УДК 517.5

I. I. MARCHENKO, A. SZKIBIEL

ON STRONG TRACTS OF SUBHARMONIC FUNCTIONS OF FINITE LOWER ORDER

I. I. Marchenko, A. Szkibiel. On strong tracts of subharmonic functions of finite lower order, Matematychni Studii, **22** (2004) 35–44.

We define the notion of a strong asymptotic tract for subharmonic function of finite lower order λ . We estimate the number of strong tracts using Petrenko's magnitude of the deviation from ∞ of a subharmonic function u(z). The estimates in the paper are exact.

И. И. Марченко, А. Шкибель. О строгих трактах субгармонических функций конечного нижнего порядка // Математичні Студії. — 2004. — Т.22, №1. — С.35—44.

Введено понятие строгого асимптотического тракта для субгармонических функций конечного нижнего порядка λ и оценено число строгих трактов, используя величину отклонения Петренко от ∞ субгармонической функции u(z). Оценки, полученные в статье, являются точными.

Let u(z) be a subharmonic function in the plane of finite lower order λ , where

$$\lambda = \liminf_{r \to \infty} \frac{\log \max\{u(z) : |z| = r\}}{\log r}.$$

Consider the sets $E(n) = \{z \in \mathbb{C} : u(z) \ge n\}$ for $n \in \mathbb{N}$. Let C(n) be a thick component of E(n), which means that $u(z) \not\equiv n$ on C(n) (see [1]). There is $k \in \mathbb{N}$ such that, for every $n \ge k$, the function u(z) is unbounded on all thick components C(n). Let $n_2 > n_1 > k$. Then every thick component $C(n_1)$ contains at least one thick component $C(n_2)$. If P(n) is the number of different sets C(n), then $P(n_2) \ge P(n_1)$. We define

$$p = \lim_{n \to \infty} P(n)$$

and call it the number of tracts of the function u(z). If $\lambda < \infty$, then $p < \infty$ (see [1]). Hence, there is n_0 , such that, for all $n \ge n_0$, P(n) = p. We consider the set $E(n_0)$ and its components $C_j(n_0)$ for $j \in \{1, 2, ..., p\}$.

If $C_j(n_0)$ is a tract of u(z), then there exists (see [2]) a continuous curve $\Gamma_j \subset C_j(n_0)$ given by the equation z = z(t), where $0 \le t < \infty$ and $z(t) \to \infty$ as $t \to \infty$, such that

$$\lim_{\substack{z\to\infty\\z\in\Gamma_i}}u(z)=\lim_{t\to\infty}u(z(t))=\infty.$$

2000 Mathematics Subject Classification: 31A05, 30D20.

Definition 1. We call the tract $C(n_0)$ of the subharmonic function u(z) a strong tract if there is a continuous curve $\Gamma \subset C(n_0)$: $z = z(t), 0 \le t < \infty$, such that $z(t) \to \infty$ as $t \to \infty$ and

$$\lim_{t \to \infty} \frac{u(z(t))}{\max\{u(z) : |z| = |z(t)|\}} = 1.$$

We are going to estimate the number of strong tracts of a subharmonic function of finite lower order λ .

In order to state the main result of the paper, we use Petrenko's magnitude of the deviation from ∞ of a subharmonic function u(z) as

$$\beta(\infty, u) = \liminf_{r \to \infty} \frac{\max\{u(z) : |z| = r\}}{T(r, u)},$$

where T(r, u) is the Nevanlinna characteristics of the subharmonic function u(z) (see [1]).

Theorem A [3]. For a subharmonic function of finite lower order λ we have

$$\beta(\infty, u) \leqslant \begin{cases} \frac{\pi \lambda}{\sin \pi \lambda} & \text{if } \lambda \leqslant 0.5, \\ \pi \lambda & \text{if } \lambda > 0.5. \end{cases}$$

The exact estimate of $\beta(\infty, u)$ for meromorphic functions was obtained by Petrenko in 1969 ([4]).

The paper presents the proof of the following result.

