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We define the notion of a strong asymptotic tract for subharmonic function of finite lower
order A. We estimate the number of strong tracts using Petrenko’s magnitude of the deviation
from oo of a subharmonic function u(z). The estimates in the paper are exact.

N. U. Mapuenko, A. lllkubens. O cmpoeur mpaxmar cybeapmonuveckur Gynkyuti Koneunoezo
nuscnezo nopadka // Maremarudani Cryaii. — 2004. — T.22, Nel. — C.35-44.

Beegero moHATHE CTPOTOro aCHMITOTHYECKOTO TPAaKTa Uit Cy6rapMOHUYIECKUX (PYHKIHT
KOHEYHOT'O HIKHErO MOPAAKAa A U OIEHEHO YHCI0 CTPOTHX TPAKTOB, NCIOMB3YA BEAMYMNHY OT-
kaoHeHuA [TeTpeHKo oT 0o cybrapmonuteckoll GyHKINN 4(z). OUeHKH, oMy YeHHbIE B CTATHE,
ABJIAIOTCA TOIHBIMU.

Let u(z) be a subharmonic function in the plane of finite lower order A, where

logmax{u(z): |z| = r}‘

A = liminf

r—00 log r
Consider the sets E(n) = {z € C: wu(z) = n} for n € N. Let C(n) be a thick component
of E(n), which means that u(z) Z n on C(n) (see [1]). There is k € N such that, for every
n > k, the function u(z) is unbounded on all thick components C(n). Let ny > ny > k.
Then every thick component C(ny) contains at least one thick component C(ny). If P(n) is

the number of different sets C(n), then P(nz) = P(ny). We define

p = lim Pn)
and call it the number of tracts of the function u(z). If A < oo, then p < oo (see [1]).
Hence, there is ng, such that, for all n > ng, P(n) = p. We consider the set E(ng) and its
components C;(ng) for j € {1,2,...,p}.
If Cj(no) is a tract of u(z), then there exists (see [2]) a continuous curve I'; C C;(no)
given by the equation z = z(t), where 0 <t < oo and z(t) — oo as t — oo, such that
lim u(z) = lim u(z(t)) = oc.
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Definition 1. We call the tract C(ng) of the subharmonic function u(z) a strong tract if
there is a continuous curve I' C C(ng) : z = 2(1), 0 <t < oo, such that z(#) — co as t — oo

and
u(=(1)) B
|2l = =)}

We are going to estimate the number of strong tracts of a subharmonic function of finite

lower order A.
In order to state the main result of the paper, we use Petrenko’s magnitude of the devi-
ation from oo of a subharmonic function u(z) as

.. .max{u(z): |z| =r}
oo, u) = liminf
Bloo,u) 00 T(r,u) ’

where T'(r,u) is the Nevanlinna characteristics of the subharmonic function u(z) (see [1]).

Theorem A [3]. For a subharmonic function of finite lower order A\ we have

sin A

A A <05
< b
Bloo,u) {WA ifA > 0.5,

The exact estimate of 3(co,u) for meromorphic functions was obtained by Petrenko in
1969 ([4]).
The paper presents the proof of the following result.

Theorem. Let u(z) be a subharmonic function of finite lower order A and p strong tracts.

Then

max{l, {% } if A < 0.5,
P < ’
23] ifA > 0.5.

In the case u(z) = log|f(z)|, where f(z) is an entire function, the theorem was proved
by one of the authors ([5]). The estimates of Theorem are exact, see [5].

Corollary. For a subharmonic function u(z) of finite lower order A we have

% if A > 0.5,
Boo, u) < Siziu itA <05, p=1,

msinmd N < 0.5, p > 1,
where p is the number of strong tracts of u(z).
1. Auxiliary results. Let u(z) be a subharmonic function and let p be the number of

tracts of u(z). Let ng be such that, for all n > ng, E(n) has exactly p connected components.
Consider the functions (see [1])

M@:{w@iueqm@
! no if z ¢ C;(no).
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for j € {1,2,...,p}. The functions u;(z) are subharmonic in C. Also, for every j €
{1,2,...,p}, uj(z) is the pointwise limit of a nonincreasing sequence {vf(z)} of subharmonic
functions with continuous second partial derivatives [1].

