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The purpose of this paper is to present some theorems on existence and uniqueness of
solutions for some semilinear Cauchy problems of second order with operators A(t) not densely
defined in a given Banach space X. To this end, we begin with reduction of our problem to
a problem in which the operators have the same (independent of ¢) domain D.
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Ilenbo 5Toil paBoTHl ABIACTCA MpeNCTABICHIE HEKOTOPHIX TEOPEM O CYNIeCTBOBAHNH I
eIMHCTBEHHOCTH PEIlleHI HEKOTOPHIX MOy AHHEHHEIX 3a1a9 Kol BToporo NopAaiKa ¢ onepa-
Topamu A(t), He NIIOTHO ONpeTeIeHHBIMEI B 33 JaHHOM 6aHaxoBOM mpocTpancTBe X. [l aToro
MBI HaUMHAEM ¢ peJyKINN Hallell 3a1ad9d K 3ajade, B KOTOPOH OIlepaTOphl HMEIOT ONHY U TY
Ke (HesaBHCUMYIO oT t) obaacTh D.

1. Introduction. Our main objective is to investigate the abstract semilinear second order
initial value problem

d*u

—) , t€(0,7], "

u
u(0) =up, —(0)=wuy, wug,us €X
dt
where (X, || . ||) is a Banach space, v a mapping from R to X, f a nonlinear mapping from

[0,7] x X x X into X and {A(?)}, t € [0,T] a family of linear closed operators
At): X DDy — X

with domains D; C X depending on ¢ unnecessarily dense in X.

Most of the results concerning problem (1) have been obtained under the assumption
that the operators {A(t)}, t € [0,7], of a given family have domains independent of ¢ (see
e. g. [4,5,8]).

The case of densely defined operators A(t) with domains dependent on ¢ has been con-
sidered in [11].
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The main our goal is to present a result on existence and uniqueness of the mild solution
for problem (1). To this end, we use some extrapolation spaces associated to the family
{A(t)}, t €[0,T], in order to reduce problem (1) to a second order initial value problem
with operators densely defined.

2. Preliminaries. We make the following assumptions on the family {A(¢)}, t € [0, T].
(Z1) There exists a closed subspace Y C X such that Y = D, for each ¢ € [0,T] and Y # X.

(Z3) For each t € [0,T] the resolvent set o(A(t)) = o(A) of A(t) is independent of ¢ € [0, 7]
and [0,00) C o(A).

(Z3) The family A(t),t € [0,77], is stable in the sense that there exists a real number M > 1
such that

I = AE)) T = Al )™ (A= A() T < MAT (2)
and

I = A)) T = At) ™ (= At) T < MATE (3)
for A > 0 and every finite sequence 0 < t; <t, <--- < t, < T, k € N.
From the assumption (Z3) for k = 1 it follows that

1 — A()™Y| < % for A >0, ¢ € [0, 7). (4)

It follows from (4) that it is possible to define for each ¢ € [0, T]) the operator

B(t)e = [A(t)]be = /OOO ATER(N, A()) (= A(t))zd,

s

where @ € Dy (cf. [6]).
(Z4) Foreacht € [0,T], A >0and n € N

d" _ Mn!
|00 - a0 < 5.
and
d" 5 . Mn!
Hd)\n(B(t)()‘ — A1) £ Nt

where M > 1 is from (2) and (3).
(Z5) The mapping

0,7] 3t — R(X\, A(t))z s of class C* for z € X.
(Zs) For each ¢, s € [0,T] the operator A7'(¢)A(s) is closable and the mapping
[0,T] 5t — A-L(t)A(s)
is continuous in t = s, i.e.

: A—1(+\ Al <) _ _
lim [ AT A(s) — 1] = 0
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3. Existence and uniqueness of solution of problem (1). Following [11] we shall
use some extrapolation spaces in order to reduce problem (1) to a similar problem with an
operator Ao(t) densely defined in an extrapolation space Xo.

To this purpose we define for each ¢ € [0, T] the operator Ay(?),

Ao(t)i= A(t)|po, DV i=f{x € Di: A(t)z € Y},

ie. Ag(t) is the part of A(¢) in Y. By the definition of Ag(t) we see that the operator
Ag(t): Y D DY — Y is densely defined. In the space Y, for each ¢ € [0,7], we define

a weaker norm
2|0 = || R(0, Ag(t))z||, forzeY,te0,T]

From (Zg) it follows that for each t € [0, 7] the norms | . | defined by () are equivalent (cf.
[12]). Taking in the space Y the norm

[2]5° == || R(0, Ao(0))x| = [[ 45" (0)z]|, for z € ¥ (5)

we denote by Y40 the space which is the completion of the space ¥ with norm (5) to a Banach
space. Since the operator

Ag(1): Y D DY —s Yo

is bounded for each ¢ € [0, 7], we can extend it to the closure of its domain, i.e. to D? =Y.