Theorem. Let u(z) be a subharmonic function of finite lower order λ and p strong tracts. Then

$$p \leqslant \begin{cases} \max\left\{1, \left[\frac{\pi\lambda\sin\pi\lambda}{\beta(\infty, u)}\right]\right\} & \text{if } \lambda \leqslant 0.5, \\ \left[\frac{\pi\lambda}{\beta(\infty, u)}\right] & \text{if } \lambda > 0.5. \end{cases}$$

In the case $u(z) = \log |f(z)|$, where f(z) is an entire function, the theorem was proved by one of the authors ([5]). The estimates of Theorem are exact, see [5].

Corollary. For a subharmonic function u(z) of finite lower order λ we have

$$\beta(\infty, u) \leqslant \begin{cases} \frac{\pi \lambda}{p} & \text{if } \lambda > 0.5, \\ \frac{\pi \lambda}{\sin \pi \lambda} & \text{if } \lambda \leqslant 0.5, \ p = 1, \\ \frac{\pi \lambda \sin \pi \lambda}{p} & \text{if } \lambda \leqslant 0.5, \ p > 1, \end{cases}$$

where p is the number of strong tracts of u(z).

1. Auxiliary results. Let u(z) be a subharmonic function and let p be the number of tracts of u(z). Let n_0 be such that, for all $n \ge n_0$, E(n) has exactly p connected components. Consider the functions (see [1])

$$u_j(z) = \begin{cases} u(z) & \text{if } z \in C_j(n_0) \\ n_0 & \text{if } z \notin C_j(n_0). \end{cases}$$

for $j \in \{1, 2, ..., p\}$. The functions $u_j(z)$ are subharmonic in \mathbb{C} . Also, for every $j \in \{1, 2, ..., p\}$, $u_j(z)$ is the pointwise limit of a nonincreasing sequence $\{v_j^k(z)\}$ of subharmonic functions with continuous second partial derivatives [1].

Now, we define the functions (see [6])

$$m^*(r, \theta, u_j) = \frac{1}{2\pi} \sup_{|E|=2\theta} \int_E u_j(re^{i\varphi}) d\varphi,$$

where |E| is the Lebesgue measure of the set E and

$$m_0^*(r, \theta, u) = \sum_{j=1}^p m^*(r, \theta, u_j).$$

According to Baernstein's Theorem (see [6]), the functions $m^*(r, \theta, u_j)$ are subharmonic in $K = \{re^{i\theta} : 0 < r < \infty, 0 < \theta < \pi\}$, continuous on $K \cup (-\infty, 0) \cup (0, +\infty)$ and convex in $\log r$ for any fixed $\theta \in [0, \pi]$. Also the functions defined above are nondecreasing with respect to r for any fixed θ . Hence the function $m_0^*(r, \theta, u)$, as the sum of $m^*(r, \theta, u_j)$'s, has the same properties. Moreover

$$m^*(r, \theta, u_j) = \frac{1}{\pi} \int_0^\theta \widetilde{u_j}(re^{i\varphi}) d\varphi, \qquad \frac{\partial m^*}{\partial \theta}(r, \theta, u_j) = \frac{1}{\pi} \widetilde{u_j}(re^{i\theta}), \quad 0 < \theta < \pi,$$

where $\widetilde{u}_j(re^{i\theta})$ is the circular rearrangement of the function $u_j(re^{i\theta})$ [7].

Lemma 1. The sequence $\{m^*(r, \theta, v_j^k)\}$ converges to $m^*(r, \theta, u_j)$ uniformly on the set $\{re^{i\theta}: 1 \le r \le R, \ 0 \le \theta \le \pi\}$ for every $R > 1 \ (j \in \{1, 2, \dots, p\})$.

