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Actions of symmetric polynomials on generalized Rademacher functions are investigated.
Some applications to algebras of symmetric analytic functions on the unit ball of L,[0,1],
1 < p < 0, are described.
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Nay4aeTca gelicTBHe CHMMETPHIECKIX MOJINHOMOB Ha 0606IIeHAbIe (pyHKIHN PageMaxepa.
Omnmcanbl HEKOTOPHIE MPAMEHEeHNA K aarebpaM CAMMeTPHYECKNX aHAIuTHIeCKIX (PYHKINH Ha
equanaHOoM Mmape B Ly[0,1], 1 < p < oo.

1. Introduction and preliminaries. The concept of symmetric polynomials on the
Hilbert space and, more general, on [, and L,[0,1], 1 < p < oo, was introduced by Nemirovski
and Semenov [10]. A polynomial P on [, is said to be symmetric (with respect to the group
of permutations on the symmetric basis {e,}) if

P (i aieZ') =P (i aieg(i)>
i=1 i=1

for every permutation o on the set of natural numbers N.

The polynomial P on the L,[0,1] is called symmetric, if P(ocx) = P(z) for any o € X,
where ¥ is the group of measurable automorphisms of [0, 1] interval.

Properties of symmetric polynomials and analytic functions were investigated in [§],
[1]. In particular, in [8] it is given the precise representation of symmetric polynomials
on Banach spaces with symmetric bases and on so-called separable rearrangement-invariant
function spaces on [0, 1] and [0, o] by elementary symmetric polynomials. In [1] the spectra
of algebras of symmetric holomorphic functions on [, are investigated. The sets of maximal
ideals of algebras of symmetric analytic functions on the unit ball of L4[0, 1] and L0, 1] are
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described in [11]. Maximal ideals of algebras of analytic functions were studied in [3], [4],
[5], [12].

Let us denote by A,(By,) the algebra of symmetric analytic functions (under measurable
automorphisms of [0,1]) on the unit ball By, of L,[0,1] which are uniformly continuous on

Br,. We shall denote by H,(L,) the space of entire symmetric functions on L,. Notice that
in the case of p < oo, functions from H,(L,) are bounded on bounded sets.

1
Let us denote by Fj(x) = / 2*(t)dt the elementary symmetric polynomials on L,[0, 1],
0

E=1,...,p. According to [8] every symmetric polynomial on L, belongs to the algebraic
span of polynomials £}, & < p.

We shall use the notion of generalized Rademacher functions which was introduced in [6].
There the authors used them to prove that every continuous multilinear form A : ¢g x ... X
¢o — C has a trace. In [2]it was showed that these functions are quite useful in obtaining
simple proofs of various estimates in several different areas of analysis. For example, a short
proof of polarization formula and its generalization was obtained. In this paper we shall use
the generalized Rademacher functions to investigate the set of maximal ideals of the algebra
As(BL,).

For every natural number n > 2 the generalized Rademacher functions (S7) are defined
inductively as follows. Let a3 = 1,as,...,a, be the complex n-th roots of unity. For
j=1...,nlet [; = (%, %) and let [, ;, denote the j,-th open subinterval of length = of
I;, 71,92 = 1,...,n. Proceeding like this, it is clear how to define the interval I, ;, ;. for
any k. Now S7 :[0,1] — C is defined by setting S7(¢) = «; for t € I;, where 1 < j <n. In
general, S7'(t) is defined to be «; if ¢t belongs to the subinterval I;
is no harm in setting S} (¢) = 1 for all endpoints ¢.

Ljaojrs Where 75 = 7. There
For example, for n = 2 we have 7 = 1,2 and the corresponding complex roots of unity
a; =1, ay = —1. The generalized Rademacher function S? has a representation:

) 1, tel=(0,1/2);
Sl(t):{ —1, tel,=(1/2,1).

The generalized Rademacher function S3 is determined by:

5 t€[11:(0,1/4),
— 1, t€[12:(1/4,1/2),
5 t€[21:(1/2,3/4),
5 t € [22 - (3/4,1)

S3(t) =

—_ = =

Proceeding similarly, we have:

S,(t) :{ b PE Disaeipat
-1, te [jljz~~~jp—127

where jq,..., 7,1 = 1,2.
Let us consider the case n = k. Set y =1,...,k and a4, ..., «, are the complex roots of
unity. The generalized Rademacher functions have a representation:
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aqp, tE[l; anq, tE[]‘lj2

dpe1)

k . 0527 t E [2, k . 0527 t E [jljg...jp_12;
51 - . Sp - :

O{k, tE [k, O{k, te [jljg...jp_1k7

where j1,52,...,0p = 1,..., k.
Notice that in the case n = 2 the functions S} coincide with the classical Rademacher
functions (see e.g. [7, p. 10]).

