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The representation of a Cauchy matrix-function of a vector quasidifferential equation and
its mixed quasiderivatives in the sense of the initial equation and the adjoint equation is con-
structed using a fundamental system of solutions and their quasiderivatives. Every element of
such a matrix-function may be represented in the form of a ratio of two determinants, where
the second one is a quasiwronskian and the first one differs from it by only one row.

A. B. Maxwuett, P. M. Tanuit. Cmpykmypa gynryuu Kowu sexmoprozo keasudugdepenyuab-
nozo ypasuenus // Maremaruaui Cryaii. — 2004. — T.21, Ne2. — C.221-224.

[MocTpoeno mzobpaxkenne MaTpUIB-QYHKIHH Kol BEeKTOPHOTO KBaszuauddepeHuaib-
HOTO ypaBHEHUA U €6 CMENIAHHBIX KBA3WIIPOU3BOJHBIX B CMBICAE MCXOTHOTO M COMPAKEHHOTO
ypaBHEHUN wepe3 QPyHIAMEHTAIBHYIO CHCTEMY PeIleHU U WX KBa3WNpom3BomHble. Kax meri
DIEMEHT TaKoW MaTPUIHON (PYHKITUU MOXKET OHITH IPECTaBICH B BUAe OTHOIIEHUSA ABYX OTIpe-
JeJuTelel, TPUaeéM BTOPON ABAACTCA KBA3UBPOHCKUAHOM, a TIEPBBIN OTIANYAECTCA OT HETO TOMhb-
KO OJTHOHW CTPOKOIL.

1. Preliminary remarks. Differential expressions and equations which contain sum-
mands of the form (pijy(s_i)>(m_]) are frequently occurred in applied problems; it is accepted
to call them quasidifferential ones. Probably, D. Shin [1] was the first one who had suggested
this name and the method of the introduction of quasiderivatives for their investigation (the
paper [1] had been published also in French).

We shall consider the initial problem

S8 (1 (A ) — g, (1)

=0 7=0
Y[”](:I;O):Cl,, zo€l, ve{0,....,n—1}, n=s+m, (2)
where s, m are natural numbers, A;;(z) (1 € {0,...,s}, 7 € {0,...,m}) are square complex-

valued matrices-functions of the [-th order such that Agj(x) is bounded and measurable
one on an open interval [, all elements of the matrices A;o(x) and Ag;(z) (1 € {1,...,s},
J € 1{1,...,m}) are square-integrable functions on I, A;;(x) = B[;(x), all elements of the
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matrices B;j(x) have locally bounded variation on [ and are continuous on the right there,
and the quasiderivatives of the matrix solution Y'(x) are defined by the formulas:

=0

VI = — (YIH=1) S A ()Y 6D, ke {1,...,m}.
1=0

The quasiderivatives in the sense of the adjoint of equation (1)

- s—1 * (m—j) (s—i) o

DD ()T (A ()Y )T <o, (3)
where AY;(x) are Hermitian adjoint matrices, are defined [2, p. 39] by the formulas:

Y =YW pedo,...,m—1}; Y=Y A5 (a)Y "9,

i=0

yim+k} — _ <Y{m+k—1}>/ — S AL (@)Y ke {1, )
7=0

With the help of the transformation of equation (1) to the well-posed system of quasid-
ifferential equations of the first order by the method of the introduction of quasiderivatives
we can prove [2, p. 41] that the matrix solution of the initial problem (1), (2) exists and is
a unique one in the class of absolutely continuous on I matrices-functions, its quasiderivatives
to the (s — 1)-th order are absolutely continuous on I matrices-functions and all elements of
the rest quasiderivatives up to the order n — 1 have locally bounded on [ variation and they
are continuous on the right there. Analogously, there exists a matrix solution of equation
(3) with the initial conditions Y1} (z¢) = C,, x0 € I, v € {0,...,n— 1}, which together
with its quasiderivatives to the (m — 1)-th order is an absolutely continuous one and the rest
of its quasiderivatives up to the order n — 1 are continuous on the right matrices-functions
of locally bounded on [ variation.

By a Cauchy matrix-function of equation (1) one understands a matrix function K(x,1)
of the order [ x [ which satisfies equation (1) by the first variable and, moreover, Kll(¢,1) = 0,
i€40,...,n—2}, K" 1) = E.