Proof. We have $u_j(z) \leq v_i^k(z)$ for all $j \in \{1, 2, ..., p\}$. Then for any measurable set E

$$\int_{E} u_{j}(re^{i\varphi}) d\varphi \leqslant \int_{E} v_{j}^{k}(re^{i\varphi}) d\varphi \quad \text{and} \quad$$

$$\sup_{|E|=2\theta} \int_{E} u_{j}(re^{i\varphi}) d\varphi \leqslant \sup_{|E|=2\theta} \int_{E} v_{j}^{k}(re^{i\varphi}) d\varphi \quad \text{for every} \quad k.$$

Hence

$$\sup_{|E|=2\theta} \int_{E} u_{j}(re^{i\varphi}) d\varphi \leqslant \lim_{k \to \infty} \sup_{|E|=2\theta} \int_{E} v_{j}^{k}(re^{i\varphi}) d\varphi \quad \text{and} \quad$$

$$m^*(r, \theta, u_j) \leqslant \lim_{k \to \infty} m^*(r, \theta, v_j^k) \quad \text{for} \quad j \in \{1, 2, \dots, p\}.$$
 (1)

Let $\varepsilon > 0$ be given. Then, by the Egorov Theorem, for any E with $|E| = 2\theta$ there exists a set E_{ε} with $|E_{\varepsilon}| < \varepsilon$ such that $v_j^k(re^{i\varphi}) \to u_j(re^{i\varphi})$ uniformly on $E \setminus E_{\varepsilon}$, where r is fixed.

Then there exists k_0 such that, for $k \ge k_0$, $v_i^k(re^{i\varphi}) < u_j(re^{i\varphi}) + \varepsilon$ on $E \setminus E_{\varepsilon}$. Hence

$$\int_{E} v_{j}^{k}(re^{i\varphi}) d\varphi = \int_{E \setminus E_{\varepsilon}} v_{j}^{k}(re^{i\varphi}) d\varphi + \int_{E_{\varepsilon}} v_{j}^{k}(re^{i\varphi}) d\varphi \leq
\leq \int_{E \setminus E_{\varepsilon}} \left(u_{j}(re^{i\varphi}) + \varepsilon \right) d\varphi + \int_{E_{\varepsilon}} v_{j}^{1}(re^{i\varphi}) d\varphi \leq
\leq \int_{E} \left(u_{j}(re^{i\varphi}) + \varepsilon \right) d\varphi + \max_{|z|=r} v_{j}^{1}(z)\varepsilon =
= \int_{E} u_{j}(re^{i\varphi}) d\varphi + \left(2\theta + \max_{|z|=r} v_{j}^{1}(z) \right) \varepsilon,$$

so

$$\sup_{|E|=2\theta} \int_{E} v_{j}^{k}(re^{i\varphi}) d\varphi \leqslant \sup_{|E|=2\theta} \int_{E} u_{j}(re^{i\varphi}) d\varphi + \left(2\theta + \max_{|z|=r} v_{j}^{1}(z)\right) \varepsilon$$

for $k \geqslant k_0$ and finally

$$\lim_{k \to \infty} m^*(r, \theta, v_j^k) \leqslant m^*(r, \theta, u_j) \quad \text{for} \quad j \in \{1, 2, \dots, p\}.$$
 (2)

Using (1) and (2) we get

$$\lim_{k \to \infty} m^*(r, \theta, v_j^k) = m^*(r, \theta, u_j) \text{ for } j \in \{1, 2, \dots, p\}.$$

Hence $m^*(r, \theta, u_j)$ is the pointwise limit of $\{m^*(r, \theta, v_j^k)\}$. Moreover the sequence $\{m^*(r, \theta, v_j^k)\}$ is nonincreasig and the functions $m^*(r, \theta, u_j)$ and $m^*(r, \theta, v_j^k)$ for all $k \in \mathbb{N}$ are continuous on the set $\{re^{i\theta}: r > 0, 0 \le \theta \le \pi\}$, so we can use the Dini Theorem. This completes the proof of Lemma 1.