Now, we define the functions (see [6])

1 :
i 0.) = 5 s [t

E|=26
E

where |F| is the Lebesgue measure of the set £ and
P
mg(r,0,u) = Zm*(r,e,uj).
7=1

According to Baernstein’s Theorem (see [6]), the functions m*(r, 8, u;) are subharmonic in
K={re’ :0<r <o0,0<8 < n}, continuous on K U (—o00,0) U (0, +0o0) and convex
in logr for any fixed § € [0,7]. Also the functions defined above are nondecreasing with
respect to r for any fixed 6. Hence the function mj(r,0,u), as the sum of m*(r, 0, u;)’s, has
the same properties. Moreover

o
1 SO om* 1., .
m*(r,0,u;) = ;/uj(rew)dcp, a—n;(r,ﬁ,uj) = ;uj(rew), 0<d<m,

0

where 1;(re'?) is the circular rearrangement of the function u;(re) [7].

Lemma 1. The sequence {m*(r, 0, vf)} converges to m*(r,0,u;) uniformly on the set {re' :

I<r<R 0K r}torevery R>1 (5 €{1,2,...,p}).

Proof. We have u;(z) < vf(z) for all j € {1,2,...,p}. Then for any measurable set £

/uj(rew)dcp < /vf(rew)dcp and
E

E

sup /uj(rew)dcpé sup /vf(rew)dcp for every k.

|E]=20 |E|=26
E E

Hence

sup /uj(rew)dcp < lim sup /vf(rew)dcp and

|E|=26 k=00 | B1=2¢
E
m™(r, 0, u;) < klim m*(r,e,vf) for 7e€{1,2,...,p}. (1)
—+00

Let £ > 0 be given. Then, by the Egorov Theorem, for any E£ with |E| = 26 there exists
a set E. with |E.| < e such that v¥(re?) — u;(re’?) uniformly on £\ E., where r is fixed.
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Then there exists ko such that, for k > ko, vf(rew) < u;(re)+¢con E\ E.. Hence

E E\E. E.
< / (u](rew) + 5) de + / v; (re')de <
E\E. E.
< (uj(rew) + 5) de + max v}(z)s =

|2|=r

z|=r

uj(rew)dcp + (2(9 + max v]l(z)> e,

SO

sup /vf(rew)dcp < sup /uj(rew)dcp + (2(9 —I—maxv;(z)> €

|E|=26 |E|=26 |z|=r
E E
for k > kg and finally
lim m*(r,e,vf) <m*(r,0,u;) for je{l,2,...,p}. (2)

k—o0
Using (1) and (2) we get

lim m*(r,0,v%) = m*(r,0,u;) for je{1,2,...,p}.

I
k—oc0 J

Hence m*(r,0,u;) is the pointwise limit of {m*(r,@,vf)}. Moreover the sequence
k

{m*(r,@,vf)} is nonincreasig and the functions m*(r,0,u;) and m*(r,0,v7) for all k € N
are continuous on the set {re' : r >0, 0 <0 < 7}, so we can use the Dini Theorem. This

completes the proof of Lemma 1. O

For a real function ¢(r), we consider the operator

h —h -9
L) = iy P12 =200

If the function ¢(r) is twice differentiable in r, then

d d

Lo(r) = 7“57“599(7“).

Since m*(r, 8, u;) is convex in logr, for all r > 0 and 0 € [0, 7] we have
Lm™(r,0,u;) = 0.

Lemma 2. Let u(z) be a subharmonic function with continuous second partial derivatives.
For all r > 0 and for almost all § € (0,7) we have

1 O e
Lm™(r, 0,u;) > ——M
T Oy

=0
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The proof of this lemma is similar to that of Lemma 1 in [5], also see [§].