We shall use the symbol K*Uld(z ) for the mixed quasiderivatives of the matrix-
function K (x,t). This symbol means that at first the i-th quasiderivative by « in the sense of
the initial equation is taken, then the Hermitian adjoining, then the j-th quasiderivative by ¢

in the sense of the adjoint equation and, after all, the Hermitian adjoining again. According
to [2, p. 46], KUz 1) = KU (2 1), 0,5 € {0,...,n —1}.

2. Main results. In problems of not only applied but also theoretical nature one can
run into a problem of constructing a Cauchy function and its mixed quasiderivatives in the
sense of the initial and adjoint equations via a certain fundamental system of solutions and
its quasiderivatives.

Theorem. Let Yi(z), Ya(x), ..., Ya(x) be a fundamental system of solutions of the matrix
equation (1). By yie;(x) we shall denote the element which lies in the intersection of p-th

row and g-th column of the matrix Yj[i_l](:z;), that is Yj[i_l](:z;) = (Yipgi(2)) (1,5 € {1, e n},
p.og € {1,...,1}). We shall also designate the determinant W (t) = det <Yj[2_1](t)> =

1,5=1
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det <(y¢qu(t))l >j]‘:1 by quasiwronskian of quasidifferential equation (1). Then a Cauchy

pyg=1
matrix-function of equation (1) and its mixed quasiderivatives are square matrices of [-th
order, every element of which is represented by a ratio of two determinants:

Miqu(xa t)

W(t) ) i,jE{O,...,n—l}, p,qE{l,...,l}, (4)

[x’;q{]}*[l](x,t) =
where each of determinants M;,,;(x,t) differs from the quasiwronskian W (t) by only one
“non-standard” row (Yiz1p11(2), o s Yir1p00(T)s oo s Yir1 p1a(T), - . : ,yi+17pln(x)) which lies in
the ((n — 7 — 1)l + q)-th position from above and the element [&”;q{]}*[l](x, t) is situated in the
intersection of p-th row and g-th column of the matrix K*Ul(z 1),

Proof. Let R(x) = <Yj[i_1](t)>n be an integral matrix of equation (1). Then B(x,t) =
7,75=1

R(z)R™'(t) is the evolutionary operator which has the structure [3]

K=t (e ) - K(x,t)
B(x,t) = : " : : (5)

K=t ) o K1)

where K (x,t) is a Cauchy matrix-function of equation (1).
By virtue of (5), we can take

n

I(*{j}*[i](x7t) — W Yk[i](il/’)vn—ivk(t)v Z,] € {07 NN 1}7
k=1

where V;;(t) is the transpose of the matrix formed out of the algebraic adjoints of the elements
of the matrix X/j[l_l](t) in the determinant W(?), that is

Aillj(t) tee Aillj(t)
Vis(t) = : : . 4,5 €e{l,...,n}.
Aill]‘(t) tee Ai”]‘(t)
Therefore
s}l IR Mipgi(2,t)
K0 1) = i) 3 ; Yirt pah(T) An_jagr(t) :%7

so far as A,_j k(1) is the algebraic adjoint of the element y,_; ..k (¢) in the determinant

W(t). O

The row dependent on x is situated at the ¢-th position in the (n — j)-th zone from above
in the determinant M;,,;(x,t) though it was taken from the p-th position in the (i + 1)-th
zone from above in the determinant W (x). In fact, it means that even if j # 0 the matrix
KU (2 1) depends only on the elements of the matrices Yi(z), ..., Y, (x), Yi(1), ...,
Y,.(t) and their quasiderivatives in the sense of the initial equation.
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Remark. In the scalar case (I

where (1), wa(t), ...

W (t) is a quasiwronskian formed out of them.
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= 1) formulas (4) take up the form [4]

e1(t)

@n(t)

Y

i,7€40,...

7n_1}7

, @n(t) form a fundamental system of solutions of equation (1), and

The suggested method of the construction of a Cauchy matrix-function and its mixed
quasiderivatives in the sense of the initial equation and the adjoint equation via a funda-
mental system of solutions and their quasiderivatives allows us to overcome some difficulties
which are occurred in problems of not only applied but also theoretical nature.
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