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We characterize groups in which no non-trivial section is perfect without infinite properly
descending series of non- “abelian-by-finite” subgroups.
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Msr xapakTepu3yeM rpymnbl, B KOTOPBIX HUKAKOE CEYEHWE HE sIBJISIETCS] COBEPIIEHHBIM 63
GeckoHedHBIX CODCTBEHHO YOBIBAIOIINX PIOB HE “IOYTH aDeJIeBbIX’ MOATPYIIIL.

0. We say that a group G satisfies the minimal condition on non-“abelian-by-finite” subgroups
(for short Min-AF) if for every properly descending chain {G,|n € N} of subgroups in
GG there exists a number ny, € N such that G, is an abelian-by-finite subgroup for any
integer n > ny. Every minimal non-“abelian-by-finite” (i.e. non-“abelian-by-finite” group with
abelian-by-finite proper subgroups) G satisfies Min-AF. In a series of papers of V.V.Belyaev
[1], B.Bruno [2-4], B.Bruno and R.E.Phillips [5] have proved that a minimal non-“abelian-
by-finite” group is an indecomposable metabelian group or a Carin group (see e.g. Carin’s
example [6, p.152]). A group G is indecomposable if any two proper subgroups of G generate
a proper subgroup of GG. Note that earlier groups with the minimal condition on non-abelian
subgroups have been studied by S. N. Cernikov (see [7]) and V. P. Sunkov [8] and solvable
groups with the minimal condition on non-“nilpotent-by-finite” subgroups by the author [9].

In this paper we characterize groups in which no non-trivial section is perfect and which
satisfy Min-AF. Namely, we prove

Theorem. Let GG be a group in which no non-trivial section is perfect. Then G satisties
Min-AF if and only if it is of one of the following types:

(i) G is an abelian-by-finite group;
(ii) G contains a normal subgroup H of finite index such that
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where H; is a metabelian HM*-group, H = H' < Hy (i = 1,...,n), Hy is an abelian
group with the divisible Cernikov quotient group Hy/H' and if k # s (1 < k,s < n), then
m(Hy/H)Nn(H;/H') = 2.

Throughout this paper, p is a prime, C,~ a quasicyclic p-group and G’ the commutator
subgroup of a group G, 7(G) a set of all primes which divide the orders of torsion elements
in G.

Recall also one construction from [10]. Let G = M x @ be a semidirect product of an
abelian ¢’-subgroup M and a quasicyclic g-subgroup ). Then M is a right Z()-module, where
the action is induced by the conjugation of Q on M. As in [10], if {Vi|\ € A} is a complete
set of representatives for the isomorphism types of irreducible Z,()-modules, we view V) as
ZQ-modules and denote by E(V)) the ZQ-injective hull of V). Let

Vi(n) ={v € E(V))|p"v =0} and V)(c0) = E(V)).

Then Vy(n) (n=0,1,...,00) is determined up to isomorphism by A\ and n (see [10]).
We will also use other standard terminology from [6].

1. For the next we need the following lemmas.

Lemma 1. Let G be a group that satisfies Min-AF and H its subgroup. Then
(i) H satisfies Min-AF;
(i) if H is normal in G, then the quotient group G/H satisfies Min-AF;

(iii) if H is a normal non-“abelian-by-finite” subgroup, then G/H satisfies the minimal
condition on subgroups.

Proof. Evident. O

Lemma 2. Let G be a non-perfect (i.e. G' # ) group with abelian-by-finite proper normal
subgroups. Then G satisfies Min-AF' if and only if it is of one of the following types:

(1) G is an abelian-by-finite group;
(2) G is a minimal non-“abelian-by-finite” group;

(3) G=G" xS, where S = Cpe, G' = S; X -+ x S, (n > 1) is a p'-subgroup and a group
direct product of finitely many abelian Sylow p;-subgroups S; and a right 7Z.5-module
S; is a module direct sum of finitely many submodules each isomorphic to some V,(m)
(t=1,...,n;1 <m < o0);

(4) G = Ax S is a metabelian group, where S is a minimal non-“abelian-by-finite” p-group,
A is a normal abelian p'-subgroup of G and G/S' is a group of type (3).

Proof. (<) is immediate.
(=) 1) First we assume that G/G’ is not an indecomposable group. Then G = AB is
a product of two abelian-by-finite proper normal subgroups A and B. Since A (respectively
B) contains an abelian G-invariant subgroup A; (respectively B;) of finite index, we obtain
that G = A, B;. As a consequence, G is a nilpotent group and therefore G'K # G for any
proper subgroup K of GG. This means that K is an abelian-by-finite subgroup and in view of
Theorem B of [1] G is the one.

2) Now let G/G’ be an indecomposable group and so it is a cyclic p-group (in which
case (G is an abelian-by-finite group) or a quasicyclic p-group for some prime p. Assume that
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G/G" = Cpee. If D is a proper abelian G-invariant subgroup of finite index in G’, then G/DG”
is an abelian group, a contradiction. This means that G’ is an abelian subgroup. Since GG
satisfies Min-AF, it contains a subgroup S which is a minimal non-“abelian-by-finite” group.
Hence G = G'S.

