On simple mixed modules over the Virasoro algebra

Author
V.S.Mazorchuk
Department of Mathematics, Uppsala University, Box 480, SE-75106, Uppsala, Sweden,
Abstract
We describe the support of a simple weight module over the Virasoro Lie algebra and classify all those modules, whose support is one element less than the weight lattice. Using the ideas from the proof of the latter result we derive some properties of the so-called mixed modules, that is the modules which have both finite-dimensional and infinite-dimensional weight spaces.
Keywords
simple mixed module, support, Virasoro Lie algebra
DOI
doi:10.30970/ms.22.2.121-128
Reference
1. Martin C., Piard A. Indecomposable modules over the Virasoro Lie algebra and a conjecture of V. Kac, Comm. Math. Phys. 137 (1991), no. 1, 109--132.

2. Martin C., Piard A. Classification of the indecomposable bounded admissible modules over the Virasoro Lie algebra with weight spaces of dimension not exceeding two, Comm. Math. Phys. 150 (1992), no. 3, 465--493.

3. Mathieu O. Classification of Harish-Chandra modules over the Virasoro Lie algebra, Invent. Math. 107 (1992), no. 2, 225--234.

4. Mazorchuk V. Futorny theorem for generalized Witt algebras of rank $2$, Comm. Algebra 25 (1997), no. 2, 533--541.

5. Mazorchuk V. Classification of simple Harish-Chandra modules over $\mathbb{Q}$-Virasoro algebra, Math. Nachr. 209 (2000), 171--177.

6. Xu X. Pointed representations of Virasoro algebra. A Chinese summary appears in Acta Math. Sinica 40 (1997), no. 3, 479. Acta Math. Sinica (N.S.) 13 (1997), no. 2, 161--168.

7. Zhang H. A class of representations over the Virasoro algebra, J. Algebra 190 (1997), no. 1, 1--10.

Pages
121-128
Volume
22
Issue
2
Year
2004
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue