A note on the approximability of the dense subgraph problem

Author
O. V. Verbitsky.
Department of Algebra and Mathematical Logic ,Faculty of Mechanics and Mathematics ,Kyiv National University, Ukraine
Abstract
The Dense Subgraph Problem is, given a graph $G$ and an integer $a$, to determine the maximum number of edges in a subgraph of $G$ induced on $a$ vertices. This optimization problem is well known to be NP-hard. We prove that finding an approximate solution with an absolute error guarantee of $a^{2-\epsilon}$ is still NP-hard for each $\epsilon>0$.
Keywords
dense subgraph problem, NP-hard problem, approximate solution
DOI
doi:10.30970/ms.22.2.198-201
Reference
1. Визинг В.Г. Хроматический класс мультиграфа, Кибернетика, 3 (1965), 29--39. English translation available: Vizing V.G. The chromatic class of a multigraph, Cybernetics, 1:32--41 (1965).

2. Bellare M., Goldreich O., Sudan M. Free bits, PCPs, and non-approximability -- towards tight results, SIAM J.\ Computing, 27 (1998), no.3, 804--915.

3. Crescenzi P., Kann V. A compendium of NP optimization problems, On-line version available at\\ http://www.nada.kth.se/~viggo/wwwcompendium/

4. Erdos P., Spencer J. Probabilistic methods in combinatorics. Akad\'emiai Kiad\'o, Budapest (1974). Russian translation available: Эрд\"еш П., Спенсер Дж. Вероятностные методы в комбинаторике. М.: Мир, 1976.

5. Feige U., Kortsarz G., Peleg D. The Dense $k$-Subgraph problem, Algorithmica, 29 (2001), no.3, 410--421.

6. Frieze A., Jerrum M. Improved approximation algorithms for MAX $k$-CUT and MAX BISECTION, Algorithmica, 18 (1997), 67--81.

7. Garey M.R., Johnson D.S. Computers and Intractability. A guide to the theory of NP-completeness, W.H.~Freeman, San Francisko (1979). A Russian translation available: Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи, М.: Мир, 1982.

8. Goemans M., Williamson D. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, J.\ of the ACM 42 (1995), no 6, 1115--1145.

9. Khanna S., Motwani R., Sudan M., Vazirani U. On syntactic versus computational views of approximability, SIAM J.\ Computing 28 (1999), 164--191.

10. H stad J. Some optimal inapproximability results. In: Proc.\ of the 29-th ACM Ann.\ Symp.\ on Theory of Computing, (1997), 1--10.

11. Holyer I. The NP-completeness of edge-coloring, SIAM J.\ Computing\/ 10 (1981), no.4, 718--720.

12. Ye Y.\ A. 699 approximation algorithm for MAX BISECTION. Manuscript, 1999.

Pages
198-201
Volume
22
Issue
2
Year
2004
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue