N. M. PYRCH

M-EQUIVALENCE OF MAPPINGS

N. M. Pyrch. M-equivalence of mappings, Matematychni Studii, 24 (2005) 21-30.

The paper investigates the relation of M-equivalence of mappings. We present functors preserving this relation. A new method for constructing examples of M-equivalent mappings is given and, as a corollary, we obtain a list of properties of mappings which are not preserved by M-equivalence. Some characterizations of M-equivalence of spaces in terms of M-equivalence of mappings are presented. A complete classification of A-equivalent mappings having right inverse up to A-equivalent spaces is given.
Н. М. Пырч. М-эквивалентность отображений // Математичні Студії. - 2005. - Т.24, №1. - C.21-30.

Исследуется отношение M-эквивалентности отображений. Представлены функторы, сохраняющие это отношение. Приводится новый метод построения примеров M-эквивалентных отображений. Как следствие, получен набор свойств отображений, не сохраняющихся при M-эквивалентности. Представлены некоторые методы для описания M - эквивалентности пространств в терминах M-эквивалентности отображений. С точностью до A-эквивалентных пространств получена полная классификация A-эквивалентных отображений, имеющих правое обратное.

1. Introduction. All spaces are assumed to be Tychonoff. The notion of M-equivalent mappings was introduced by O.Okunev in [5]. He provided the first method for constructing such mappings and, as a corollary, some properties which are not preserved by the relation of M-equivalence of mappings. We refer to [7] for examples of categories and functors in topological algebra and basic results on their isomorphical classification. In Section 2 we give some basic properties preserved by the M-equivalence relation. Section 3 contains basic constructions preserving the M-equivalence relation. In Section 4 a powerful method for constructing examples of M-equivalent mappings is presented. We also give a list of properties which are not preserved by M-equivalence. In Section 5 we give a few methods to characterize of M-equivalence of spaces in terms of M-equivalence of mappings. In Section 6 we investigate the A-equivalence of the mappings having right inverse. The main result of the section is a complete A-classification of the mappings having right inverse up to A equivalent spaces. As a corollary, we give some constructions preserving the A-equivalence of such mappings. The terminology is taken from [5] and [2].

2000 Mathematics Subject Classification: 22A05.

2. On M-invariant properties of mappings.

Definition 2.1. [5, p.160]. We call two mappings $f: X_{1} \rightarrow Y_{1}$ and $g: X_{2} \rightarrow Y_{2} M-$ equivalent if there exist topological isomorphisms $i: F\left(X_{1}\right) \rightarrow F\left(X_{2}\right)$ and $j: F\left(Y_{1}\right) \rightarrow F\left(Y_{2}\right)$ such that $j \circ f^{*}=g^{*} \circ i$ where $f^{*}: F\left(X_{1}\right) \rightarrow F\left(Y_{1}\right)$ and $g^{*}: F\left(X_{2}\right) \rightarrow F\left(Y_{2}\right)$ are homomorphisms extending f and g (we denote $f \stackrel{M}{\sim} g$).

Replacing in the last definition the functor of free topological group by the functor of free abelian topological group, free locally convex space and free locally convex space in the weak topology we obtain the definition of $A-, L$ - and l-equivalent mappings.

Proposition 2.2. $f \stackrel{M}{\sim} g \Longrightarrow f \stackrel{A}{\sim} g \Longrightarrow f \stackrel{L}{\sim} g$.
Proof. For each topological isomorphism $i: F\left(X_{1}\right) \rightarrow F\left(X_{2}\right)$ there exists a topological isomorphism $i_{A}: A\left(X_{1}\right) \rightarrow A\left(X_{2}\right)$ such that $i_{A} \circ p_{1}=p_{2} \circ i$ where $p_{i}: F\left(X_{i}\right) \rightarrow A\left(X_{i}\right)$ are homomorphisms extending the identity map of X_{i}. We call such i_{A} the abelization of i.

Let $f \stackrel{M}{\sim} g$ and $i: F\left(X_{1}\right) \rightarrow F\left(X_{2}\right), j: F\left(Y_{1}\right) \rightarrow F\left(Y_{2}\right)$ be topological isomorphisms such that $j \circ f^{*}=g^{*} \circ i$. Denote by $f_{A}^{*}: A\left(X_{1}\right) \rightarrow A\left(Y_{1}\right)$ and $g_{A}^{*}: A\left(X_{2}\right) \rightarrow A\left(Y_{2}\right)$ the extensions of f and g to continuous homomorphisms; by i_{A}, j_{A} the abelizations of the topological isomorphisms i and j. Obviously, from $j \circ f^{*}=g^{*} \circ i$ it follows that $j_{A} \circ f_{A}^{*}=g_{A}^{*} \circ i_{A}$. Hence $f \stackrel{A}{\sim} g$. In the same manner we can prove that $f \stackrel{A}{\sim} g \Longrightarrow f \stackrel{L}{\sim} g$.

Recall that two mappings $f: X_{1} \rightarrow Y_{1}$ and $g: X_{2} \rightarrow Y_{2}$ are said to be homeomorphic if there exist homeomorphisms $i: X_{1} \rightarrow X_{2}, j: Y_{1} \rightarrow Y_{2}$ such that $f \circ i=j \circ g$.

Proposition 2.3. [5, Proposition 1.8]. A continuous surjection $p: X \rightarrow Y$ is R-quotient if and only if the homomorphism $p^{*}: F(X) \rightarrow F(Y)$ extending p is open.

Corollary 2.4. [5, Corollary 1.9]. Let $f \stackrel{M}{\sim} g$ be continuous surjections. If f is R-quotient then so is g.

One can easily check that any mapping A-equivalent to a surjection is again a surjection.
Definition 2.5. Let $f: X \rightarrow Y$ be a mapping. Define on X an equivalence relation \sim by putting $a \sim b \Longleftrightarrow f(a)=f(b)$. From each class of equivalence we take an arbitrary point and form the set H. The injectivity of the mapping f is the cardinal number $i(f)=|X \backslash H|$.

