Maremaruani Crymgii. T.21; Nel Matematychni Studii. V.21, No.1
YK 517.5744517.547.2

B. N. KHABIBULLIN*

ASYMPTOTIC BEHAVIOR OF THE DIFFERENCE
OF SUBHARMONIC FUNCTIONS

B. N. Khabibullin. Asymptotic behavior of the difference of subharmonic functions, Matema-
tychni Studii, 21 (2004) 47-63.

Let ¢ and v be Borel positive measures of finite upper density for order p in the complex
plane C and let u, be a subharmonic function in C with the Riesz measure y. The main result
of this paper shows that a some closeness of the measures p and v (of order O(ro‘), r — 400,
in every sector {z Szl <, 0 <argz < 1/)} uniformly with respect to ¢ € [0, 27]) implies the
existence of subharmonic function w, with the Riesz measure v such that |u,(z) — w,(2)] =
O(|z|f~>log|z|) as 2 = oo, z ¢ F, where E is the union of a some exceptional set of disks
with finite sum of radii.

B. H. Xabubymma. Acumnmomuueckoe nosedenue pasnocmu cybeapmonudeckus Gynryud [/
Matemaruaui Crymii. — 2004. — T.21, Nel. — C.47-63.

TlycTh pt 1 v — TOJMOKHUTENBHBIE GOPENEBCKIE MEPEI KOHEYTHOI BEPXHEI IIOTHOCTH HOPSA KA
p B KoMmekcHOH maockoctu C, m mycTs u, — cybrapMonmieckas pyHkuua B C ¢ Mepol
Pucca p. OCHOBHOW pe3yabTaT 3TOH CTAThI MOKA3BIBAET, 9TO HEKOTOPAA GJAN3KOCTE MEp f4 U ¥
(mopanka O(r®), r — 400, B cexTope {z : |z| < r, 0 < argz < 1/} paBHOMEPHO OTHOCHTEIBHO
¢ € [0,2r]) BaedeT cyulecTBOBaHNE CyOrapMOHHYECKOH (GYHKINE %, ¢ Mepoll Pucca v Takoii,
ato |uy(2) — uu(2)] = O(|2|°~%log|z|) npu 2 — oo, 2 ¢ E, rae E — ofbeannenne HEKOTOPOTo
HCKIIOYHTENEHOTO MHOXKECTBA KPYT'OB ¢ KOHETHOH CYMMOH Pa NycoB.

§ 1. INTRODUCTION

A part of results of this article was announced in [1] as far back as 1986.

Let p be a measure (resp. a charge) on the complex plane C. All measures (resp. charges)
in this article are assumed to be Borel and positive (resp. real-valued), supp p is the support
of u.

We denote by D(z,t) the open disk of radius ¢ centered at z € C, D() o D(0,t), and

we set (z,1) o M(D(Z, t)), w(t) o 1(0,t). For simplicity it is assumed everywhere that any

measure (resp. charge) in this article vanishes in the unit disk D(1), i.e., its support lies in
C\ D(1).
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If p >0 and pu(t) = O(t*), t — +oo, then p is the measure of finite upper density for
order p. We denote by M, the class of all measures of finite upper density for order p. We
denote also by SH, the class of all subharmonic functions u of finite type for order p in C,
e, u(z) < C,lz|” for |z| > 1 where C, is a constant. The Riesz measure of v € SH, is the
measure fl, = %Au where A is the Laplacian and the equality is to be interpreted in the
sense of the distribution theory. If u € SH, then u, € M,, and, for noninteger p, vice-versa:
if p € M, then there is a subharmonic function u, € SH, with Riesz measure . But the
last implication is not true for each integer p > 0.

The main source of our investigation is the Levin-Pfluger Theorem [2, 3] on entire func-
tions of completely regular growth. We formulate a subharmonic variant of this theorem in
a form suitable for our research.