Lemma A [9]. Let the function f(x) be nondecreasing on an interval [a,b] and let ¢(x) be
a nonnegative function having a bounded derivative on [a,b]. Then

- j@’(x)f(l')dx

From now on we assume that u(z) is a subharmonic function with p strong tracts. For
every a with 0 < o < min{m, 7/2A} and for every k we put (see [10])

/ Fle)o(a)de < fle)o(e)|’

a

r)= /mé(r,@) cos ABd#,

?:1 m (T, 07 U])

Lemma B [11]. Let (5;) and (R;) be sequences such that lim;_,., S; = oo, lim; . R; = 00,
lim; .., S;/R; = 0 and for each i the numbers 25; and 2R; are Pélya peaks of the function
T(r,u). Then tor every ¢ > 0 there exists i9(¢) such that for i > i

where mg(r,8) =

T(2S;, T(2R;, T(r,
250 | TRRe) [T,
S,

Lemma 3. There exist sequences (.5;) and (R;) with lim;., S; = o0, lim; R; = oo and
lim;o Si/R; = 0, such that for every ¢ > 0 and for ¢ > io(e), and k > ko(e,1) we have

(oe)_(R:)  (on)(S:)  Aow(Ry)  Aow(S:) T(r,u)
R g1 R T Ter € / el
7 7 T S

where (o) (r) is the left derivative of oy(r).

Proof. Let € > 0 be given. Let (5;), (R;) be the sequences defined in Lemma B. Let iy be

such that
R;

(28, u) QRZ,u 5/T
+ < §
Sy

) A1
S r

7

for all ¢ > 1. Using Lemma 1, for k > kg, we get
my(r,0) < mg(r,0,u) +e < T(r,u)+pno+¢
on the set {re': 1 <r <2R;, 0 <0 < 7). Hence, for a = min{m, 7/2A},

r)= /mé(r, 6) cos \0df < /T(r, u) cos A0df + /(pno + &) cos A0dO <
0

< 7T'(ryu) + w(pno + €).
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Therefore

Aog(S:)  wT(Si,u)  mw(pno + ¢€) T(S;,u)
o) < o + 5] <5 D) (3)

7 7 7 7

and

R

<5 (4)

Now, since m§(r,6) is a monotone function of r,

O

om3(r, 0
(o) (r) = /77”08(: )cos A0do,

0

omg(r,0)

but mg(r, ) is convex in logr if 6 is fixed, so —=2= is nondecreasing and for > r, using
Lemma A, we have

mi(.0) 2 mi(x,0) = mi(r.0) > / Ol / Lot 0)

r r
xr

0 0 T
B > r—m! =
/tatmo(t,e)d(log t) > rarmo(r,e) log o

r

where, on the right side of the inequality, for fixed 6 we have the left derivative of mg(r, 8).
Hence

amg(r, 0 1 y 1
Oa(r ) < o %mo(:p,@) < "Tog 2 (T'(r,u)+ pno +¢) ask > ko,
0 Omz(r,0) 1
my(r,
— < T(2S;,
ar =g, Silog?2 (T(255,u) + pro +¢)
and dm(r.0) |
my(r,
— < T(2R;, :
ar ‘r:R,‘ RZ 10g2 ( ( i U) —I_pno " 6)
Thus
(ox)_(R:) 1 /97”8(7“79) cos \odo
Rz{\_l Rz{\_l ar r=R;
0 i3
11 [ |
0
and

(o) (5)) 1

K3
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Finally, using (3), (4), (5), (6) and Lemma B, we get

(o0)(R:) | (o%)_(5:) /\Uk(Ri)Jr/\Uk(Sz’)
R} St R} 97

1 1 1 1
9§T(23¢7U) + 9§T(25¢,u) <9 (ET(QRZ»,u) + §T

The lemma is proved.