Proposition 2.6. Let $f \stackrel{A}{\sim} g$. Then $i(f)=i(g)$.
Proof. This follows from the fact that $\operatorname{ker} f^{*}$ is algebraically the free abelian group with set of generators having the cardinality $i(f)$.

The following facts are obvious.
Corollary 2.7. Any mapping A-equivalent to a condensation is again a condensation.
Corollary 2.8. Any mapping A-equivalent to a homeomorphism is a homeomorphism.

3. Constructions preserving M-equivalence.

3.1. Sum of mappings. The sum of Tychonoff spaces is again Tychonoff [2, Theorem 2.2.7].

Proposition 3.1. If $f_{s} \stackrel{M}{\sim} g_{s}$ for each $s \in S$ then $\underset{s \in S}{\oplus} f_{s} \stackrel{M}{\sim} \underset{s \in S}{\oplus} g_{s}$.
Proof. Let $f_{s}: X_{s} \rightarrow \overline{X_{s}}, g_{s}: Y_{s} \rightarrow \overline{Y_{s}}$ be continuous mappings and $i_{s}: F\left(X_{s}\right) \rightarrow F\left(Y_{s}\right)$, $j_{s}: F\left(\overline{X_{s}}\right) \rightarrow F\left(\overline{Y_{s}}\right)$ be topological isomorphisms.

First of all note that if we have $\left.i_{s}: F\left(X_{s}\right) \rightarrow F\left(Y_{s}\right), j_{s}: F\left(\bar{X}_{s}\right) \rightarrow F\left(\bar{Y}_{s}\right)\right)$ then we can define topological isomorphisms $i: F\left(\oplus_{s \in S} X_{s}\right) \rightarrow F\left(\oplus_{s \in S} Y_{s}\right), j: F\left(\oplus_{s \in S} \bar{X}_{s}\right) \rightarrow F\left(\oplus_{s \in S} \bar{Y}_{s}\right)$ We can do it in the manner of [1, Proposition 8.8].

One can easily check that $j \circ\left(\oplus_{s \in S} f_{s}\right)^{*}=\left(\oplus_{s \in S} g_{s}\right)^{*} \circ i$.
Thus $\oplus_{s \in S} f_{s}$ is M-equivalent to $\oplus_{s \in S} g_{s}$.
3.2. Product of mappings. Product of Tychonoff spaces is again Tychonoff [2, Theorem 2.3.11].

There exist Tychonoff spaces X, Y_{1}, Y_{2} such that $Y_{1} \stackrel{M}{\sim} Y_{2}$ while $X \times Y_{1} \stackrel{M}{\nsim} X \times Y_{2}$ (see [6, Corollary 2.3]). Then, obviously, $\operatorname{id}_{Y_{1}} \stackrel{M}{\sim} \operatorname{id}_{Y_{2}}$ while $\operatorname{id}_{Y_{1}} \times \operatorname{id}_{X} \stackrel{M}{\not ㇒} \operatorname{id}_{Y_{2}} \times \mathrm{id}_{X}$. This shows that the products of M-equivalent maps are not necessary M-equivalent.

We say that a triple (X, Y, Z) satisfies condition $(*)$ if either Z is locally compact or $(X \oplus Y) \times Z$ is a k-space. We say that a quadruple $\left(X_{1}, X_{2}, Y_{1}, Y_{2}\right)$ satisfies condition $(*)$ if the triples $\left(X_{1}, X_{2}, Y_{1}\right)$ and $\left(Y_{1}, Y_{2}, X_{2}\right)$ satisfy condition $(*)$.

Proposition 3.2. Let $f_{i}: X_{i} \rightarrow Z_{i}, g_{i}: Y_{i} \rightarrow T_{i}, f_{i} \stackrel{M}{\sim} g_{i}, i \in\{1,2\}$, and the quadruples $\left(X_{1}, X_{2}, Y_{1}, Y_{2}\right)$ and $\left(Z_{1}, Z_{2}, T_{1}, T_{2}\right)$ satisfy condition $(*)$. Then $f_{1} \times f_{2} \stackrel{M}{\sim} g_{1} \times g_{2}$. The same is valid for A - and L-equivalence.

Proof. Let $h_{i}: F\left(X_{i}\right) \rightarrow F\left(Y_{i}\right)$ be topological isomorphisms. In virtue of [6, Proposition 1.2] we can construct isomorphisms $h_{1}^{\prime}: F\left(X_{1} \times Y_{1}\right) \rightarrow F\left(X_{2} \times Y_{1}\right)$ and $h_{2}^{\prime}: F\left(X_{2} \times Y_{1}\right) \rightarrow$ $F\left(X_{2} \times Y_{2}\right)$, in the same way having isomorphisms $v_{i}: F\left(Z_{i}\right) \rightarrow F\left(T_{i}\right)$ we can construct isomorphisms $v_{1}^{\prime}: F\left(Z_{1} \times T_{1}\right) \rightarrow F\left(Z_{2} \times T_{1}\right)$ and $v_{2}^{\prime}: F\left(Z_{2} \times T_{1}\right) \rightarrow F\left(Z_{2} \times T_{2}\right)$.

One can get M-equivalence of $f_{1} \times f_{2}$ and $g_{1} \times g_{2}$ from the diagram:

$$
\begin{array}{ccc}
F\left(X_{1} \times X_{2}\right) & \xrightarrow{h_{1}^{\prime} \circ \circ_{2}^{\prime}} & F\left(Y_{1} \times Y_{2}\right) \\
\left(f_{1} \times f_{2}\right)^{*} \downarrow & & \downarrow\left(g_{1} \times g_{2}\right)^{*} \\
F\left(Z_{1} \times Z_{2}\right) & \xrightarrow{v_{1}^{\prime} \circ v_{2}^{\prime}} & F\left(P_{1} \times P_{2}\right)
\end{array}
$$

Example 3.3. If $f: X_{1} \rightarrow Y_{1}$ and $g: X_{2} \rightarrow Y_{2}$ are M-equivalent and $\left(X_{1} \oplus Y_{1}\right)^{n} \oplus\left(X_{2} \oplus Y_{2}\right)^{n}$ is a k-space, then $f^{n} \stackrel{M}{\sim} g^{n}$.