For a real function $\varphi(r)$, we consider the operator

$$L\varphi(r) = \liminf_{h \to 0} \frac{\varphi(re^h) + \varphi(re^{-h}) - 2\varphi(r)}{h^2}.$$

If the function $\varphi(r)$ is twice differentiable in r, then

$$L\varphi(r) = r \frac{\mathrm{d}}{\mathrm{d}r} r \frac{\mathrm{d}}{\mathrm{d}r} \varphi(r).$$

Since $m^*(r, \theta, u_j)$ is convex in $\log r$, for all r > 0 and $\theta \in [0, \pi]$ we have

$$Lm^*(r,\theta,u_j)\geqslant 0.$$

Lemma 2. Let u(z) be a subharmonic function with continuous second partial derivatives. For all r > 0 and for almost all $\theta \in (0, \pi)$ we have

$$\operatorname{Lm}^*(r, \theta, u_j) \geqslant -\frac{1}{\pi} \frac{\partial \widetilde{u}_j(re^{i\varphi})}{\partial \varphi} \bigg|_{\varphi=\theta}.$$

The proof of this lemma is similar to that of Lemma 1 in [5], also see [8].

Lemma A [9]. Let the function f(x) be nondecreasing on an interval [a,b] and let $\varphi(x)$ be a nonnegative function having a bounded derivative on [a,b]. Then

$$\int_{a}^{b} f'(x)\varphi(x)dx \leqslant f(x)\varphi(x)\Big|_{a}^{b} - \int_{a}^{b} \varphi'(x)f(x)dx.$$

From now on we assume that u(z) is a subharmonic function with p strong tracts. For every α with $0 < \alpha < \min\{\pi, \pi/2\lambda\}$ and for every k we put (see [10])

$$\sigma_k(r) = \int_0^\alpha m_0^*(r,\theta) \cos \lambda \theta d\theta,$$

where $m_0^*(r, \theta) = \sum_{j=1}^p m^*(r, \theta, v_j^k)$.

Lemma B [11]. Let (S_i) and (R_i) be sequences such that $\lim_{i\to\infty} S_i = \infty$, $\lim_{i\to\infty} R_i = \infty$, $\lim_{i\to\infty} S_i/R_i = 0$ and for each i the numbers $2S_i$ and $2R_i$ are Pólya peaks of the function T(r,u). Then for every $\varepsilon > 0$ there exists $i_0(\varepsilon)$ such that for $i > i_0$

$$\frac{T(2S_i, u)}{S_i^{\lambda}} + \frac{T(2R_i, u)}{R_i^{\lambda}} < \varepsilon \int_{S_i}^{R_i} \frac{T(r, u)}{r^{\lambda + 1}} dr.$$

Lemma 3. There exist sequences (S_i) and (R_i) with $\lim_{i\to\infty} S_i = \infty$, $\lim_{i\to\infty} R_i = \infty$ and $\lim_{i\to\infty} S_i/R_i = 0$, such that for every $\varepsilon > 0$ and for $i > i_0(\varepsilon)$, and $k > k_0(\varepsilon, i)$ we have

$$\frac{(\sigma_k)'_{-}(R_i)}{R_i^{\lambda-1}} + \frac{(\sigma_k)'_{-}(S_i)}{S_i^{\lambda-1}} + \frac{\lambda \sigma_k(R_i)}{R_i^{\lambda}} + \frac{\lambda \sigma_k(S_i)}{S_i^{\lambda}} \leqslant \varepsilon \int_{S_i}^{R_i} \frac{T(r,u)}{r^{\lambda+1}} dr,$$

where $(\sigma_k)'_-(r)$ is the left derivative of $\sigma_k(r)$.