Then we define
Ag): Y2 S5V — VA fort €0,7)

to be the extension of Ap(t). In this way we get a family of linear densely defined operators
{Ao(t)}, t €0, T, for which D(Ao(¢)) =Y for ¢t € [0,T], where Y is dense in Y40,

Our main objective of this paper is to consider problem (1) in the case when f is the
mapping

F0,Tx X xX — X.
To the purpose we define Xg‘ as the completion of the space X with the norm
el = | RO, A(©)ell, v e X

to a Banach space. By virtue of ([7], Th. 3.1.10) we may identify V4o with Xg‘ and Ao(t)
with A(t), where all of the mappings

A : X DY — X, te0,T]

are defined on the same subspace Y which is dense in Xg‘.

From now on we will consider the problem
d? .
= A+ f(tu, )
u(0) = up € X (6)

W'(0) = uy € X.

Under assumptions (Z;)-(Zs) we get that the family {A(t)}, t € [0,7], has the following
properties:
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19 D(A(t)) =Y, for each t € [0, T].
20, D(A(t)) is dense in XZ.
3°. A(t):z; = Bz(t)x, for each t € [0,7] and x € Y, where
B(t)x = i/ ATER(ONA(D)(—A(t)zd\ for 2 €Y. (7)
m™Jo

The operator E(t) may not be closed as an operator defined on Xg‘, but it is closable because

~ 1

B7(t) = —,/OOO ATER(A, A(t))dA

T

is bounded in Xg‘.

In the sequel the closure of operator (7), i.e. the operator
B(t): X' > D(B(t)) — X
will be denoted by the same symbol B(t)

Lemma 1. Under assumptions (Z1)—~(Zs) the family of operators

A

B(t)B~40): X — X2

is uniformly bounded, i.e. there exists a constant K > 0 such that
BB (0)2|4 < K|z|} forz e X2, t€[0,T].

Proof. For x € (Y,|-|§) C )?5‘ we have

N

BB (0)zl} = HAEI(O)é(t)é_I(O)xH <
< 1457 (0) Ao ()| 1A (1) B(t) B~ (0)]|.
By (Zs), we have

A

BB 0)efg < CAT BB 0)zl| = CIAT (OB B (0)e|| =
= C|[BT (1) B7H0)z]| = C|[BT (1) B7'(0) Ao (0) A" (0)r|| <
< CIB7H ) BTH0)Ao(0)][ [2]5 = BT (1) BO)|| =[5

where C' = sup{||Ag'(t)Ao(t)|| : t € [0,T]}. By virtue of ([11], Lemma 2), there exists
Co > 0 such that

| B~ (#)B(0)|| < Cy for t € [0,T]
which ends the proof (with K = C'Cy). O

Lemma 2. Under assumptions (Z1)—~(Zs) the norms
|| ]| := |B(t):1?|OA forz €Y

corresponding to t € [0,T] are equivalent.
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Proof. Let z € (Y,].|&) be arbitrary. By Lemma 1, |B(t)§‘1(0)|€ < K, fort € [0,T]. Thus

llzlll: = 1B(t)zlg = [BHBTH0)B0)xfy < K[B(0)x]g = K|||z[]o.

Similarly we get

llzlllo = 1B(0)ly < LIB(t)2fy = Llll«l]:,

where L = sup{|B(0)B~(1)|,, : t € [0, T]}. O

Lemma 3. Under the assumptions of Lemma 2 the family {B(t)}, t €10,T], has a constant

domain, i.e. D(B(t)) = D(B(0)) for each t € [0,T].
Proof. Let x € D(B(O)) and let {z,} C Y be such that z, — x and B(O)xn — B(O)x in
X¢'. Since, for each ¢t € [0,T], Y C D(B(t)),

B(t)e, — Bt)e,Jd = 1B() (@, — )t < MIBO)(z, — 2,)[ = 0

when p,¢q — oo. This means that {E(t):z;n}A satisfies the Cauchy condition. This implies
the convergence of {B(t)z,} in X§'. Let y € Xg' be a limit of {B(¢)z,}. Hence we have

z, — v and B(t):z;n — y when n — o0 (8)

n—0oo

From (8) and closeness of the operator E(t) it follows that x € D(B(t)) and B(t):z; = 1.

N N

Thus D(B(0)) C D(B(t)), for each t € [0, T]. Analogously we obtain the inverse inclusion,

N N

[
i.e. D(B(t)) C D(B(0)) for each t € [0,T]
We denote
D5 .= D(B(0)) = D(B(t)), te(0,T].

Since Y C DP, DE is a dense subspace of Xg‘. We denote by [DJ] the space DF equipped
with the graph norm of the operator B(0), i.e.

o] == |l + |B(0)z5. (9)

The space [D(JJB]A may be defined in another way. Since 0 € Q(B(t)), for each ¢t € [0,71], the
norms |z|# 4+ |B(0)z|y and |B(0)z|; are equivalent for each € DF. On the other hand we
have

|B(0)efg = [|R(0, A(0)) B(0)z|| = [|A*(0) B(0)|| = || B~ (0)|| = || B(0, B(0))=]| -
Denoting
[[g = [|R(0, B(0))z||  for x € D, (10)
we see that norms (9) and (10) are equivalent. From this we get
(DF] = ¥*