Proof. Follows from [6, Corollary 1.5]. We only note that in the proof of the corollary we actually need $X^{j} \times Y^{n-j}$ to be a k-space for each $0 \leq j \leq n$. The latter is equivalent to the fact that $(X \oplus Y)^{n}$ is a k-space.
3.3. G-symmetric power functor. Let G be a subgroup of the n-symmetric group S_{n}. Recall that $S P_{G}^{n}$ denotes the G-symmetric power functor defined as follows. For a space X the space $S P_{G}^{n} X$ is the orbit space of the n-th power X^{n} by the action of G defined as follows $\left(x_{1}, x_{2}, \ldots x_{n}\right) \mapsto\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots x_{\sigma(n)}\right)$, where $\sigma \in G$. The orbit containing $\left(x_{1}, x_{2}, \ldots x_{n}\right)$ is denoted by $\left[x_{1}, x_{2}, \ldots x_{n}\right]_{G}$. The set $\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$ is called the support of an element $\left[x_{1}, x_{2}, \ldots x_{n}\right]_{G}$ and is denoted by $\operatorname{supp}\left(\left[x_{1}, x_{2}, \ldots x_{n}\right]_{G}\right)$.

Proposition 3.4. If $X \stackrel{A}{\sim} Y$ and $(X \oplus Y)^{n}$ is a k-space then $S P_{G}^{n} X \stackrel{A}{\sim} S P_{G}^{n} Y$.
Proof. Having a topological isomorphism $i: A(X) \rightarrow A(Y)$ we can "extend" it to a topological isomorphism $i_{n}: A\left(X^{n}\right) \rightarrow A\left(Y^{n}\right)$. Denote by $s_{X}: X^{n} \rightarrow S P_{G}^{n} X, s_{Y}: Y^{n} \rightarrow S P_{G}^{n} Y$ the quotient mappings, $s_{X}^{*}: A\left(X^{n}\right) \rightarrow A\left(S P_{G}^{n} X\right), s_{Y}^{*}: A\left(Y^{n}\right) \rightarrow A\left(S P_{G}^{n} Y\right)$ their homomorphic extensions. One can easy check that there exists a unique topological isomorphism $i_{S P_{G}^{n}}: A\left(S P_{G}^{n} X\right) \rightarrow A\left(S P_{G}^{n} Y\right)$ such that $s_{Y}^{*} \circ i_{n}=i_{S P_{G}^{n}} \circ s_{X}^{*}$.

For a map $f: X \rightarrow Y$ the map $S P_{G}^{n} f: S P_{G}^{n} X \rightarrow S P_{G}^{n} Y$ is defined as follows

$$
S P_{G}^{n} f\left[x_{1}, x_{2}, \ldots x_{n}\right]_{G}=\left[f\left(x_{1}\right), f\left(x_{2}\right), \ldots f\left(x_{n}\right)\right]_{G}
$$

Proposition 3.5. If $f: X_{1} \rightarrow Y_{1}$ and $g: X_{2} \rightarrow Y_{2}$ are A-equivalent and $\left(X_{1} \oplus Y_{1}\right)^{n} \oplus\left(X_{2} \oplus\right.$ $\left.Y_{2}\right)^{n}$ is a k-space then $S P_{G}^{n} f \stackrel{A}{\sim} S P_{G}^{n} g$.

Proof. For every topological isomorphism $i: A(X) \rightarrow A(Y)$ let

$$
i_{S P_{G}^{n}}: A\left(S P_{G}^{n}\left(X_{1}\right)\right) \rightarrow A\left(S P_{G}^{n}\left(X_{2}\right)\right)
$$

be a topological isomorphism as in Proposition 3.4. One can easily check that from $j \circ f^{*}=$ $g^{*} \circ i$ it follows that $j_{S P_{G}^{n}} \circ\left(S P_{G}^{n} f\right)^{*}=\left(S P_{G}^{n} g\right)^{*} \circ i_{S P_{G}^{n}}$. Hence $S P_{G}^{n} f \stackrel{A}{\sim} S P_{G}^{n} g$.
3.4. Spaces of quasicomponents. Denote by $Q(X)$ the space of quasicomponents of a Tychonoff space X, by q_{X} we denote the quotient map $X \rightarrow Q(X)$ [4, page 159].

For the mapping $f: X \rightarrow Y$ we denote by $Q f: Q(X) \rightarrow Q(Y)$ the mapping for which $q_{Y} \circ f=Q f \circ q_{X}$.
Proposition 3.6. Let $X \stackrel{M}{\sim} Y$, such that $Q(X)$ and $Q(Y)$ are Tychonoff. Then the mappings q_{X} and q_{Y} are M-equivalent. In particular, the spaces $Q(X)$ and $Q(Y)$ are M-equivalent.
Proof. Let $i: F(X) \rightarrow F(Y)$ be a topological isomorphism, $q_{X}: X \rightarrow Q(X), q_{Y}: Y \rightarrow$ $Q(Y)$ be the quotient maps and $Q_{X}: F M(X) \rightarrow F(Q(X)), F Y: F(Y) \rightarrow F(Q(Y))$ their homomorphic extensions. Let us show that there exist a continuous map f such that $Q_{Y} \circ$ $\left(\left.i\right|_{X}=f \circ q_{X}\right.$. If $z \in Q(X)$ and $q_{X}\left(x_{1}\right)=z$ then denote by $f(x)=Q_{Y}\left(i\left(x_{1}\right)\right)$. Let us show that such f is well-defined. Suppose that we have another x_{2} with $q_{X}\left(x_{2}\right)=z$. Then $x_{1} \in Q_{x_{2}}$. The space $Q(Y)$ is totally disconnected [4, pages 159,161], hence [3] $F(Q(Y))$ is totally disconnected. Thus $Q_{Y}\left(i\left(Q_{x_{2}}\right)\right)$ is single. Since for any continuous f we have $f\left(Q_{x}\right) \subseteq Q_{f(x)}$, we can conclude that $Q_{Y}\left(i\left(x_{1}\right)\right)=Q_{Y}\left(i\left(x_{2}\right)\right)$ and therefore f is well-defined. The continuity of f follows from the continuity of i and Q_{Y} and from the fact that q_{X} is quotient.