Proof. Let $\varepsilon > 0$ be given. Let (S_i) , (R_i) be the sequences defined in Lemma B. Let i_0 be such that

$$\frac{T(2S_i, u)}{S_i^{\lambda}} + \frac{T(2R_i, u)}{R_i^{\lambda}} < \frac{\varepsilon}{9} \int_{S_i}^{R_i} \frac{T(r, u)}{r^{\lambda + 1}} dr$$

for all $i \ge i_0$. Using Lemma 1, for $k > k_0$, we get

$$m_0^*(r,\theta) \leqslant m_0^*(r,\theta,u) + \varepsilon \leqslant T(r,u) + pn_0 + \varepsilon$$

on the set $\{re^{i\theta}: 1 \leqslant r \leqslant 2R_i, 0 \leqslant \theta \leqslant \pi\}$. Hence, for $\alpha = \min\{\pi, \pi/2\lambda\}$,

$$\sigma_k(r) = \int_0^\alpha m_0^*(r,\theta) \cos \lambda \theta d\theta \leqslant \int_0^\alpha T(r,u) \cos \lambda \theta d\theta + \int_0^\alpha (pn_0 + \varepsilon) \cos \lambda \theta d\theta \le$$
$$\leqslant \pi T(r,u) + \pi (pn_0 + \varepsilon).$$

Therefore

$$\frac{\lambda \sigma_k(S_i)}{S_i^{\lambda}} \leqslant \frac{\pi T(S_i, u)}{S_i^{\lambda}} + \frac{\pi (pn_0 + \varepsilon)}{S_i^{\lambda}} \leqslant 5 \frac{T(S_i, u)}{S_i^{\lambda}} \tag{3}$$

and

$$\frac{\lambda \sigma_k(R_i)}{R_i^{\lambda}} \leqslant 5 \frac{T(R_i, u)}{R_i^{\lambda}}.$$
 (4)

Now, since $m_0^*(r,\theta)$ is a monotone function of r,

$$(\sigma_k)'_-(r) = \int_0^\alpha \frac{\partial m_0^*(r,\theta)}{\partial r} \cos \lambda \theta d\theta,$$

but $m_0^*(r,\theta)$ is convex in $\log r$ if θ is fixed, so $\frac{r\partial m_0^*(r,\theta)}{\partial r}$ is nondecreasing and for x > r, using Lemma A, we have

$$m_0^*(x,\theta) \geqslant m_0^*(x,\theta) - m_0^*(r,\theta) \geqslant \int_r^x \frac{\partial m_0^*(t,\theta)}{\partial t} dt = \int_r^x \frac{t \frac{\partial}{\partial t} m_0^*(t,\theta)}{t} dt$$
$$= \int_r^x t \frac{\partial}{\partial t} m_0^*(t,\theta) d(\log t) \geqslant r \frac{\partial}{\partial r} m_0^*(r,\theta) \log \frac{x}{r},$$

where, on the right side of the inequality, for fixed θ we have the left derivative of $m_0^*(r,\theta)$. Hence

$$\frac{\partial m_0^*(r,\theta)}{\partial r} \leqslant \frac{1}{r \log \frac{x}{r}} m_0^*(x,\theta) \leqslant \frac{1}{r \log \frac{x}{r}} (T(r,u) + pn_0 + \varepsilon) \quad \text{as } k \geqslant k_0,$$

so

$$\left. \frac{\partial m_0^*(r,\theta)}{\partial r} \right|_{r=S_i} \leqslant \frac{1}{S_i \log 2} \left(T(2S_i, u) + pn_0 + \varepsilon \right)$$

and

$$\left. \frac{\partial m_0^*(r,\theta)}{\partial r} \right|_{r=R_*} \leqslant \frac{1}{R_i \log 2} \left(T(2R_i, u) + pn_0 + \varepsilon \right).$$

Thus

$$\frac{(\sigma_k)'_{-}(R_i)}{R_i^{\lambda-1}} = \frac{1}{R_i^{\lambda-1}} \int_0^{\alpha} \frac{\partial m_0^*(r,\theta)}{\partial r} \Big|_{r=R_i} \cos \lambda \theta d\theta$$

$$\leqslant \frac{1}{R_i^{\lambda-1}} \frac{1}{R_i \log 2} \left(T(2R_i, u) + pn_0 + \varepsilon \right) \int_0^{\alpha} \cos \lambda \theta d\theta \leqslant 4 \frac{1}{R_i^{\lambda}} T(2R_i, u) \tag{5}$$

and

$$\frac{(\sigma_k)'_-(S_i)}{S_i^{\lambda-1}} \leqslant 4\frac{1}{S_i^{\lambda}} T(2S_i, u). \tag{6}$$