Levin-Pfluger Theorem ([2]-[5]). Let p > 0 and let u,(z) # —oco be a subharmonic
p-homogeneous function with Riesz measure y, i.e. u,(tz) = tPu,(z) for every t > 0 and
z € C. Let v € M,. Then the following assertions are equivalent:

(m) there exists ¢ such that the relation

|1(rs@,00) = vlrsg, )| = o(r"), 1 — +o0, (1.1)

holds tor every ¢ € (0,2r] with the exception of at most countable set of values 1, and,
in addition, for integer p, there is the limit 1i£—n fIC|<r (" dv(C);
r—+400

(u) there are a subharmonic function u, and an exceptional set F C C such that

(=) = u,(2)] = of|2P) (1.2)

as z — oo outside the set F, and it is possible to cover the set E by a system of disks
D(zp,tr), k € {1,2,...}, satisfying the condition

Y ti=o(R), R-—+co. (1.3)

Our results evolve the implication (m)=-(u) in the direction of possible decrease of asymp-
totic (1.1) which have as a consequence a decrease of asymptotics (1.2) and (1.3). Our re-
search is also connected with results of P. Z. Agranovich and V. N. Logvinenko on polynomial
asymptotic representations of subharmonic functions [6]-[9].

Below we formulate the main theorem from a paper of R. S. Yulmukhametov [10, Theo-
rem 1]. At first sight, this theorem overlaps our main results.

Let uy,ug € SH, with Riesz measures i1, yt2, respectively. In [10, Theorem 1] the author
claims that the following assertions are equivalent:

() for every real v there are a set £, C C and a constant C., such that

N(ZvR;/“le/“LQ) d:ef

T

R —
/m(ar) W) e < el 2 ¢ By R (012]). (1)
0

and it is possible to cover the exceptional set E. by a system of disks D(zy, 1), k €
{1,2,...}, satisfying the condition

Y ti=0(R), R— oo (1.5)

R/2<|zg|<2R
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() there is a harmonic function H of finite order such that, for every ~, there are a constant
C! and an exceptional set k!, C C for which

usl=) — wale) + H(2)| < CL7, = ¢ B,

and it is possible to cover the set LI by a system of disks D(z,ty) satistying condition
(1.5).

But the implication (1h)=-(1) is false. The author uses a lemma [10, Lemma 8] without
proof referring to [11, § 4.1]. But we did not discover in [11, § 4.1] an assertion similar to [10,
Lemma 8]. Moreover, Lemma 8 from [10] is also not true. We construct two counterexamples
for the implication (m)=-() in § 6.

We formulate now consequences of Main Theorem of this article. Denote by S(r, R; ¢, ¢)
the set {tew eC:r<t< R <0< L/J}, i.e., “a polar (spherical) rectangle”. In

particular, S(r, R) o S(r,R;0,2m) is the annulus, and S(r;¢, ) o S(0,750,1) is the
sector, and S(o0; ¢, 1) o S(0, 005 ¢, 1) is the angle.

For a measure or a charge y on C we set u(r; ¢, ) o 1(S(rie, v)).
Corollary 1. Let p and v be two measures of finite upper density for an order p > 0. Let

u,, be a subharmonic function with the Riesz measure . If

() for a some a > 0 there exists ¢ such that the relation

(15 0,80) = v(r;p,0)| = O0®), = +oo, (1.6)

holds uniformly with respect to an everywhere dense set of values ¢ in [0, 27]
then

(i) there exists a subharmonic function u, with the Riesz measure v such that for every
v 20

() = w,(2)] = O(|21" log |21) (1.7)

as z — oo outside a system of disks D(zg, ) C C, t, < |zi|/2, k € {1,2,...}, satisfying
the condition

Y ti=o(RT), R— +oo. (1.8)

If we put a = p in Corollary 1 then we obtain

Corollary 2. If the total variation of a charge A on C belongs to M, then there exists a -
subharmonic function vy, i.e. the difference of two subharmonic functions, with the Riesz
charge A such that for every v > 0 the relation

[oa(2)] = O(|z]" log |]) (1.9)

holds as z — oo outside a system of disks D(zx,tx), tr < |2x]/2, k € {1,2,...}, satisfying
condition (1.8).