In the same manner we can define $g: Q(Y) \rightarrow F(Q(X))$.
Let us extend f, g to continuous homomorphisms f^{*} and g^{*}.
Then from the diagram

we have that $f^{*} \circ g^{*}=1_{F(Q(X))}$. Similarly we can prove that $g^{*} \circ f^{*}=1_{F(Q(Y))}$. The above shows that the map $f^{*}: F(Q(X)) \rightarrow F(Q(Y))$ is a topological isomorphism.

Proposition 3.7. Let $f \stackrel{M}{\sim} g$. Then $Q f \stackrel{M}{\sim} Q g$.
Proof. For every topological isomorphism $i: F(X) \rightarrow F(Y)$ a topological isomorphism $i_{Q}: F(Q(X)) \rightarrow F(Q(Y))$ is constructed in Proposition 3.6. One can easy check that from $j \circ f^{*}=g^{*} \circ i$ follow $j_{Q} \circ(Q f)^{*}=(Q g)^{*} \circ i_{Q}$. Hence $Q f \stackrel{M}{\sim} Q g$.

The same is valid for A-equivalence relation.
3.5. Suspension, cone, open cone. Denote by Σ the suspension, by C the cone, by O the open cone [13]. For a continuous mapping $f: X \rightarrow Y$ let us denote by $\Sigma f: \Sigma X \rightarrow \Sigma Y$ its continuous extension.

Definition 3.8. We say that a topological isomorphism $i: F(X) \rightarrow F(Y)$ is special if the composition $h \circ i$ is constant on X, where $h: F(Y) \rightarrow \mathbb{Z}$ is a homomorphism extending the mapping equal 1 on Y.

Proposition 3.9. Let $f: X_{1} \rightarrow Y_{1}, g: X_{2} \rightarrow Y_{2}$ be M-equivalent mappings, then there exist special isomorphisms $i_{1}: F\left(X_{1}\right) \rightarrow F\left(X_{2}\right)$ and $j_{1}: F\left(Y_{1}\right) \rightarrow F\left(Y_{2}\right)$ such that $j_{1} \circ f^{*}=g^{*} \circ i_{1}$.

Proof. Let $f \stackrel{M}{\sim} g$ and $i: F\left(X_{1}\right) \rightarrow F\left(X_{2}\right), j: F\left(Y_{1}\right) \rightarrow F\left(Y_{2}\right)$ be topological isomorphisms such that $j \circ f^{*}=g^{*} \circ i$. Using [6, Lemma 3.5] we can construct a topological automorphism $u: F(X) \rightarrow F(X)$ such that $i_{1}=i \circ u$ is a special isomorphism. One can easily check that the map $f_{1}=\left.u \circ f\right|_{X}$ is topologically equivalent to f and there exists a topological isomorphism $v: F(Y) \rightarrow F(Y)$ such that $v \circ f_{1}^{*}=f^{*} \circ u$. Denote by $j_{1}=j \circ v$. Then $j_{1} \circ f_{1}^{*}=g^{*} \circ i_{1}$. Since i_{1} is special, so is j_{1}.

Proposition 3.10. If $f \stackrel{M}{\sim} g$ then : $\Sigma f \stackrel{M}{\sim} \Sigma g, C f \stackrel{M}{\sim} C g, O f \stackrel{M}{\sim} O g$. The same is true for the relations of A - and L-equivalence.

Proof. First we apply Proposition 3.9. For every special topological isomorphism $i: F\left(X_{1}\right) \rightarrow$ $F\left(X_{2}\right)$ we can define topological isomorphisms: $i_{\Sigma}: F\left(\Sigma X_{1}\right) \rightarrow F\left(\Sigma X_{2}\right), i_{C}: F\left(C X_{1}\right) \rightarrow$ $F\left(C X_{2}\right), i_{O}: F\left(O X_{1}\right) \rightarrow F\left(O X_{2}\right)$ see [6, Proposition 4.4, 4.5]. One can easily check that from $j \circ f^{*}=g^{*} \circ i$ it follows $j_{\Sigma} \circ(\Sigma f)^{*}=(\Sigma g)^{*} \circ i_{\Sigma}, j_{C} \circ(C f)^{*}=(C g)^{*} \circ i_{C}, j_{O} \circ(O f)^{*}=(O g)^{*} \circ i_{O}$. Hence $\Sigma f \stackrel{M}{\sim} \Sigma g, C f \stackrel{M}{\sim} C g, O f \stackrel{M}{\sim} O g$.
3.6. Dieudonné completion. For a topological space X, denote by μX the Dieudonné completion of X (see [2, section 8.5.13]). For a continuous mapping f denote by $\mu f: \mu X \rightarrow$ μY its unique extension. The space admitting uniformity is Tychonoff, hence μX is Tychonoff for each X. It was proved in [11] that the functors $A \circ \mu$ and $R \circ A$ (where A is the functor of free abelian topological groups, R is the functor of Raikov completion) are naturally equivalent. From this fact it follows that $f \stackrel{A}{\sim} g$ follows $\mu f \stackrel{A}{\sim} \mu g$. The same proposition for M-equivalence follows from the results of [10].
4. Construction of examples of M-equivalent spaces. Two retractions r_{1}, r_{2} of a space X are called parallel if $r_{1} \circ r_{2}=r_{1}$ and $r_{2} \circ r_{1}=r_{2}$.