Y

where YB is the space which is the completion of the space Y with norm (10) to a Banach
space.
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Using the extrapolation space X}f‘ and YB we are able to reduce Cauchy problem (6) to
the following first order problem in the space YZ x X3 :

Cfl—bt{ = A(t)U + F(t,U), )
U0) = Uo,
where
u=[o) =iy o] rew={p0 )
Uy = Zf : v=, D(A(t)) =Y x DB
O
Theorem 1. Under assumptions (Z,)~(Zs) if
F[0,T)x X x X 5 (t,z,y) — f(tx,y) € X is of class O
and
1 (t 20,51) = f(E, 2, ya) || < Lllwy — w2l + [y1 — w2l3), (12)

(o, v0) € D(./Zl(t)), then problem (11) has a unique classical solutionU € C*([0,T], yB X)A((f‘),

which is the unique solution of the integral equation
t
Ut) =V, 0)Uy + / V(t,s)F(s,U(s))ds,
0

where V(t,s), t,s € [0,T] is the fundamental solution of problem (11).
Proof. From (Z3) by ([11], Th. 5] it follows that the family {A(t)}, t € [0,T), satisfies the

following inequalities in the space Xg' :

O = A = Al ™ 0= A <
and
1O = A = Al ™ = A <

for A > 0, M > 1 and every finite sequence 0 <t; <--- < t, <T, k € N.A
From this and (7) using ([1]; Lemma 2) it follows that the family {B(¢)}, ¢ € [0,77, is
double stable in Xg', i.e.

and
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for u # 0 and every finite sequence 0 <ty <--- < ¢, < T. )
From ([5], Lemmas 3.4 and 3.5) we obtain the stability of the family {A(¢)}, t € [0,T]. By
assumption (Z5) we deduce that the mapping

0,7] 3t — A(t) m eVFx X

is of class C''. From this and stability of family {./Zl(t)}, t € [0,T], we get existence of the
fundamental solution V(¢,s) for problem (11).
On the other hand, from (12), by inequalities

jelg < Cllzll,  2lg < Cill2]
for every z € X 1t follows that

I f(t 2, yn) — f(tee,y2)l| < La(ller — 22| + [y — v2l])

and
[F(t 2 y) = F(t 2o, p)lg < Lo(ler — 2ofg + [y — valo)-
To obtain the function U we use the following iterative method

A

Ui(t) = AU + F(t, Us),
Uty = AU (t) + F(t,U,—1(t)) neN (13)
Uy .
From this we get
U, € C([0,T]), Y% x XHnC'((0,T],YE x X{'), neN
and

U, (t) =V(t,0)U + /tV(t,S)F(S,Un_l(S))dS, te0,7].

Since Y C X is not dense in (X, |.]5), we see that YB C X. From this ([9], Th. 4.17) it
follows that

U(t) = Tim U (1) (14)

n—0oo

is continuous in [0, T, because U, (t) converges uniformly in [0, T].

We shall prove that ¢ € C'*((0,7], VB x Xg‘). Indeed, let

U, (1) = {Z:gﬂ , forneN, tel0,T].

Hence by (13) we have for ¢ € (0,7]
W) = 1)y (1) = A1)+ F(tuna(1), v (1),

From this we get for p,q € N

Jup,(8) = wy (D5 = Tvp(t) — vyt
[y (8) = vy (0)]g" < TA@[upl(t) = g (DN + 1F (8 ()01 (1)) = F(Ey g1 (1), 001 (1)
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Thus,

Jup (1) = ug(t)]g < Cllog(t) = vy(1)]]

g (1) = (07 < AT OV AWy 1) — ()] +
T ULt e (8, 0pa (1)) = (g (8, v ()] <
< Klluy(t) = g (O + CoLi (g (1) = s ()] + s () = vma (D).

From (14) it follows that for ¢ > 0 there exists ng € N such that for p,q > no we have
sup{|u,(t) — u;(t)|0B teln,T)}<e

and
sup{|v;(t) — v;(t)|0B teln,T)}<e

for every 7 > 0. This means that the mapping

(0,T] >t — U(L) := [zgg] €VE « X

177

is of class C'' and is the unique classical solution of problem (11), where uniqueness is an

immediate consequence of Gronwall’s Lemma.

O

Theorem 2. Under the assumptions of Theorem 1 the Cauchy problem (6) has a unique
solution v € C([0,T], X) N C?((0,T], X&), which is the unique solution of the integral

equation

0

u(t) = —aS(t, 8)|s=otio + S(t,0)uy + /0 S(t,s)f(s,u(s),u'(s))ds,

where

S(t,s) =111 V(t,s) [2] for each = € XJ',

and 114 [ﬂ =y fory e VB, x e X3 (cf. [11)).

Proof. The proof is the same as that of Theorem 7 in [11] and is omitted.

(15)

O

Definition 1. A function u € C*([0,7T], X) which is a solution of the integral equation (15)

and u(0) = ug, v/(0) = uy is called “a mild solution” of problem (1).

Corollary 1. Under the assumptions of Theorem 1 problem (1) has a unique mild solution

given by (15).
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