Suppose that S # G. Let G = G/(G'NS) = G x S. It is easy to see that G satisfies
the minimal condition on normal subgroup Min-n and so Baer Theorem [6, Theorem 5.25]
and Theorem 2.1 of [5] imply that G is a locally finite group. If G is a p-group, then it is
Cernikov (see [61, p.156, Corollary 2]). This yields that G is a nilpotent group and we obtain
a contradiction. From this it follows that G is a p/-subgroup. Our hypothesis and Theorem B
of [1] give that G’ is a m-subgroup for some finite set of primes 7 and G = A x @), where
either () = S is a minimal non-“abelian-by-finite” p-group or () = C,~, A is a p’-subgroup
of G'.

Now assume that () is a quasicyclic p-subgroup. Let ¢ € m and B be a Sylow ¢-subgroup
of G'. Since B x () is a non-“abelian-by-finite” group with Min-AF, it also satisfies Min-n and
therefore by Theorem A of [10] a right ZQ-module B is a module direct sum of finitely many
submodules each isomorphic to some V)(n) (1 < n < o). Thus G is a group of type (3).

If @ is a minimal non-“abelian-by-finite” group, then not difficult to see that G/S’ is
a group of type (3). The lemma is proved. O

Corollary 3. If G is a group with Min-AF in which no non-trivial section is perfect, then
it is countable and locally finite.

If G’ is a hypercentral subgroup and G/G’ is a divisible Cernikov p-group, then G is called
an HM*-group (see [11] and [9]). Any group of Heineken-Mohamed type (i.e. non-nilpotent
group with all proper subgroups nilpotent and subnormal) is an H M*-group.

Example 4. Let py,...,p,, p be distinct primes, Y; the splitting field of the polynomials
" —1 (n € NU{0}) over the field Z,,, A = Y1®- - -®Y; a ring direct sum. By Theorem 2.5 of
[12] every Y; has a nontrivial automorphismo; (i =1,...,s). Then R = Alz;01,...,04]/(x™)
(m > 2), where

(a1,...,a5)x = x(a;7", ..., as%)

for all elements (ay,...,as) € A, is a semiperfect ring with the unit group
U(R) = (14 J(R)) % (i" x - x Y.

Moreover, 1+ J(R) is a nilpotent m-subgroup, where 7 = {p1, ..., ps}, and the multiplicative
group Y;* of Y is a p)-subgroup which contains a quasicyclic p-subgroup H; of finite index.
Let A and X be a homomorphic image of A and z in R, respectively. Assume that m = 2.
Then (1 + X f)™'=1— X[ and the commutator

I+ Xfiu=0-XHul+Xflu =1+ X(u; —u)fu™’

for all elements [ € Za_nd u € Y1*><-_~ XYy, where uX = Xu, for some u; = (u1,...,u15) €
Yi* x - x V¥ Since A = (u; — u)Au~" for some u,u; € Hy X - -+ x Hy with uy; # 0 for all
i (1 <i<s), we conclude that

14+ J(R),Hy x---x H] =1+ J(R).
From this it follows that
G=(14+J(R)) % (Hy x---x Hy)
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is an H M*-group for any m > 2. If s =1 and m = 2, then G is a Carin group by Lemma 1
of [13].

Lemma 5. Let G be an H M*-group. Then G satisfies Max-AF if and only if it is metabelian.

Proof. (<) Since the quotient group G/G’ is Cernikov and G’ is an abelian subgroup, we
conclude that G satisfies Min-AF.

(=) If G’ is not abelian-by-finite, then in view of Lemma 2 it contains a subnormal
non-“abelian-by-finite” subgroup S with all proper normal subgroups abelian-by-finite. But
Lemma 2 yields that S is not a hypercentral group and we obtain a contradiction wi-
th the hypercentrality of GG’. This means that G’ is an abelian-by-finite subgroup and, as
a consequence, it is abelian, as desired. O

2. Proof of Theorem. (<). Evident.
(=). Suppose that G is a non-“abelian-by-finite” group. By Lemma 2 G, has a descending
subnormal series

G=G,>Gp>--->pG,=109,

where S is a group with all proper normal subgroups abelian-by-finite and by Lemma 1
G;/G;41 is a Cernikov group (j € {0,1,...,n —1}).

Let x € G,_;. Then S* <« G, _; and consequently S’ < G,,_1. By D,,_; we denote a
subgroup of finite index in G,,_; such that D, /S5’ is the divisible part of G,,_/S’. Then
D! =8 Since D,_;DY_,/S"is a Cernikov group for every y € G,_, and S’ not contains
a proper S-invariant subgroup of finite index, we conclude that D, ; <G, _5. By the same
argument after a finite number of steps we obtain that G has a normal subgroup D of finite
index such that D’ = S’ and D/D’ is a divisible Cernikov group. Then

D=D;-...-Dy(n>1),

where D,/D' is a divisible Cernikov Sylow p,-subgroup of D /D" (s =1,...,n) and ps # p
if s #1 (1 <s,l <n).If Dy is an abelian-by-finite subgroup for some integer k£ (1 < k < n),
then it is abelian. Assume that D, is not abelian-by-finite. Then it contains a subnormal
subgroup 7" with all proper normal subgroups abelian-by-finite. As before, we can prove that
T' = D; = S'. Hence Dy, is a metabelian H M*-group. The theorem is proved.
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