Corollary 2 give lower bounds for subharmonic functions of finite order (see in § 5 proofs
of Corollaries 1 and 3):
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Corollary 3. Let u be a subharmonic function of finite order p > 0 with the Riesz measure
fy € M,. Then for every v > 0 there exists a constant C, > 0 such that the relation

u(z) > —C,|z|" log | #| (1.10)
holds for all z which lie outside a system of disks D(zg, 1), tr < |zk|/2, & € {1,2,...},
satisfying the condition (1.8).

Remark 1. Essentially more general results are known for arbitrary d-subharmonic functions
in R™, m > 2, than Corollaries 2 and 3 (see [12], [13, Theorems 1 and 2]). For example, there
is a constant C' > 0 such that for every subharmonic function u, u(0) = 0, the inequality
u(z) > —Cmax{u(¢) : [¢| = 2|z|} log(C + C|z|) holds outside some exceptional set of disks
with finite sum of radii [13, Corollary].

Remark 2. The example of the subharmonic function u(z) = log‘l/F(z)‘ shows that estimate
(1.10) of Corollary 3 is the best possible [2, Ch. I, § 11]. Consequently, all Corollaries 1-3
(and Main Theorem below) are sharp.

It is my pleasure to thank the referee for very helpful comments and remarks.

§ 2. THE MAIN THEOREM

Let s > 0. We say that a system of polar rectangles
Sn,m = S<rn7rn+1;¢7(zm)7¢7(zm+1)>7 n e N? m e {1727---7(]71}7 (21)

is s-narrow, if this system satisfies the following two conditions:

(a) there exists a constant @ > 0 such that

rn+1

l14+a< <l1l/a, neN, r=1; (2.2)

n

(b) there exists a constant b > 0 such that for every n
br* < ¢£m+1) — ;/)flm) <r*/b, me{l,2,...,q.}, (2.3)

where ;/)7({1"—"1) = ;/;7(11) + 27 for all n.
According to (2.2) the condition r > r,, implies

r>(l4a)yroy > (1+a)ira s> (14a)"ry=(14a)"",

and so

n—1 logr if r, <r. (2.4)

1
< -
~ log(1 + «a)
def

We set S,.m(t) = Sum N D(1).

Main Theorem. Let 1y and p5 be measures of finite upper density for an order p > 0 and
0 < o < p. Suppose that there exist a s-narrow system (2.1), s > p — «, and a constant A
such that

q

‘(/,Ll — /,L2> < U Snm(t)>‘ <Arpforalll <r, <t <ry, 1<q¢<qn. (2.5)

m=1
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Then there exist subharmonic functions u; and uy with Riesz measures py and pg, re-
spectively, and constants B, > 0 such that for every N > 1 the inequality

‘ul(z) —uz(z)‘ < BN|z|” log |2| (2.6)
holds outside an exceptional set

- C
D(z, 1 h that 1, < 2 § ty < — RitP=a=s 2.
kL:Jl (zg,tg) suc at ty < |zxl/2, PSSy R (2.7)

R/2<|z|<2R
for all R > Ry.
If t € [rp,7p41) then under conditions (2.2) and (2.5) we obtain

mt) = palt)] < i\w —m)(@ Sen(rien)) |+ | —m)(@ Sam(®))] <

N PR 1 m Y 1 N
SAZ”HSATWZ(m) < Ae 1 tar

k=1 m=0

Thus, the union of conditions (2.2) and (2.5) implies the condition
‘/,Ll(t) — [tz (t)‘ < A't™,  where a constant A’ is independent of ¢ > 0. (2.8)

Without loss of generality, we can assume that the measures p; and puy are concentrated
on the boundary of polar rectangles S, ,,. For that we use a particular case of the result [14,
§ 3, Theorem 2] which is formulated below.

Let T' be a Borel-measurable mapping of C into itself. Then T' generates a transformation
in the space of Borel measures according to the rule: with each measure p there is associated
the measure pr such that ur(G) = u(T7'G) for any Borel set G.