Finally, using (3), (4), (5), (6) and Lemma B, we get

$$\frac{(\sigma_k)'_{-}(R_i)}{R_i^{\lambda-1}} + \frac{(\sigma_k)'_{-}(S_i)}{S_i^{\lambda-1}} + \frac{\lambda \sigma_k(R_i)}{R_i^{\lambda}} + \frac{\lambda \sigma_k(S_i)}{S_i^{\lambda}} \leqslant$$

$$\leqslant 9 \frac{1}{R_i^{\lambda}} T(2R_i, u) + 9 \frac{1}{S_i^{\lambda}} T(2S_i, u) \leqslant 9 \left(\frac{1}{R_i^{\lambda}} T(2R_i, u) + \frac{1}{S_i^{\lambda}} T(2S_i, u) \right) \leqslant \varepsilon \int_{S_i}^{R_i} \frac{T(r, u)}{r^{\lambda+1}} dr.$$

The lemma is proved.

2. Proof of Theorem. For p = 1 the proof is not necessary, as the conclusion follows easily from Theorem A. Hence, we assume that the number of strong tracts p > 1. Using the definition of $\sigma_k(r)$ and Lemma 2, we get

$$L\sigma_k(r) \geqslant -\frac{1}{\pi} \sum_{j=1}^p \int\limits_0^{\alpha} \frac{\partial \widetilde{v_j^k}(re^{i\theta})}{\partial \theta} \cos \lambda \theta d\theta.$$

Integrating by parts we obtain

$$L\sigma_{k}(r) \geqslant -\frac{1}{\pi} \sum_{j=1}^{p} \widetilde{v_{j}^{k}}(re^{i\theta}) \cos \lambda \theta \Big|_{0}^{\alpha} - \frac{\lambda}{\pi} \sum_{j=1}^{p} \int_{0}^{\alpha} \widetilde{v_{j}^{k}}(re^{i\theta}) \sin \lambda \theta d\theta =$$

$$= -\frac{1}{\pi} \sum_{j=1}^{p} \widetilde{v_{j}^{k}}(re^{i\theta}) \cos \lambda \theta \Big|_{0}^{\alpha} - \lambda \sum_{j=1}^{p} m^{*}(r, \alpha, v_{j}^{k}) \sin \lambda \alpha +$$

$$+ \lambda^{2} \sum_{j=1}^{p} \int_{0}^{\alpha} m^{*}(r, \theta, v_{j}^{k}) \cos \lambda \theta d\theta =$$

$$= -\frac{1}{\pi} \sum_{j=1}^{p} \widetilde{v_{j}^{k}}(re^{i\theta}) \cos \lambda \theta \Big|_{0}^{\alpha} - \lambda m_{0}^{*}(r, \theta) \sin \lambda \alpha + \lambda^{2} \sigma_{k}(r) \equiv h_{k}(r) + \lambda^{2} \sigma_{k}(r). \tag{7}$$

Since $Lm^*(r, \theta, v_j^k) \geqslant 0$, using Fatou Lemma, we get

$$L\sigma_k(r) \geqslant \int_0^\alpha Lm_0^*(r,\theta)\cos\lambda\theta d\theta \geqslant \sum_{j=1}^p \int_0^\alpha Lm^*(r,\theta,v_j^k)\cos\lambda\theta d\theta \geqslant 0$$

and $\sigma_k(r)$ is convex in $\log r$. It follows that $r(\sigma_k)'_-(r)$ is an increasing function on $[0, \infty)$. Thus, for almost all $r \ge 0$ we have

$$L\sigma_k(r) = r \frac{\mathrm{d}}{\mathrm{d}r} r(\sigma_k)'_{-}(r).$$

We now divide inequality (7) by $r^{\lambda+1}$ and integrate it over the interval $[S_i, R_i]$,