2. The action of symmetric analytic functions on the generalized Rademacher
functions.

Theorem 1. Let n,j,k be defined as above and S} be the generalized Rademacher func-
tions. Then for each fixed n and arbitrary [, m, such that [ < m there exists an automorphism

ot 2 [0,1] — [0,1] such that S}(t) = SI (o (1)).

Proof. It is easily seen that there exists an automorphism o} : S} — 57 such that o}, maps
the intervals I; onto the intervals [; and is identical on
the intervals

1J2++-J1—1J10141 +Im—1Jm 152 Jl—1Jm 41 Jm—171

I

J1J2-J1—1 7141 ---Jm—170"

I;

192+ Ji—t1ig1-dm=—11s+ * *

Let us denote by h, the space span jcn(57).

Corollary 1. The restriction of arbitrary f € A (f € Hs) onto h,, for fixed n is a symmetric
analytic function with respect to the group of automorphisms on the set of lower indices.

Lemma 1. The sequence of functions {S}} is weakly convergent to 0 as k — oo for every

fixed n.

Proof. The weak convergence S7 — 0 as k — oo means that for every ¢ € L', #(S7) — 0

as k — oo, where each functional ¢ € L! is determined by a function g(¢) € L, such that
I/n*+1/n=1and

5= | St

If g(t) = 1, then fol SE(t)dt = 0 by the property of Rademacher functions and the n-th
roots of unity.

Let [a,b] be an arbitrary subinterval of [0, 1] and ¢(¢) be the characteristic functions of
the given subinterval. Let .J be a set of subintervals [;,;, ; C [0,1] that are defined below.
Let us denote by [, the closure of the set of subintervals from .J which intersect I,,. Then
it is evident that [a,b] C I, and u(l. \ [a,b]) < 2/n*. Therefore,

/ bg<t>sz+1<t>dt\ <

§ 2 2
/ Sk+1(t)dt‘ + ==
Iab n

n

Since this is true for all characteristic functions of intervals, the lemma is true for step
functions. From the density of the step functions in L/ it follows that ¢(S7) — 0 V¢ €
L = 57 5 0as k — oo. O
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Let X be a Banach space and 1 < ¢ < oo. We say that a sequence {z,} in X admits a
lower ¢-estimate if there is a constant ¢ > 0 that for any n € N and a4,...,a, ¢ K(K=R

or K=0C)
n 1/q
=1

A Banach space X is said to have property T, (for some 1 < ¢ < o0) if every weakly null

n

g ;T

=1

seminormalised basic sequence in X has a subsequence with a lower g-estimate.
Notice that a Banach space X has a lower g-estimate if every null seminormalised basic
sequence in X has a lower ¢-estimate.

Proposition 1. The space h, has a lower n-estimate and h,, C [,.
Proof. According to [9], L,[0, 1] has property T, for some ¢ and the upper index of L,[0, 1]
u(L,[0,1]) :==inf{q > 1 : L,[0,1] has T,-property } = max{2,n} = n.

Then applying Lemma 1 we see that the sequence {S}} has a lower n-estimate, that is there
exists a constant ¢ > 0 such that for every N € N and ay,...,ay € K,

N 1/n
(L)
k=1

According to [8], a Banach space X C [, if and only if the basis has a lower n-estimate. O

N

> aSy

k=1

Corollary 2. Let P be a symmetric polynomial on h,,, deg(P) = r.
1. If r <n then P = 0.

2. If r > n then there exists a polynomial q of r — n variables such that
P (Zak5}3> =gq (Za}z,...,ZaZ) .
k=1 k=1 k=1
Proof. This immediately follows from Proposition 1 and [8, Theorem 1.1]. 0
Let @,(f) be the restriction of f on h,.
Corollary 3. For every k < n, ®,(F;) = 0.

Proof. According to Corollary 2, ®,(F}) is a symmetric polynomial of degree n on h,. But
there is no nonzero symmetric polynomial of degree k < n in a space with a lower n-estimate

[8], thus ®,(F)) = 0. O
Proposition 2. ®, is not a surjection.

Proof. If ®, is a surjection, then the preimage of the polynomial P, (> aie;) = > at! is
nontrivial. Since ®, is a linear mapping, the preimage must be a symmetric homogeneous
polynomial of degree n 41 on L,[0, 1]. Then according to [8], every homogeneous symmetric
polynomial of degree n 4+ 1 on L,[0, 1] has a representation:

Q: Z alﬂknFlle?fn
ket =nt1
Since ®,, is a homomorphism, ®,,(Q) = > ak,. .k, CI)n(Flkl) ... ®,(F*) =0 by Corollary 3.
O
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Corollary 4. There exists a symmetric polynomial of degree n + 1 on h, C I, C L,[0,1]
which cannot be extended to a symmetric polynomial on L,[0,1]. In particular, the symmet-
ric polynomials P,,(> a;e;) = > a™, m > n, cannot be extended to symmetric polynomials

on L,[0,1].

