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Given two graphs GG and H, a vertex u of G and a vertex v of H such that there is no
isomorphism from G to H taking u to v, let V(G,u, H,v) denote the minimum number of
variables in a first order formula ®(z) that is true on (G, u) but false on (H,v). Let Var(G)
be the maximum of V (G, u, H,v) over all vertices u of G and all possible pairs (I, v). Refining
upon a result of Immerman and Lander, we prove that the class of graphs G on n vertices with
Var(G) < (n+5)/2 is efficiently recognizable and that, if Var(G) > (n+ 5)/5, then the exact
value of Var(G) is efficiently computable. We also solve a particular case of an open problem
on the computational complexity of Ehrenfeucht games posed by Pezzoli.

O. B. Bepbuuxuu. /Jea caedcmsus meopemvt uromomuy 06 onpedesumocmu nepsozo nopadra
epagos // Maremaruuni Cryaii. — 2004. — T.22, Nel. — C.3-9.

Mg rpacos G, H m WX BeplIMH %, v TaKuX, 9TO HHKakol mzoMopcdusm m3 G Ha H He
nepeBoAUT u B v, mycTh V (G, u, H,v) 0603HaTaeT HaNMeHbIIIee THCIO TTePEMEHHBIX B (POPMyJIe
nepporo mopaaka ®(x), ucrurnon Ha (G, u), HO A0xkHOH Ha (H,v). Iycts Var(G) — max-
cumaabHoe suadenne V (G, u, H,v) mo BceBO3MOXKHLIM BepmmHaaMm u rpada G m napam (H,v).
Yennupas pesyabrar NMMepmana u Jlangepa, MBI JoKasblBaeM, 9TO Kaacc Tpacos G Ha n
BepumHax ¢ Var(G) < (n+5)/2 sdpdekTupro pacnosHasaeM u 4ro, ecan Var (G) > (n+5)/5,
To TowHOe 3Hadennme Var((F) sddexTuBHO BRIMmCaUMO. MBI Takke 9aCTHYHO OTBEYAEM Ha
OTKPHITHIA Bonpoc 1le330/1 0 BHMUCIATEILHON CAOKHOCTH UI'p OpeHdolixTa.

1. Introduction. We consider a first order language of graph theory containing two binary
relation symbols for adjacency and equality. A graph is considered a structure with a single
anti-reflexive and symmetric binary relation. Thus, every closed first order formula @ is
either true or false on . Given two non-isomorphic graphs G and G’, we say that ®
distinguishes G from G if ® is true on G but false on . Let V(G G') denote the minimum
number of variables in a formula distinguishing G from G’ (different occurrences of the same
variable are not counted). Notice the trivial upper bound

V(G,G") <n for G and G’ both on n vertices (1)

(using one variable for each of n vertices, one can explicitly list all adjacencies and non-
adjacencies of (7).
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The analog of V(G,G") in logic with counting quantifiers proves closely related to the
Weisfeiler-Lehman graph canonization algorithm that was studied since the seventies (see
e.g. [1] for historical survey). An important combinatorial parameter, occurring in all bounds
for the running time, is dimension of the algorithm. Immerman and Lander [4] came up
with a logical characterization of the dimension, which was developed in [1]. This charac-
terization implies that the optimum dimension of the Weisfeiler-Lehman algorithm sufficient
to recognize non-isomorphism of two graphs G and G’ does not exceed V (G, G"). This was
a motivation of recent work by Pikhurko, Veith, and the author [7], where we improved the
trivial bound (1) to

VG any <

for G and GG’ both on n vertices. (2)

As simple examples show, this bound is tight up to an additive constant of 3/2.

We say that a first order formula ® defines a graph G if ® distinguishes G from all
non-isomorphic graphs with any number of vertices. Let V() be the minimum number of
variables in a formula defining GG. By a result of [2], we have

V(G) =max{V(G,G"): G # G}, (3)

where = denotes isomorphism of graphs. For (G on n vertices, an obvious upper bound is

V(G)<n+1 (4)
(we need variables xy,...,x, for the vertices and yet another variable z,41 to say that
any x,41 is equal to one of x1,...,2,). Bound (4) is attained by the complete graph and

therefore cannot be improved. Nevertheless, in [7] we prove the following result.