$$\int_{S_i}^{R_i} \frac{\frac{\mathrm{d}}{\mathrm{d}r} r(\sigma_k)'_-(r)}{r^{\lambda}} \mathrm{d}r \geqslant \int_{S_i}^{R_i} \frac{h_k(r)}{r^{\lambda+1}} \mathrm{d}r + \lambda^2 \int_{S_i}^{R_i} \frac{\sigma_k(r)}{r^{\lambda+1}} \mathrm{d}r,$$

where the numbers S_i and R_i are defined in Lemma 3. Since the function $r(\sigma_k)'_-(r)$ is increasing, by Lemma A, we have

$$\int_{S_i}^{R_i} \frac{\frac{\mathrm{d}}{\mathrm{d}r} r(\sigma_k)'_-(r)}{r^{\lambda}} \mathrm{d}r \leqslant \left(\frac{r(\sigma_k)'_-(r)}{r^{\lambda}} + \lambda \frac{\sigma_k(r)}{r^{\lambda}} \right) \Big|_{S_i}^{R_i} + \lambda^2 \int_{S_i}^{R_i} \frac{\sigma_k(r)}{r^{\lambda+1}} \mathrm{d}r.$$

Therefore

$$\int_{S_i}^{R_i} \frac{h_k(r)}{r^{\lambda+1}} dr \leqslant \left(\frac{(\sigma_k)'_-(r)}{r^{\lambda-1}} + \lambda \frac{\sigma_k(r)}{r^{\lambda}} \right) \Big|_{S_i}^{R_i}.$$
 (8)

Let $\varepsilon > 0$ be given. By Lemma 3, for $i > i_0$ and $k > k_0$, we have

$$\int_{S_i}^{R_i} \frac{h_k(r)}{r^{\lambda+1}} dr < \varepsilon \int_{S_i}^{R_i} \frac{T(r, u)}{r^{\lambda+1}} dr.$$

Now, if $v_j^k(z)$ is a nonincreasing sequence tending to $u_j(z)$, then also $\widetilde{v_j^k}(z)$ is a nonincreasing sequence tending to $\widetilde{u_j}(z)$. Hence, using Lemma 1, by Monotone Convergence Theorem, we get

$$\int_{S_i}^{R_i} \frac{h(r)}{r^{\lambda+1}} dr < \varepsilon \int_{S_i}^{R_i} \frac{T(r, u)}{r^{\lambda+1}} dr,$$

where

$$h(r) = -\frac{1}{\pi} \sum_{i=1}^{p} \widetilde{u}_{i}(re^{i\theta}) \cos \lambda \theta \Big|_{0}^{\alpha} - \lambda m_{0}^{*}(r, \alpha, u) \sin \lambda \alpha.$$

Thus, for every $i > i_0$, there exists $r_i \in [S_i, R_i]$ such that $h(r_i) < \varepsilon T(r_i, u)$. Also $m_0^*(r, \theta, u) \leq T(r, u) + pn_0$. Hence, using the definition of h(r), we get

$$\sum_{j=1}^{p} \widetilde{u}_{j}(r_{i}) - \sum_{j=1}^{p} \widetilde{u}_{j}(r_{i}e^{i\alpha}) \cos \lambda \alpha - \pi \lambda T(r_{i}, u) \sin \lambda \alpha \leqslant 2\pi \varepsilon T(r_{i}, u), \tag{9}$$

for big enough i's.

Now

$$\widetilde{u_j}(r_i) = \max_{|z|=r_i} u_j(z) \geqslant \max_{\substack{|z|=r_i\\z\in\Gamma_j}} u_j(z) = \max_{\substack{|z|=r_i\\z\in\Gamma_j}} u(z) > (1-\varepsilon) \max_{|z|=r_i} u(z),$$

as $C_j(n_0)$ is a strong tract. Since

$$\beta(\infty, u) = \liminf_{r \to \infty} \frac{\max\{u(z) : |z| = r\}}{T(r, u)},$$

we have

$$\widetilde{u_j}(r_i) > (1 - \varepsilon)^2 \beta(\infty, u) T(r_i, u).$$

Inequality (9) shows that

$$p(1-\varepsilon)^2 \beta(\infty,u) T(r_i,u) - \pi \lambda T(r_i,u) \sin \lambda \alpha - \sum_{j=1}^p \widetilde{u}_j(r_i e^{i\alpha}) \cos \lambda \alpha < 2\pi \varepsilon T(r_i,u)$$
 (10)