Proposition 4.1. [5, Theorem 2.2]. Assume that K_{1} and K_{2} are parallel retracts of a space $X, Y_{1}=X / K_{1}$ and $Y_{2}=X / K_{2}$ are R-quotient spaces and $p_{1}: X \rightarrow Y_{1}$ and $p_{2}: X \rightarrow Y_{2}$ are the natural mappings. Then the mappings p_{1} and p_{2} are M-equivalent. In particular, the spaces Y_{1} and Y_{2} are M-equivalent.

Okunev's construction was generalized in [9].
Proposition 4.2. Let X be a Tychonoff space and r_{1} and r_{2} its retractions onto the same retract K. Then $r_{1} \stackrel{M}{\sim} r_{2}$.

Proof. Obviously $r_{1} \circ r_{2}=r_{2}$ and $r_{2} \circ r_{1}=r_{1}$.
Consider the continuous mapping $i(x): X \rightarrow F(X)$ defined by the formula $i(x)=$ $r_{1}(x) x^{-1} r_{2}(x)$. Extend $i(x)$ to a continuous homomorphism $I(x): F(X) \rightarrow F(X)$. Then

$$
\begin{gathered}
I \circ i(x)=r_{1}\left[r_{1}(x) x^{-1} r_{2}(x)\right] \times\left[r_{1}(x) x^{-1} r_{2}(x)\right]^{-1} \times r_{2}\left[r_{1}(x) x^{-1} r_{2}(x)\right]= \\
=r_{1} \circ r_{1}(x) \times r_{1}(x)^{-1} \times r_{1} \circ r_{2}(x) \times r_{2}(x)^{-1} \times x \times r_{1}(x)^{-1} \times r_{2} \circ r_{1}(x) \times r_{2}(x)^{-1} \times r_{2} \circ r_{2}(x)=x
\end{gathered}
$$

Hence $I \circ I=1_{F(X)}$

$$
\begin{aligned}
& r_{2} \circ i=r_{2} \circ r_{1}(x) \times r_{2}(x)^{-1} \times r_{2} \circ r_{2}(x)=r_{1}(x) \times r_{2}(x)^{-1} \times r_{2}(x)=r_{1}(x) \\
& r_{1} \circ i=r_{1} \circ r_{1}(x) \times r_{1}(x)^{-1} \times r_{1} \circ r_{2}(x)=r_{1}(x) \times r_{1}(x)^{-1} \times r_{2}(x)=r_{2}(x)
\end{aligned}
$$

From this fact we can conclude that $r_{1} \stackrel{M}{\sim} r_{2}$.
Corollary 4.3. Since any two parallel retractions are homeomorphic mappings, any two retractions onto parallel retracts are M-equivalent.

A map $f: X \longrightarrow Y$ is called finite-to-one (compact, pseudocompact) if any $f^{-1}(y)$ is finite (compact, pseudocompact). A closed compact map is called perfect.

Example 4.4. Let $X=\{1,2,3, \ldots ., n, \ldots .$.$\} be the space of positive integers with usual order.$ Consider the mappings $f=\max (x, y), g=\min (x, y)$. Obviously $f^{-1}(n)=(\{1 \ldots n\}, n) \cup$ $(n,\{1 . . n\})$ is finite for all n and $g^{-1}(n)=(\{n, n+1, \ldots\}, n) \cup(n,\{n, n+1, \ldots)$ is infinite for all n.

Corollary 4.5. The following properties are not preserved by the relation of M-equivalence within the class of clopen mappings :

1) perfectness;
2) compactness;
3) pseudocompactness;
4) finite-to-one property.

A map $f: X \longrightarrow Y$ is called monotone, (easy, zero-dimensional, discrete) [2, p.526,538] if any $f^{-1}(y)$ is connected (respectively hereditary disconnected, zero-dimensional, discrete). A map $f: X \longrightarrow Y$ is called functionally open(closed) if the preimage of every functionally open(closed) subset in Y is functionally open(closed) in X. A map which is functionally closed and functionally open is called functionally clopen. We say that $\operatorname{dim}(f) \leq n$ if $\operatorname{dim}\left(f^{-1}(y)\right) \leq$ n for any y. We say that $\operatorname{card}(f) \leq n$ if $\operatorname{card}\left(f^{-1}(y)\right) \leq n$ for any y.

Example 4.6. Let $X=\mathbb{R}$. Then the mappings $f(x)=|x|$ and $g(x)=x^{+}=(x+f(x)) / 2$ are retractions from \mathbb{R} to $\mathbb{R}^{+}=[0, \infty)$ so $f \stackrel{M}{\sim} g$.

Corollary 4.7. The following properties of maps are not preserved by the M-equivalence relation within the class of closed quotient retractions: monotonicity, easyness, dimension, zero-dimensionality, discreteness, cardinality, functional openness, functional clopenness.

A map f is called a local homeomorphism if for any $x \in X$ there exist its neighbourhood $U(x)$ such that $\left.f\right|_{U(x)}$ is a homeomorphism of $U(x)$ onto an open subspace of Y.
Corollary 4.8. Let $X=[-2,-1] \cup\{0\} \cup[1,2]$ then consider the restrictions of the above defined mappings f and g. The restriction of f is a local homeomorphism, while the restriction of g is not. Both f and g are clopen mappings.
5. On certain classes of M-equivalent mappings. Let X be a Tychonoff space. We denote by e_{X} the quotient mapping of X to the one-point space e, by id ${ }_{X}$ the identity of X, by D_{X} the condensation from a discrete space $D_{|X|}$ of cardinality $|X|$ onto X, by q_{X} the quotient mapping from the space X to the space $Q(X)$ of the quasicomponents of the space X, by μ_{X} the embedding $X \longrightarrow \mu X$.