Let |T(¢) — ¢] = w(() and @w(¢) = sup{|¢ — 2| : T(z) = (}. Then & is a function on
T(C). Extend @ to C\ T(C) by zero.

Let u be a subharmonic function with Riesz measure u. We introduce the measures
g =p~+ pr and dW = wdp + @ dur and the function

K(Z,dW):|Z|qw/ dW(O+|Z|qw+1/| W (¢)

etz ICmw clple) 117wt

where gw > 0 is the genus of dW, i.e., the smallest integer such that the last integral
converges. For a function ®: C — R we set ®y/5(2) = sup{®(¢) : |[( — 2| < |2]/2}, 2 € C,
and Dy, = J{D(2,|2|/2) : = € D} for D C C.

Comparison Theorem ([14, Theorem 2]) There exists a subharmonic function ur with
Riesz measure u such that for any function ®(z) > 1, z € C, there is a countable set

{D(Zk,tk)};)o of disks such that ty < |zx|/2 for all' k > ko, and

d
E tp < / m(z) for every Borel set D, (2.9)
2,€D D1/2 q)(Z)|Z|

!The inequality tx < |z|/2 was not mentioned in the text of Theorem 2 from [14] but it can be found in
first paragraph of the proof of [14, Theorem 2] (see also [14, Normal Points Lemmal]).
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where m is the Lebesgue measure, and for z ¢ | J, D(zx, )

|2t (D(z, |2]/2)) >
2K (z,dW) ’

lu(z) — ur(z)| < K (2, dW)®, 5(2) log (2 + (2.10)

where the constant C(qw) depends only on the genus qw .

For our case consider a mapping T of C\ D(1) into itself such that T'(tc¥) = pein”
for each te¥ € S, ,,, T(z) = z for |z| < 1. Then in view of (2.2) and (2.3) the mapping T
satisfies the condition

‘T(Z) — Z‘ < Cy|z|'7%, 2 € C, where s > p—a and C is a constant. (2.11)

The mapping T transforms the measures py, pto to new measures (pq)7, (pt2)7 of finite upper
density for the order p. Fvidently, the measures py, 12 are concentrated on the intervals

{teiwglm) i, <t < Tn-|-1}- (2.12)

and condition (2.5) is fulfilled for the charge (p1)r — (p2)r as before.

Under the notations stated above it follows by (2.11) that w(z)+w(z) < Cy|z|'™*, 2 € C,
where (3 is a constant. Hence, for fi; = p; + ()7 and dW; = wdp; + o d(p;)r, j € {1,2},
we obtain the estimates

/:L](t) < C3tpv Wj(t) < C3t1+p_57 > 07 .] S {172}7 (213)
where ('3 is a constant. Therefore
qw; < [,0 - 5] + 17 I((Z,dW]‘) < C14|Z|H—p_57 z € Ca .] S {172}7 (214)

where [a] is the integral part of a, and Cj is a constant. By Comparison Theorem, for any
function ®(z) > 1 there are subharmonic functions (u;)r, j € {1,2} such that for a set
{D(Zk,tk)};)o condition (2.9) holds, and, according to (2.10), (2.13), (2.14),

s IP Ty

‘u](z) — (u])T(Z)‘ < @1/2(Z)C(qw) K(z,dW)log <2 +

E 2K (z,dW)
p—s Cs 2|+ p—s

for all z € C, 5 € {1,2}, where we use the increase of the function tlog(2 + a/t) of t > 0,
a > 0, and the constants (s, Cgs are independent of ®.

For an arbitrary constant N > 1 we choose the radial function ®(z) = ®(|z|) =
max{N, N|z|>=(»=9} > 1. Then for D = S(R/2,2R) it follows from (2.9) that

Z t < / dm—(z) _ QRI-I—p—a—s 7 (2.16)

Nlz|tte=le=s) N
2, €S(R/2,2R) 2, €S(R/4,3R)

where a constant C' depends only on a, p, s. Simultaneously, in view of (2.15), we get

|uj(2) = (uj)z(2)] < CeN(3/2)*~ 79 |2|" log(3 + |2]) < BN|z|* log |z| (2.17)
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for |z| > 2 with a constant B when z lies outside the exceptional set of disks from (2.16).
The right-hand sides in (2.16) and (2.17) coincide with the right-hand sides in (2.7) and
(2.6), respectively.