Call two vertices of a graph similar if they are either simultaneously adjacent or not to
any other vertex. This is an equivalence relation and each equivalence class spans either a
complete or an empty subgraph. Let o((') denote the maximum number of pairwise similar
vertices in G.

Proposition 1. (The Dichotomy Theorem, Pikhurko-Veith-Verbitsky [7]) Let G
be a graph on n vertices. If o(G) < (n+ 3)/2, then V(G) < (n+5)/2. Otherwise V(G') =
o(G)+ 1.

We call this result Dichotomy Theorem because it implies that, for any graph G, either
V(G) < (n+5)/2 or V(@) is easily computable. Note in this respect that it seems plausible
that generally V((7) is an incomputable function of a graph. An evidence in favour of this
hypothesis is provided by the classical Trakhtenbrot theorem which is based on simulation
of a Turing machine computation by a first order sentence about finite graphs.

In the context of logical characterization of the Weisfeiler-Lehman algorithm, Immerman
and Lander [4] consider a generalization of V((G'), which we will denote by Var(G). This
logical invariant of a graph generalizes V() in the following two aspects.

First, we now consider a graph coupled with one of its vertices. We call two such pairs
(G,u) and (H,v) isomorphic and write (G,u) = (H,v) if there is an isomorphism from ¢
to H taking u to v. We say that a formula ®(x) with one free variable x distinguishes
(G,u) from (H,v) if ®(x) is true on G with x assigned the value u and false on H with x
assigned the value v. Given non-isomorphic (G, u) and (H,v), let V(G u, H,v) denote the
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minimum number of variables in a formula ®(x) distinguishing (G, u) from (H,v) (note that
the variable x is counted).

Second, we now deal with an extended class of structures. A colored graph is a structure
that, in addition to the anti-reflexive and symmetric binary relation, has countably many
unary relations C;, ¢ > 1. The truth of C;(v) for a vertex v is interpreted as coloration of v in
color 7. An isomorphism of colored graphs preserves the adjacency relation and, moreover,
matches a vertex of one graph to an equally colored vertex of the other graph. We consider
finite colored graphs, whose vertices can have only finitely many colors.

We adapt the graph invariant o(G) for colored graphs by letting o(() denote the maxi-
mum number of pairwise similar equally colored vertices in . All notions we have introduced
so far have a perfect sense for colored graphs. Moreover, both bound (2) and Proposition 1
are proved in [7] for colored graphs.

Definition 1. (Immerman-Lander [4]) Given a graph G, let Var(G) be the maximum
V(G u, H,v) over all colorations i of (¢, colored graphs H, and vertices u of GG and v of H.

Note that Var(G) is equal to the minimum k such that any coloration of ¢ with one des-
ignated vertex is definable in the infinitary logic L* . This number is of relevance to the
1-dimensional Weisfeiler-Lehman algorithm, known also as vertex refinement or canonical
labeling algorithm (see [4]). We have V(G) < Var(G) (this follows from equality (6) in
Section 3).

Immerman and Lander [4, Proposition 1.4.3] strengthen (4) proving that

Var(G) <n+1 (5)

for all G with n vertices. The first result of the present paper refines upon the Immerman-
Lander bound, being a version of the Dichotomy Theorem for Var(G).

Theorem 1. Let GG be a graph on n vertices. If o(G) < (n+3)/2, then Var(G) < (n+5)/2.
Otherwise Var(G) = o(G) + 1.

The proof is based on Proposition 1. Note that Theorem 1 is not a straightforward
modification of Proposition 1 as we have to tackle the aforementioned aspects in which
Var () differs from and is more complicated than V(). In particular, we here borrow no
proof ideas from [7] making use only of the result itself. Another technique used in the proof
of Theorem 1 is a characterization of V(G,G") in terms of the Ehrenfeucht game on G and
(" (more precisely, we use the version of the game suggested by Immerman and Poizat).

Pezzoli [6] studies the Ehrenfeuch game on its own right. She addresses a computational
problem of determining, given two structures G, G' and a number r, who of the players,
Spoiler or Duplicator, has a winning strategy in the r-round Ehrenfeucht game on ' and
G'. 1t is proved that, for structures over any fixed vocabulary containing at least one binary
and one ternary relation, the problem is PSPACE-complete. Pezzoli asks if this result holds
true for structures with a binary relation only (i.e. directed graphs). In the present paper
we answer Pezzoli’s question negatively in a particular case when r is large comparatively to
the number of elements in the smaller of the structures G and G’ (which, however, does not
exlude an affirmative answer to the general question). It is well know that the isomorphism
problem for structures over an arbitrary fixed vocabulary has the same complexity as the
isomorphism problems for graphs. The graph isomorphism problem is in the class NP and
is not NP-complete unless the polynomial time hierarchy collapses to its second level (see,

e.q., [5]).
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Theorem 2. Let 7 be a vocabulary containing only binary relation symbols. Let G and G’
denote T-structures and n denote the number of elements in (G. The problem of determining,
given GG and GG' and a number r > (n + 5)/2, who of the players has a winning strategy in
the r-round Ehrenfeucht game on GG and G’ is computationally equivalent to recognition if
G and G’ are isomorphic.

Referring to the r-round Ehrenfeucht game on G and G’, we mean the game EHR, (G, G")
defined in the next section. The proof of Theorem 2 is based on another version of the
Dichotomy Theorem proved in [7].

2. Notation and definitions.

Graphs. Given a graph (7, we denote its vertex set by V(G). The order of G will be
sometimes denoted by |G|, that is, |G| = |V(G)]. The neighborhood of a vertex v consists
of all vertices adjacent to v and is denoted by I'(v). If X C V(G), then G[X] denotes
the subgraph induced by G on X. A one-to-one map ¢: S — S’ where S C V(G) and
S" C V(G is a partial isomorphism from G to G’ if ¢ is an isomorphism from G[S] to
G'[S7].

The Ehrenfeucht game. Let (G and G’ be colored graphs with disjoint vertex sets. The
r-round [-pebble Ehrenfeucht game on G and G’, denoted by EHRﬁ,(G, ("), is played by two
players, Spoiler and Duplicator, with [ pairwise distinct pebbles py,... ,p;, each given in
duplicate. Spoiler starts the game. A round consists of a move of Spoiler followed by a move
of Duplicator. At each move Spoiler takes a pebble, say p;, selects one of the graphs GG or
G', and places p; on a vertex of this graph. In response Duplicator should place the other
copy of p; on a vertex of the other graph. It is allowed to remove previously placed pebbles
to another vertex and place more than one pebble on the same vertex.

After each round of the game, for 1 <i <[ let u; (resp. v;) denote the vertex of G (resp.
(") occupied by p;, irrespectively of who of the players placed the pebble on this vertex. If
p; 1s off the board at this moment, u; and v; are undefined. If after every of r rounds it is
true that

w=uj iff v,=v;foralll <v <y <,

and the component-wise correspondence (uy,... ,u;) to (vy,... ,v;) is a partial isomorphism
from G to G’ this is a win for Duplicator; otherwise the winner is Spoiler.

Proposition 2. (Immerman [3, Theorem 6.10]) V(G (') equals the minimum [ such
that Spoiler has a winning strategy in EHR.(G, G") for some r.

If we prohibit removing pebbles from one vertex to another in EHR! (G, '), this will not
affect the outcome of the game. We denote this variant of EHR/ (G, G") by EHR, (G, G").

3. Proof of Theorem 1 Let K and H be two colored graphs. If K 2 H, then
max V(K,u, H,v) =V (K, H).

Indeed, the inequality V(K,u, H,v) < V(K, H) for all u, v is straightforward. To show that
for some u and v we have the equality, let @, ,(z) be a formula with the smallest number of
variables distinguishing (K, u) from (H,v). We can assume that each @, ,(x) really contains
the free variable  for else a closed ®,,, distinguishes K and [, and we are done immediately.
Then, for an arbitrary u € V(K), the formula 3z /\ueV(H) ®, ,(x) distinguishes G from H
and has as many variables as some @, ,(x) has.
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If K 2 H and ¢ is an isomorphism from H to K, then obviously V(K,u, H,v) =
V(K,u,¢(H),d(v)) and hence in this case max,, V(K,u, H,v) = max,, V(K,u, K,v),
where the latter maximum is over vertices u and v of K that cannot be taken to one another
by any automorphism of K, that is, belong to different orbits of the automorphism group
Aut(G).

Summarizing, we conclude that

Var(G) = mgX{V(é),maX V(G, u, G, U)}, (6)
el U
where (¢ is a coloration of G, and u and v belong to different orbits of Aut(é). Our nearest
alm is to prove for such u and v that

V(G u,GLo) < (n+4)/2, (7)

where n is the order of G.

By [4, Fact 1.6.1], V(G u, G, v) is equal to the smallest [ such that, for some r, in the
game EHR! (G G) on vertex- dlsJ01nt copies of G Spoiler has a winning strategy from the
position with u and v matched by a pair of identical pebbles. It therefore suffices to show
that [ < (n 4 4)/2 pebbles are enough for Spoiler to win. We assume that u and v are
equally colored for otherwise [ = 1 is enough. Take two colors that do not occur in é, say,
red and blue. Given w € V((), define (7, to be the graph G[V(G)\ {w}] with additional
coloring the vertices that were adjacent to w in red and the remaining vertices in blue. Since
mapping u to v cannot be extended to an automorphism of é, we have Gy, * Gy. Tt follows
that Spoiler can win by keeping one pair of pebbles on u and v and playing EHRﬁ,_l(CA?u, Gv)
with [ — 1 = max{V(G,G"): G2 G, |G| =|G"| =n — 1} and r as large as needed. Using
bound (2) (the generalized version for colored graphs), we conclude that Spoiler is able to
win with [ <14 ((n —1)+43)/2 = (n 4 4)/2 pebbles thereby proving (7).

Let G be a graph on n vertices. We are now prepared to prove that Var(G) < (n+5)/2
whenever o(G) < (n + 3)/2. Consider an arbitrary coloration G of G. Taking into account
(6) and (7), it is enough to estimate V(é) Obviously, U(G) < o(G). It follows that
U(é) < (n+ 3)/2 and, by Proposition 1 (the version for colored graphs), V(é) <(n+5)/2
as required.

We now prove that Var(G) = o(G) + 1 whenever o(G) > (n + 3)/2. Again, consider
an arbitrary coloration G of G If U(G) < (n + 3)/2, then V(é) < (n+5)/2 as before. If
U(é) > (n 4 3)/2, then, by Proposition 1, V(G) (é) +1 <o(G)+1. Since o(G) + 1 >
(n 4 5)/2, we have V(G) o(G)+1 for all G Taking into account also (7), we obtain
Var(G) < o(G) + 1. Since this bound is attained by V(G) for G = (7, we conclude that
Var(G) = o(G) + 1.

4. Computational complexity of the Ehrenfeucht game. To facilitate the exposition,
we prove Theorem 2 in the case of graphs with noting that for the general case of arbitrary
binary structures the proof is virtually the same.

Given non-isomorphic graphs GG and G, let D(G,G") denote the minimum r such that
Spoiler has winning strategy in EHR,(G,G"). Furthermore, let D(G) = max{D(G,G") :
G" 2 G}, 1t is known that D(G) is equal to the minimum quantifier rank of a first order
formula defining GG up to isomorphism. We use results about D((G') obtained in [7].

Proposition 3. (Pikhurko-Veith-Verbitsky [7]) There is an efficient algorithm that,
given a graph G on n vertices, determines whether or not D(G) < (n + 5)/2.
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The proof of this result in [7] is based on estimation of D(G,G") for various types of the
pair (G, G"). We will need some particular facts from this analysis.

If v € V(G), let [v]e denote the equivalence class consisting of all vertices in G similar
to v (recall that the similarity relation is introduced in Section 1). If [v]g has at least 2
elements, then the notation (G & v stands for a graph H obtained from G by adding a new
vertex v’ so that [v]g = [v]g U {v'}. In other words, v is similar to v and adjacent to v
depending on if [v]g is a clique or an independent set. Furthermore, we define G & 0v = G

and G & kv = (G & (k—1)v) & v for a positive integer k.

Proposition 4. (Pikhurko-Veith-Verbitsky [7])
1. If G and G’ are graphs of orders n < n', then

D(G,G") < (n+5)/2
unless
o(G) > n/2 and G' = G & (n' — n)v for some v € V(G) with |[v]e] = o(G). (8)

2. If condition (8) is true, then o(G)+ 1 < D(G,G") < 0(G) 4 2 and the exact value of
D(G,G") is an efficiently computable function of Gi.

Note that condition (8) determines GG up to isomorphism provided o(G') > n/2. Propositions
3 and 4 are proved in [7] for any class of structures over a vocabulary with only binary relation
symbols (with a natural extention of the similarity relation and the operation G & v).

Proof of Theorem 2. Let n = |G|. The reduction of the graph isomorphism recognition to
the winner recognition is obvious: G and G’ are isomorphic iff G’ has the same order n and
Duplicator wins EHR,, (G, G").

The reduction in the other direction proceeds as follows. First decide whether G = G'.
If so, the winner is Duplicator. If not, decide whether or not D(G) < (n + 5)/2 by using
Proposition 3. In the case D(G) < (n + 5)/2 the bound imposed on r implies r > D(G)
and, by the definition of D((), the winner is Spoiler. In the case D(G) > (n + 5)/2, decide
whether the pair G, (7 satisfies condition (8), possibly with G and G’ interchanged (here
we again need the ability to test graph isomorphism). If (8) is false, the winner is Spoiler
because r > D(G,G") by the bound for D(G,G") in Item 1 of Proposition 4 and the bound
imposed on r. If (8) is true, compute D(G, G") by using Item 2 of Proposition 4. The winner
is Duplicator if r < D(G, ") and Spoiler otherwise. O

REFERENCES

1. Cai J.-Y., Furer M., Immerman N. An optimal lower bound on the number of variables for graph identi-
fication, Combinatorica 12 (1992), no. 4, 389-410.

2. Dawar A.) Lindell S., Weinstein S. Infinitary logic and inductive definability over finite structures, Infor-
mation and Computation, 119 (1995), 160-175.

3. Immerman N. Descriptive complexity, Springer-Verlag, 1999.

4. Immerman N., Lander E. Describing graphs: a first-order approach to graph canonization, In:  Complex-
ity Theory Retrospective, A. Selman Ed., Springer-Verlag, (1990), 59-81.



TWO CONSEQUENCES OF THE DICHOTOMY THEOREM 9

5. Kobler J., Schoning U., Toran J. The graph isomorphism problem: its structural complexity, Birkhauser,
1993.

6. Pezzoli E. Computational complexity of Ehrenfeucht-Fraissé games on finite structures, In: Proc. of the
CSL’98 Conf., G. Gottlob, K. Seyr Eds. Lecture Notes in Computer Science 1584, Springer-Verlag, 1999,
159-170.

7. Pikhurko O., Veith H., Verbitsky O. First order definability of graphs: tight bounds on quantifier rank,
Submitted manuscript, 2003, 50 pp. Available at http://arxiv.org/abs/math.CO/0311041

Department of Mechanics and Mathematics,
Kyiv National University

Received 01.03.2004