Let $M[X]$ denote the class of Tychonoff spaces Y such that $X \stackrel{M}{\sim} Y$ and by $M[f]$ the class of continuous mappings g between Tychonoff spaces such that $f \stackrel{M}{\sim} g$.
Proposition 5.1. For arbitrary Tychonoff X
a) $M\left[e_{X}\right]=\left\{e_{Y} \mid Y \in M[X]\right\}$;
b) $M\left[\mathrm{id}_{X}\right]=\left\{\mathrm{id}_{Y} \mid Y \in M[X]\right\}$;
c) $M\left[D_{X}\right]=\left\{D_{Y} \mid Y \in M[X]\right\}$;
d) $M\left[q_{X}\right]=\left\{q_{Y} \mid Y \in M[X]\right\}$;
e) $M\left[\mu_{X}\right]=\left\{\mu_{Y} \mid Y \in M[X]\right\}$.

Similar statements hold for A-equivalent spaces and mappings.
Proof. d) The inclusion $M\left[q_{X}\right] \supseteq\left\{q_{Y} \mid Y \in M[X]\right\}$ follows from Proposition 3.6.
Let us prove the inclusion $M\left[q_{X}\right] \subseteq\left\{q_{Y} \mid Y \in M[X]\right\}$. Let $f: Y \rightarrow Z$ be such that $f \stackrel{M}{\sim} q_{X}$. Then $Y \in M[X]$ and $Q(f) \stackrel{M}{\sim} Q\left(q_{X}\right)$ by Proposition 3.7. Since $Q\left(q_{X}\right)$ is a homeomorphism, so is $Q(f)$. Hence $f \cong q_{Y}$.
e) The inclusion $M\left[\mu_{X}\right] \supseteq\left\{\mu_{Y} \mid Y \in M[X]\right\}$ follows from the fact that the extension μ_{X} is the embedding of the free topological group $F(X)$ into its Weil completion. Let us prove the inclusion $M\left[\mu_{X}\right] \subseteq\left\{\mu_{Y} \mid Y \in M[X]\right\}$. Let $f: Y \rightarrow Z$ be such that $f \stackrel{M}{\sim} \mu_{X}$. Then $Y \in M[X], Z$ is Dieudonné complete and $\mu(f) \stackrel{M}{\sim} \mu\left(\mu_{X}\right)$. Since $\mu\left(\mu_{X}\right)$ is a homeomorphism, so is $\mu(f)$. Thus $f \cong \mu_{Y}$.

Proposition 5.2. Let X and Y be A-equivalent spaces, $a \in X, b \in Y$ be arbitrary points. Then there exists a special topological isomorphism $h: A_{M}(X) \rightarrow A_{M}(Y)$ such that $h(a)=b$.
Proof. By [6, Proposition] there exists a special isomorphism $j: A_{M}(X) \rightarrow A_{M}(Y)$. Let $A=\lambda_{1} x_{1}+\lambda_{2} x_{2}+\ldots+\lambda_{n} x_{n}$ be $j^{-1}(b)$. Since j is special, $\sum_{i=1}^{n} \lambda_{i}=1$. Consider the mappings $f, g: X \rightarrow A_{M}(X)$ defined as follows: $f(x)=x+A-a, g(x)=x-A+a$. Let $f^{*}, g^{*}: A_{M}(X) \rightarrow A_{M}(X)$ be their homomorphic extensions. Then

$$
\begin{gathered}
f^{*} \circ g^{*}(x)=f^{*}(x-A+a)=(x+A-a)-\left[\lambda_{1}\left(x_{1}+A-a\right)+\lambda_{2}\left(x_{2}+A-a\right)+\cdots+\right. \\
\left.+\lambda_{n}\left(x_{n}+A-a\right)\right]+(a+A-a)=x+A-a-\left[\lambda_{1} x_{1}+\lambda_{2} x_{2}+\cdots+\lambda_{n} x_{n}\right]- \\
-\left(\sum_{i=1}^{n} \lambda_{i}\right) \times(A-a)+A=x+A-a-A-1 \times(A-a)+A=x .
\end{gathered}
$$

Thus $f^{*} \circ g^{*}=g^{*} \circ f^{*}=1_{A_{M}(X)}$. Therefore f^{*} is a special isomorphism and $f^{*}(a)=A$. Then $h=j \circ f^{*}$ is a topological isomorphism and $h(a)=j \circ f^{*}(a)=j(A)=b$.

Let $\left\{X_{s}\right\}_{s \in S}$ be a family of spaces with base point $x_{s} \in X_{s}$ for each $s \in S$. Let $\vee_{s \in S}\left(X_{s}, x_{s}\right)=\left(\oplus_{s \in S} X_{s}\right) /\left(\oplus_{s \in S} x_{s}\right)$ be the bouquet of this family.

Corollary 5.3. Let $X_{s} \stackrel{A}{\sim} Y_{s}$ for each $s \in S$. Then $\vee_{s \in S} X_{s} \stackrel{A}{\sim} \vee_{s \in S} Y_{s}$.
In the same manner we can prove
Proposition 5.4. Let X and Y be L-equivalent spaces, $a \in X, b \in Y$ be arbitrary points. Then there exists a special linear homeomorphism $h: L(X) \rightarrow L(Y)$ such that $h(a)=b$.

Denote by $t_{\left(X, x_{0}\right)}$ the embedding of the one point space e into X such that $t_{\left(X, x_{0}\right)}(e)=x_{0}$. Consider the continuous mapping $i: X \rightarrow F(X)$ such that $i(x)=a \times x^{-1} \times b$. Denote by $I: F(X) \rightarrow F(X)$ its extension. Then $I \circ t_{(X, a)}=t_{(X, b)}$. Hence $t_{\left(X, x_{0}\right)}$ does not depend, up to M-equivalence, on the base point x_{0} so we will write shortly t_{X}.