So, throughout what follows, we will be supposed that the charge v = p; — py are
concentrated on the set of intervals (2.12).

Consider an integral

L) = [ G/ O v =g o, (215)

where G(&,p) = log |1 — €] + Re Y h_, €% /k is the logarithm of modulus of the Weierstrass
primary factor of genus p.

In order to prove the Main Theorem, it is sufficient to ensure for integral (2.18) an
estimate of form (2.6) outside an exceptional set from (2.7). Indeed, in this case, let wu;
and %y be two subharmonic functions with Riesz measures py and py, respectively. Then
A<u1 — Uy —I,) = 1 — ptg — v = 0 in the sense of the distribution theory. Therefore, by
Weil’s lemma the function u; — ti; — Z, = H is harmonic, and the subharmonic functions u;
and uy = Uy + H are as required.

A final estimate of the integral Z,(z) of form (2.6) will be obtained in § 4.

§ 3. TWO AUXILIARY LEMMAS

Lemma 1. Let f(t,¢) be a real-valued function which is twice continuously differentiable
on the closure of a polar rectangle

S = S(ri,ra0n,1b0) 3 1€, by <apy <Py 4 2m,

Let v be a charge which is concentrated on the union of finite number of intervals

{5653'31’%5:991}7 l€{1727"'7Q}7

and the charge v satisfies the condition
v(ry, b, )| < M, te'? € S. (3.1)

Then
‘/Sfdu‘ < 2wM<\f(r2,¢z)\ + [ f(r1,10)| + max %f(rw)‘ n
%f(rza@)‘ ‘|‘/r:2 <Hl£LX >dt>

Proof. Without loss of generality we can always assume that the sequence {i;} is increasing.
Set

2

dpot

F(t2)| 4 |2 £t )

+ max
[

v(t) = 1/({7’6M r <7< t}), led{1,2,...,q}, @1 =12, vea(t) =0.

Then it follows from (3.1) that

‘Z Vm(t)‘ <M (3.2)
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for every [ < g+ 1 and t € [ry,72).
Given a function g(¢) € C*thy, 5], we estimate the sum

q+1 q l q+1

> gleom(t) =Y (g(eir1) = gler)) <Z Vm(t)> +9(pge1) Y vanlt) (3.3)

=1 =1 m=1 m=1

where the right-hand side is obtained by the classical Abel transform of sum. By the mean-
value theorem we get

q

q
_ < o) - <2 (o). 3.4
;‘Q(WH) g(en)| < 3 Mrgggm\g (@) - e — @] < W¢lrgg§¢2\g(¢)\ (3.4)

In view of (3.3), (3.4) and (3.2) we obtain

> glenult)] < 20 (max|g'(2)] + lg(12)]). (3.5)

Using the integration by parts, we obtain

g+l q+1
/ Fdr =" / Pt o)du(t) = 3 Fra () -
5 =1 Y"1 =1
g+1 g+1

=3 St = [ 73 (G 0ot

Further we use inequality (3.5) in order to estimate two first sums in the right-hand side
with ¢g(¢) at significance level f(rq,¢) and f(rq,p), respectively. In order to estimate the

integrand of the last integral we use also inequality (3.5) with g(¢) = 2 f(t, ) for each fixed
t. Thus,
‘/ fdl/‘ < 27rM<maX if(rg,cp)‘) + ‘f(rz,%/)z)‘) +
S B ¢ 10y
—|—27rM<maX if(ﬁa@)‘ + ‘f(rlqub?)‘) +
¢ 10y
ro 82 a