Lemma 2. For all n,r, m there exist | € N and an automorphisms o such that (S?™(t))" =
St(e(t)).

Proof. Let us take an arbitrary «,, 1 < p < nm. Since this is the complex p-th root of unity,

it can be written:

o, = €2p7ri/nm )

Evidently, (a,)™ = (ezp”i/”T”)m = e2P™/" and therefore,

(S (1)™ = 57 (e (1)).

We shall use the notation 5, = ST.

Lemma 3. For every ¢(t) € span (S1,...,5,), n < k, and A € C holds F,(g(t) + A\Sk(1)) =

Proof. By routine calculations we have

n

Fo(g(t) + ASi(t)) = F, (Z Uy S (1) + )\Sk(t)> _ /l (Z S (1) + )\Sk(t)> dt =

m=1 m=1

:/01 (Zc (Z amSm(t)> _ (Ask(t))f>dt:

m=1

n

1 n ) )
_ / SN G Y e S (1) S (1) )
o \‘= —

Denote myms...m,_1k = [ and, using Lemma 1, rewrite the given integral by

/1 Sy (1) o S () Sk(t)dt = /1 STty .. ST () SE(t)dt =

1
= [0 ) (s )
0

Tiyeooyty € N
According to [2] the integral is equal to unit in the case when

My ...Muy_1k =mims... My k =---=my...myu_1 = 0(mod [)
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, that it is impossible (in accordance with the definition of /). Thus, the integral is equal to
zero. Evidently, the same holds for the next terms. The last term:

1 1 2 1 N
Anc;;/<sk>nczt:v(/ka?dt+/’“a;dt+---+/ aZdt>=k(oq+ +ap) =0,
0 0 i A

k k

Thus, F,(g(t) + ASe(t) = i (5 _, @S (1)) dt = F,(g(2)). O

m= 1

3. Maximal ideals of the algebra As(Br, ). Let us consider the restriction of f onto
span (Slv sy ) Let 77Z) f _>f f|span S14eesSn) "
Theorem 2. The map ¢ is an injective homomorphism from A,( By, ) onto Ay(Bapan (s4,....5,))-

Proof. Let P be an arbitrary polynomial from Ay( By, ). As it was observed, P is an algebraic
span of Fi,..., F,, that is there exists a polynomial ¢ of n variables such that

P(l‘) = Q(Fl(x)van(x))
Let P () = ¢ (P(x)) = 0, then q(]r;l (x),,];n ()) = 0. If ¢ # 0, then there
are z1,...,z, € C such that q(zl,.. zn) # 0. Choose x € span (51,...,5,) such that
];1 (x) = z1, .. ]r; (x) = z,. Suppose that there exists x9 € C* such that

Fl(l’o) = 21, .,Fn_l(l'o) = Zn—-1.

Set x(A) = AS,(t) + xo. According to Lemma 2 Fi(x())) = z Yk < n, for every A € N,
and F,(x())) is a polynomial of degree n of A and F,,((A)) = z,. Let Ag be a solution of the

equation. Then we can write: @ = X\gS,,(f) + xo. Thus we have proved that from ]3 (x)=0
it follows that P(x) = 0 and it means that kerty = 0. Hence v is an injective map. It is
easily seen that ¢ is a homomorphism. O

Define the set M in the following way:

n

M:{J}:Zaksk2|ak|n§1, |a1|<17"'7 |an|<17

2m 2m
0 <arga; <m, 0 <argas < RN 0 <arga, < — ;.
n

Proposition 3. The functions f € Ay(By,) separate points of the set M.

Proof. Take vectors (a1,...,a,), (b1,...,b,), whose coordinates satisfy the conditions from
the description of the set M. Assume that (aq,...,a,) # (b1,...,b,) and for every f €

As(Br,) [ (32 arSk) = f (32 bkSk).

Since the vectors are not equal, there exists at least one coordinate m, 1 < m < n such
that a,, # b,. Take a vector (t1,...,t,) € C", t,, # 0. It is evident that (t1a4,...,ta,) #
(t1b1,...,t2b,). Acting on the both parts of the inequality by the function F, we obtain

Fm(tlal, Ce ,tnan) = Fm(tlbl, Ce ,tnbn),
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that is
Fm ZtkakSk = Fm Ztkkak
k=1 k=1

Setting here ¢, = 1 and t;, = 0 for & # m, we have that ' = 7. It follows that a,, = b,
a contradiction.

O
Notice that from Theorem 2 it follows that M(A(By,)) C Bspan(s,....5n)-

Theorem 3. M(A,(BL,)) C M C Baan (s1,...5,)

Proof. Tt is clear that M C Bgpan (s,,...,5,), because the set M was constructed by setting of
special conditions on the points from Bgpan (s4.....5,)- In other words, from every set of points
of Bgpan (s1,...5,) Which generate the same complex homomorphism from M(A,(Bg,)), we
take the only point. Thus, we have the required embedding M (A( Bz, )) C M. O
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