O

2. Proof of Theorem. For p = 1 the proof is not necessary, as the conclusion follows
easily from Theorem A. Hence, we assume that the number of strong tracts p > 1. Using

the definition of oy(r) and Lemma 2, we get

6
Lo (r ——Z/ 5 re Cos)\(9d0

Integrating by parts we obtain

1 P~ . o )\ p r ~ )
Lok(r) 2 - va(rezg) . ;Z/vf(rew)sin A0dl =
J=1 7=1 0
—)\Zm r,a, vt )sonz—l—

= ——Z re'
7=1
-I-)\ZZ/m r,@,v] cos A0df =

p
1 k
= —— U]
T

— dmi(r, 0)sin da + Nop(r) = hip(r) + Now(r).

Since Lm*(r, 0, v]) 0, using Fatou Lemma, we get

Log(r) = /Lmo(r f) cos \0df > Z/Lm r,@,v] cos A0do > 0

(7)

and oy (r) is convex in logr. It follows that r(ox)"(r) is an increasing function on [0, c0).

Thus, for almost all r > 0 we have

We now divide inequality (7) by r**! and integrate it over the interval [S;, /],

R; R; R;

d.

ar hi(r) ox(r)

dr 2
/ 2/ v dr 4+ A / v dr,
3; S S

7
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where the numbers 5; and R; are defined in Lemma 3. Since the function r(oy) (r) is
increasing, by Lemma A, we have

R;

R;

R;
d / /
a7 (oR)_(r) r(og)_(r) | o% 2
/7rA dr < 3 + A + A TA+1
Sy Si Sy
Therefore
Fir) (@) o [
T Op)_|\T oplTr
/ AL dr < ( A1 +A 5} > . (8)
S S

Let ¢ > 0 be given. By Lemma 3, for : > 1y and k& > kg, we have

R;

/TA+1dr< / 7«/\+1 dr.
S,

7

Now, if vf(z) is a nonincreasing sequence tending to u;(z), then also vf(z) is a nonincreas-
ing sequence tending to u;(z). Hence, using Lemma 1, by Monotone Convergence Theorem,
we get

where

— Amg(r, o, u) sin Aa.

Thus, for every 7 > 1ig, there exists r; € [S;, R;] such that h(r;) < eT'(ri,u). Also
mg(r,0,u) < T(r,u)+ pno. Hence, using the definition of h(r), we get

P P

Z uj(r;) — Z uNj(riem) cos Ao — AT (ry, w) sin Aa < 27T (r;, u), (9)
Jj=1 Jj=1
for big enough ¢’s.

Now

uj(r;) = |H|1axu i(z) = |rr|1axu i(z)= |rr|1ax u(z) > (1 —¢) |H|1ax u(z),

z€ly z€ly

as C;(ng) is a strong tract. Since

.. omax{u(z): |z| =r}
oo, u) = liminf
Bloo,u) r—00 T(r,u) ’

we have
1/[](7“2) > (1 - 5)2ﬁ(007 U)T(riv u)
Inequality (9) shows that

P
p(1 —&)*B(oo,u)T (ryu) — T AT (1, u) sin A — Z uj(rie’) cos A < 2meT (r,u)  (10)

i=1
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(i) First we consider the case A > 0.5. Putting o = 57 in (10) we get
p(l — 6)2[3(00, w)T' (riyu) — AT (riyu) < 2meT (r,u)

Thus
T+ 2me

(1 - 6)2[3(00, u)

p <

Since ¢ > 0 is arbitrary, we have

TA
Boo,u)

(ii) Now consider the case 0 < A < 0.5. We put oo = m. We have

P <

uj(—r;) = min u;(z) = ng

|2|=r.
for j € {1,2,...,p}. Using (10) we get
p(1 —&)*B(oo, u)T (1 u) — T AT (ri,u) sin T — png cos T < 2meT (1, u).
Thus
p(1 —e)?B(oo,u) — TAsin T\ < 3re.

Hence

TAsinTA 4+ 37e
(1 - 5)2ﬁ(007 u) ‘

p <
Since ¢ > 0 is arbitrary, we have

TASin TA

P> TBoo,u)

(iii) Finally we consider A = 0. Then p < 0, which contradicts to the assumption that p > 1.
Hence p < 1.

The theorem is proved.
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