—|—27T]\4/r1 <mgx o0t f(t,c,o)‘ + ‘af(taﬂ/’z) > dt,

and Lemma 1 is proved. O

Lemma 2. Assume that the conditions in the Main Theorem are satisfied. Suppose that
the measures (11 and py is concentrated on the union of finite numbers of intervals of kind
(2.12) withn =k, z = re'’, v = iy — po. Then for every integer p # 0

¥ [0
‘/s( )Re ¢ dv(&)] < 87TArk—:1 max{ri,ri_l_l} ked{l,2,...}.
TksTk41

|pl=* r
Proof. Let ¢ =te'?. By Lemma 1 with

fp

1
flt,o) = —t cosp(p — 0) = r’ Re
(t, ) (v —0) B

~Ipl
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and 1y = ¥y 4+ 21 we obtain
1 1 1
= 17 cos plp — 0) dv(€)| < 2m Ay, (1l + kL +
TN T ] ]
1 Tk41 2,1 p—1 o p
e [ (Pt ol de) = 2w A (v (4 bl Dol 1/0) +
Tk
+rp (14 1/[pl = [pl/p = 1/p) ) =4 (1 + 1/Ip|) Argyy max{ry, v, },
and Lemma 2 is proved. O

§ 4. THE ESTIMATE OF THE INTEGRAL Z, FROM (2.18)

We set z = re'? € S(r,,rns1) and n > 2, 7, > 2 everywhere in this paragraph as far as
the proof of Corollary 1. Besides, everywhere below, numbers const. are generally speaking
different constants which are independent of n, z, N, R.

Divide the integral Z, from (2.18) into a sum of six integrals

I(z) = / log | — €] di(€) — / log [€] di(€) +

[E]<rn_1 [E]<rnt2
S
+ / log |z — &|dv(€) + / ZRep—fpdz/(f)—l-
ra—1<[€|<rngo [€]<rnq2 p=l

> argE—0]>1

T / G(=/€.[a]) di(€) + / log |- — €l di€) = Y I(=). (4.1)

k=1

o2}

[€1>7nt2 ra_1<[€|<rngo
|arg£—0]<1

Estimate [;. The expansion in the Taylor series with the center £ = 0 of a holomorphic
branch of the function log(z — ¢) in the disk || < r,—1 implies

i P
log |z — ¢] :10g|2|—ZRei, €] < rpot. (4.2)
=1

pzP
It follows from (2.8) and (2.18) that
‘ / log |z| dl/(f)‘ < const. |z|" log |z]. (4.3)
El<rn_1

By Lemma 2 and condition (2.2) we get

[}

i ‘ / Re & dv(§) ‘ < const. e Z(TkH)

P
k=1 p=1 S(rk7rk+1) pZ

n— o0

k=1 p=1
SPURRNID D) DY (R LSRRG D
const. —————— ) = cons
k=1 p=1 1 + a)n - m=1 1 + Cl
1| = 2
< const. |Z|a<5 + m) < const. |z]7.

m=2
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The last estimate together with (4.2) and (4.3) give the estimate
‘]1(2)‘ < const. |z]|* log |z]. (4.4)
Estimate /5. Using the integration by parts, by (2.7), it is easy to obtain the estimate
‘]2(2)‘ < const. |z]|* log |z]. (4.5)
Estimate /3. For every polar rectangle
Sk(0) = S(rk, ree1) N {tew s> e —0] > 1}, n—1<k<n+1,

a direct calculations show that (¢ = te')

maX ‘ log |z — tew| < const.,
EESK(O
. const.
maX log |z — te*|| + max log |z — te'”
EESK(6 ‘at 3 | E€SK(0 ac,oat 3 | E

where const. is independent of z, k, 6. Hence, if we apply condition (2.5) and Lemma 1 with
f(t, ) = log |z — te'*] then we get

|I(2) Z\/ 1og|z—f|du<>\_

k=n—1
n41 t

< const.ry_, <10g || + / —|> < const. |z|* log |z] . (4.6)

n—1 |Z

Estimate ;. For 0 < p < [a], by the Lemma 2 (for —p instead of p) and the conditions
(2.2), (2.4), we obtain