(i) First we consider the case $\lambda \geq 0.5$. Putting $\alpha = \frac{\pi}{2\lambda}$ in (10) we get

$$p(1-\varepsilon)^2\beta(\infty,u)T(r_i,u) - \pi\lambda T(r_i,u) < 2\pi\varepsilon T(r_i,u)$$

Thus

$$p < \frac{\pi\lambda + 2\pi\varepsilon}{(1-\varepsilon)^2\beta(\infty, u)}.$$

Since $\varepsilon > 0$ is arbitrary, we have

$$p \leqslant \frac{\pi \lambda}{\beta(\infty, u)}.$$

(ii) Now consider the case $0 < \lambda < 0.5$. We put $\alpha = \pi$. We have

$$\widetilde{u_j}(-r_i) = \min_{|z|=r_i} u_j(z) = n_0$$

for $j \in \{1, 2, ..., p\}$. Using (10) we get

$$p(1-\varepsilon)^2\beta(\infty,u)T(r_i,u) - \pi\lambda T(r_i,u)\sin\pi\lambda - pn_0\cos\pi\lambda < 2\pi\varepsilon T(r_i,u).$$

Thus

$$p(1-\varepsilon)^2\beta(\infty,u) - \pi\lambda\sin\pi\lambda < 3\pi\varepsilon.$$

Hence

$$p < \frac{\pi \lambda \sin \pi \lambda + 3\pi \varepsilon}{(1 - \varepsilon)^2 \beta(\infty, u)}.$$

Since $\varepsilon > 0$ is arbitrary, we have

$$p \leqslant \frac{\pi \lambda \sin \pi \lambda}{\beta(\infty, u)}.$$

(iii) Finally we consider $\lambda=0$. Then $p\leqslant 0$, which contradicts to the assumption that p>1. Hence $p\leqslant 1$.

The theorem is proved.

REFERENCES

- 1. Hayman W.K., Kennedy P.B. Subharmonic functions. Vol. I, Academic Press, 1976.
- 2. Talpur M.N.M. A subharmonic analogue of Iversen's theorem., Proc. London Math. Soc.(3) 32 (1976), 181–192.
- 3. Hayman W.K. Subharmonic functions. Vol. II, Academic Press, 1989.
- 4. Петренко В.П. Рост мероморфных функций конечного нижнего порядка, Изв. Акад. наук СССР, **33** (1969), №2, 414–454.
- 5. Марченко И.И. *Об асимптотических значениях целых функций*, Изв. РАН, сер. матем. **63** (1999), №3, 133–146.
- 6. Baernstein A. Integral means, univalent functions and circular symmetrization, Acta Math. 133 (1974), no. 3-4, 139-169.

- 7. Hayman W.K. Multivalent Functions, Cambridge Univ. Press, Cambridge 1958.
- 8. Gariepy R., Lewis J.L. Space Analogues of some theorems for subharmonic and meromorphic functions, Ark. Mat. 13 (1975), 91–105.
- 9. Marchenko I.I. On the magnitudes of deviations and spreads of meromorphic functions of finite lower order, Mat.Sb. 186 (1995), 391-408.
- 10. Essen M. and Shea D.F. Applications of Denjoy integral inequalities and differential inequalities to growth problems for subharmonic and meromorphic functions, Proc. Roy. Irish Acad. A82 (1982), 201–216.
- 11. Петренко В.П. Рост мероморфных функций. Харьков: Вища шк., 1978. 136 с.

Kharkiv State University Institute of Mathematics, University of Szczecin marchenko@wmf.univ.szczecin.pl olaszkibiel@poczta.onet.pl

Received 28.04.2004