Proposition 5.5. For arbitrary Tychonoff space $X, A\left[t_{X}\right]=\left\{t_{Y} \mid Y \in A[X]\right\}$.

6. On A-equivalence of the mappings having right inverse.

Proposition 6.1. Let $r: X \rightarrow K$ be a retraction. Then r is M-equivalent to the R-quotient mapping $p:(X / K) \vee_{e} K \rightarrow K$.

Proof. Considering Okunev's construction [5] we can construct a topological isomorphism $i: X \rightarrow X / K \vee_{e} K_{1}$, where K_{1} is a homeomorphic copy of K (we fix a homeomorphism $\left.h: K \rightarrow K_{1}\right)$.

Applying this construction we came to the conclusion that the point $a \in X$ is mapped onto the point $i(a)=p_{1}(a) \times e^{-1} \times r_{1}(a)$, where $p_{1}: X \rightarrow X / K$ is the R-quotient mapping, $e=p_{1}(K)$, and r_{1} is the composition of the retraction $r: X \rightarrow K$ and the homeomorphism $h: K \rightarrow K_{1}$. Denote by $p^{*}: F\left(X / K \vee_{e} K\right) \rightarrow F(K)$ the extension of p to a group homomorphism.

Then $p^{*} \circ i=p^{*} \circ p_{1}(a) \times p^{*} \circ(e)^{-1} \times p^{*} \circ r_{1}(a)=e \times e^{-1} \times r_{1}(a)=r_{1}(a)$.
In the same manner one can prove the following proposition.
Proposition 6.2. Let $r: X \rightarrow K$ be a retraction, $p: X \rightarrow X / K$ the R-quotient mapping. Then p is M-equivalent to the R-quotient mapping $q: X / K \vee_{e} K \rightarrow X / K$.

Proposition 6.3. For two retractions $r_{i}: X_{i} \rightarrow K_{i}$ the following are equivalent:
I) $r_{1} \stackrel{A}{\sim} r_{2}$;
II) The R-quotient maps $q_{i}: X_{i} \rightarrow X_{i} / K_{i}$ are A-equivalent;
III) $K_{1} \stackrel{A}{\sim} K_{2}$ and $X_{1} / K_{1} \stackrel{A}{\sim} X_{2} / K_{2}$.

Proof. (I $\Longrightarrow \mathrm{III}) X_{1} \stackrel{A}{\sim} X_{2}$ follows from the definition of A-equivalent mappings. By Proposition 6.1 the retractions r_{i} are A-equivalent to R-quotients $p_{i}: X_{i} / K_{i} \vee_{e} K_{i} \rightarrow K_{i}$. Since $\operatorname{ker}\left(p_{i}^{*}\right)=A_{0}\left(X_{i} / K_{i}\right)$ and $A_{M}\left(\left(X_{i} / K_{i}\right)=A_{0}\left(\left(X_{i} / K_{i}\right) \times \mathbb{Z}\right.\right.$, we have $A_{M}\left(\left(X_{1} / K_{1}\right) \simeq\right.$ $A_{M}\left(\left(X_{2} / K_{2}\right)\right.$.
(II \Longrightarrow III) $X_{1} / K_{1} \stackrel{A}{\sim} X_{2} / K_{2}$ follows from the definition of A-equivalent mappings. By Proposition 6.2, the R-quotients $q_{i}: X_{i} \rightarrow X_{i} / K_{i}$ are A-equivalent to quotients $p_{i}: X_{i} / K_{i} \vee_{e}$
$K_{i} \rightarrow X_{i} / K_{i}$. Since $\operatorname{ker}\left(p_{i}^{*}\right)=A_{0}\left(K_{i}\right)$ and $A_{M}\left(K_{i}\right)=A_{0}\left(K_{i}\right) \times \mathbb{Z}$, we have $A_{M}\left(K_{1}\right) \simeq$ $A_{M}\left(K_{2}\right)$.
(III \Longrightarrow I) By Proposition 6.1 it suffices to prove that the R-quotients $f_{i}: X_{i} / K_{i} \vee_{e_{i}} K_{i} \rightarrow$ K_{i} are A-equivalent. By Proposition 5.2 there exist topological isomorphisms $u: A\left(X_{1} / K_{1}\right) \rightarrow$ $A\left(X_{2} / K_{2}\right)$ and $v: A\left(K_{1}\right) \rightarrow A\left(K_{2}\right)$ such that $u\left(e_{1}\right)=e_{2}$ and $v\left(e_{1}\right)=e_{2}$. Consider the mapping $s_{1}: X_{1} / K_{1} \vee_{e_{1}} K_{1} \rightarrow A\left(X_{2} / K_{2} \vee_{e_{2}} K_{2}\right)$ by putting $s_{1}(x)=u(x)$ if $x \in X_{1} / K_{1}$ and $s_{1}(x)=$ $v(x)$ if $x \in K_{1}$. In the same manner we can define $s_{2}: X_{2} / K_{2} \vee_{e_{2}} K_{2} \rightarrow A\left(X_{1} / K_{1} \vee_{e_{1}} K_{1}\right)$. Then the extensions s_{i}^{*} of s_{i} are inverse continuous homomorphisms. So s_{1} is topological isomorphism. Denote by

$$
A_{0}\left(X_{1} / K_{1}\right)=\left\{W \in A\left(X_{1}\right): W=\varepsilon_{1} x_{1}+\varepsilon_{2} x_{2}+\cdots+\varepsilon_{n} x_{n}, x_{i} \in X_{1} / K_{1}, \sum_{i=1}^{n} \varepsilon_{i}=0\right\}
$$

Obviously $\operatorname{ker}\left(r_{i}^{*}\right)=A_{0}\left(X_{i} / K_{i}\right)$ and $s_{1}\left(A_{0}\left(X_{1} / K_{1}\right)\right)=\left(A_{0}\left(X_{2} / K_{2}\right)\right)$, therefore by [5, Theorem 1.10] we have $r_{1} \stackrel{A}{\sim} r_{2}$.
(III $\Longrightarrow \mathrm{II})$ Using Proposition 6.2 we can prove the implication similary to the previous one.