[o [o] s
|14(2) ng‘/mw Reﬁdz/ o) :;i‘/ Re |p§|2_p d(€)| <

p=1 7’k 7’k+1
[e] n+1 a [a] n41
< 87TAZ Z max{rk ,Tri1} = const. Z Z b k+1 <
p=1 k=1 p=1 k=1 T
[a] n+1
< const. Z Z P < const.[a]r¥(n + 1) < const. |z|" log |z]. (4.7)
p=1 k=1

Estimate [5. Consider the expansion in the Taylor series with the center £ = oo of
a holomorphic branch of following function of ¢:

[o] 00
def z zP 2P
G(/¢ o)) < log (1 - E> + ;:1: a= 2 e K2

p=[al+1

Hence, for G(z/¢,[a]) = ReG(2/€, [a]) we have for k > n 4 2 by Lemma 2

‘/ . G(z/€, [a])dv(¢ Z / ” Re—dz/(f) <

} |> IR B s
EEEEEr——— const, ———~
T ey = 1

~|P
< const. ri, E % = const. rk+1<

r r
p:[a]+1 k k



ASYMPTOTIC BEHAVIOR OF THE DIFFERENCE OF SUBHARMONIC FUNCTIONS 57

where {a} is the fractional part of o, and const. is independent of k. Summing over & > n+2,

we get
I TP Al
[a]+1 nt2
‘]5(2)‘ < const. |z| o) Z < - > <
n+2 k=n+2
- 1 1—{a} (1 +a)t—{=d
< const. |z|* <7> = const. |z|” < const. |z|”. (4.8)

kz:; (1 +a) (1+a)t-tor —1

Estimate I;. We set

QZ(@):{f:teweS(rk,rkH):0§<,9—(9§ 1}, n—1<k<n+1,
Q;(@):{f:teWES(rk,rkH) c—1 §<,o—(9<0}, n—1<k<n+1.
We confine ourselves by an estimate of an integral over the polar rectangle );F. The integrals
over Q, QF, k € {n +1,n — 1}, can be estimated similarly.
For the convenience we renumber all intervals of type (2.12) from Q7 counterclock-
wise. More particularly, a set of different enumerated intervals p; = [rnem,rnﬂ ewl>, S

{1,2,...,q}, should coincide with the set of all intervals (2.12) situated in @', and ¢; < @141
for 1 €{1,2,...,¢—1}. By (2.3), we have the condition

br;S §@1+1—@l§b_17“;5, l€{1727 7(]_1} (49)
Therefore,
1
§lbr;5 < —0<2b7'r*, for2<1<q. (4.10)
The left-hand side of (4.10) implies

q < const.r;, (4.11)

where const. depends only on a, b, s.
Set v(t) = 1/( [r,etet teter) ) Then

| ol - glavie) =
Q)
T’n+1 . q T’n+1 .
= / log |z — te'| din(t) + Z/ log |z — te"| dvi(t) = J + %, (4.12)
n l:2 n

and, according to (2.5),

Zl/l(t) <const.ry, foralltand 1 <k <m <gq. (4.13)
=k

Estimate J. In order to estimate the integral .J over the interval p; from (4.12) we use
the traditional method of normal points.
Suppose that the point z is (N]|z|?, 1/2)-normal with respect to the measure jt; + iz, i.e.,

1
p1(z, 1) + oz, 1) < N|z|Pt for every ¢ < §|2| (4.14)
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where 8 = a—14+s>p—12> —1 because s > p —a and p > 0. It follows from [14,
§ 2, Normal Points Lemma] that the set of points that are not (N|z|?,1/2)-normal with
respect to the measure p1; + 2 is contained in a countable set of disks D(zy, tx), tx < |2x|/2,
satisfying the condition

const. const.
t, < RFP = = Ritro=s 4.15
> < - (4.15)
R/2<|z|<2R

for sufficiently large values R > Ry.

