M. G. On the competeness of free Abelian topological groups, Dokl. Akad. Nauk SSSR 269

(1983), 299�303. (Russian)

12. Òêà÷óê Â. Â. Îá îäíîì ìåòîäå ïîñòðîåíèÿ M -ýêâèâàëåíòíûõ ïðîñòðàíñòâ, Óñï. ìàòåì. íàóê, 38

(1983), �6, 127�128.

13. Wagner C. H. Symmetric, cyclic and permutation products of manifolds, Dissertationes mathematicae,

CLXXXII, Warszawa, 1980.

Ivan Franko National University of Lviv

Received 13.10.2004