We call two retractions r_{1} and r_{2} of a space X are orthogonal [8] if the mappings $r_{1} \circ r_{2}$ and $r_{2} \circ r_{1}$ are constant.

Corollary 6.4. Two orthogonal retractions $r_{i}: X \rightarrow K_{i}, i \in\{1,2\}$ are A-equivalent iff $K_{1} \stackrel{A}{\sim} K_{2}$.
Proof. Since $K_{1} \stackrel{A}{\sim} K_{2}$, by [8, Propositions 3.2,3.7.] we have $X / K_{1} \stackrel{A}{\sim} X / K_{2}$. by Proposition 6.3 we see that $r_{1} \stackrel{A}{\sim} r_{2}$.

Proposition 6.5. Let $X \stackrel{M}{\sim} Y$ and a triple (X, Y, Z) satisfies condition $\left({ }^{*}\right)$. Consider the projection mappings $p_{X}: X \times Z \rightarrow X, p_{Y}: Y \times Z \rightarrow Y, f_{X}: X \times Z \rightarrow Z, f_{Y}: Y \times Z \rightarrow Z$. Then $p_{X} \stackrel{M}{\sim} p_{Y}, f_{X} \stackrel{M}{\sim} f_{Y}$.

Proposition 6.6. Let $f_{1} \stackrel{A}{\sim} f_{2}, g_{1} \stackrel{A}{\sim} g_{2}$ be the mappings that have right inverse. Then

$$
g_{1} \circ f_{1} \stackrel{A}{\sim} g_{2} \circ f_{2}
$$

Proof. Let $f_{i}: X_{i} \rightarrow Y_{i}, g_{i}: Y_{i} \rightarrow Z_{i}, i \in\{1,2\}$. By Proposition 6.1, $g_{1} \circ f_{1} \stackrel{A}{\sim} g_{2} \circ f_{2}$ iff $X / Z_{1} \stackrel{A}{\sim} X / Z_{2}$ and $Z_{1} \stackrel{A}{\sim} Z_{2}$.

Let us show that $X / Z^{+} \stackrel{A}{\sim} X / Y \oplus Y / Z$. The space X / Z contains a retract homeomorphic to Y / Z. Hence by [5, Theorem 2.4] $X / Z^{+} \stackrel{A}{\sim} X / Y \oplus Y / Z$.

Since $f_{1} \stackrel{A}{\sim} f_{2}$ implies $X_{1} / Y_{1} \stackrel{A}{\sim} X_{2} / Y_{2}, g_{1} \stackrel{A}{\sim} g_{2}$ implies $Y_{1} / Z_{1} \stackrel{A}{\sim} Y_{2} / Z_{2}$, we have $\left(X_{1} / Z_{1}\right)^{+} \stackrel{A}{\sim}\left(X_{2} / Z_{2}\right)^{+}$so from [8, Proposition 3.7] we can conclude that $X_{1} / Z_{1} \stackrel{A}{\sim} X_{2} / Z_{2}$. Hence $g_{1} \circ f_{1} \stackrel{A}{\sim} g_{2} \circ f_{2}$.

Denote by $f \nabla g$ the sum combination [2, page 126] of the mappings f and g.
Proposition 6.7. Let $f_{1} \stackrel{A}{\sim} f_{2}, g_{1} \stackrel{A}{\sim} g_{2}$ be mappings such that f_{i} has right inverse. Then

$$
f_{1} \nabla g_{1} \stackrel{A}{\sim} f_{2} \nabla g_{2}
$$ $X_{1} / Z_{1} \oplus Y_{1} \stackrel{A}{\sim} X_{2} / Z_{2} \oplus Y_{2}$.

REFERENCES

1. Guran I. Y., Zarichnyi M. M. Elements of theory of topological groups, Inst. System Stud. Education, Kyiv, 1991.
2. Энгелькинг Р. Общая топология, М.: Мир, 1986.
3. Yunusov A. S. On quasicomponent of free topological groups, Mat. Issledovania 74 (1983), Kishinev, 163-165. (Russian)
4. Куратовский К. Топология, М.: Мир. Т.1. 1966, Т.2. 1969.
5. Okunev O. G. A method for consructing examples of M-equivalent spaces, Topology Appl 36 (1990), 157-171; Correction, Topology Appl 49 (1993), 191-192.
6. Okunev O. G. M-equivalence of products, Trudy Mosc. Math. Obsch. 56 (1995), 192-205.
7. Pestov V. G. Universal arrows to forgetful functors from categories of topological algebra, Bull. Austr. Math. Soc. 48 (1993), 209-249.
8. Pyrch N. M. Orthogonal retractions and the relations of M-equivalence, Matematychni Studii, 20, No. 2 (2003), 151-161.
9. Pyrch N., Zarichnyi M. On a generalization of Okunev's construction, Algebraic structures and their applications, Proceedings of the Institute of Math.: Kiev, 2002, 346-350.
10. Sipacheva O. V. Free topological groups of spaces and their subspaces, Topology Appl., 101 (2000), 181-212.
11. Tkachenko M. G. On the competeness of free Abelian topological groups, Dokl. Akad. Nauk SSSR 269 (1983), 299-303. (Russian)
12. Ткачук В. В. Об одном методе построения $М$-эквивалентных пространств, Усп. матем. наук, $\mathbf{3 8}$ (1983), №6, 127-128.
13. Wagner C. H. Symmetric, cyclic and permutation products of manifolds, Dissertationes mathematicae, CLXXXII, Warszawa, 1980.

Ivan Franko National University of Lviv