Let ft; and fi; be restrictions of two measures p; and g, respectively, on the set Dg =
D(z,1z]7/2) N p1. In particular, |2|77/2 < |z|/2 because —3 < 1. Then, by (4.14), using
the integration by parts, we get

log |z = €] d(jin — f12)(€)| < (/ll(z,|z|—ﬁ/2)—g2(2,|z|—ﬁ/2))10g1|2|—ﬁ n
Dg 2

2l t t
—I—/ i) 1—”2(27 ) dt < const.N log |z|. (4.16)
0

Let 71 be the restriction of charge v on py \ Dg. By (4.13) we have ‘1?1 (t)‘ < const.ry , for
all t € [r,,7,41) and |z — et > |z|7P/2 for te'¥t € supp 2y. Hence, using integration by
parts, we get the inequality

Pt . ) . t—rcos(pr —0)
/r log |z — te W1|d1/1(t)‘ < const.ry <10g|2| —I—/231 ‘ P ‘ dt> (4.17)
where p; = {t| te'?1 € supp 151}.
For | — 8] < 1 we have the inequality
t—rcos(p—0 t —r 4 2rsin2e=? t— 1
|z — teie|? |t—r|2—|—4rtsm2w7 [t —r|>+certlp — 012 2t
where ¢ is a positive constant.
Assume ¢ — 0 > $|z|7°71. Then inequality (4.18) implies
1 ‘t —rcos(pr — 0)‘ nt1 |t —r|dt 1 Taat
. dt < —1 <
[ e s [ e e e S
ntl dx
< 2/0 ol + const. < const. log || (4.19)

where a positive constant ¢; depends only on « and (3.

In the case @1 — 6 < 2]2|777" we have supp 7 C €' - {[rn,r —yr P U [r + v~ r,p4]}
where v is a positive constant. Consequently, in that case, if we use inequality (4.18) then
the last integral from (4.17) can be estimated as

t— — 40 N N - — 40
/ ‘ rcoS(?l )‘ di — </ _|_/ >‘ TCOS(?l )‘ di <
P1 |Z - t62<m|2 Tn r |Z - teup|2

+yr=F

r—ryr =P Tt dt Tntl M+l (g
< </ _|_/ >7-|-/ —dt < / — + const. < const. log |z].
n r B |t - T| 2t =8 T

+yr— n
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Hence, according to (4.16)—(4.19) the integral .J over the interval p; from (4.12) can be
estimated by const. N log |z| 4 const. |z|* log ||, when the point z = re¢® € S(r,,r,41) with
r, > 2 is not (N|z|?,1/2)-normal with respect to the measure p; + 1o, i.e., in view of (4.15)
outside exceptional set (2.7).

Estimate Y. Now we estimate the rest of the sum ¥ of integrals over intervals p;, [ > 2,
from (4.12). In this item we will use an improvement of technique of the proof of Lemma 1.

Using integration by parts to every integral from (4.12) for [ > 2 we obtain

n41
N e
q n41 t 0)
i — 1 cos(p; —
+‘Zm(rn)log|z e +‘/Z P l(t)dt‘ (4.20)
(=2

It follows from (4.9) and (4.10) that for ¢ € [r,, 741)

t|ewl _ eiw+1|

|z — tete]

tlo — il - const.
[ri=s =

‘log |z — te 1| — log |z — teMH < log <1 + > < const.

where const. depends only on «,b,s. Further we use this estimate and the Abel transform
of sum in order to estimate the first sum in the right-hand side from (4.20):

q 9—1 l
‘ Z v(rpyr)log |z — g et| < Z‘log |z — te 1| — log |z — tele ‘ Z Vi (Tat1)| +
=2 (=2 m=2

l

Z Vi (Tt1)

m=2

+ const. log |z — te'#9|

q—1 {
const.
S E l ‘ E Vm(rn+1) +
(=2 m=2

!
< const. rl, (log ¢ + log |z]) < const. |z|* In|z|

rn+1

m=2

where we use (4.10), (4.13) and (4.11). The second sum in the right-hand side from (4.20)
can be estimated just as the first one.
It follows from (4.9)—(4.10) that for ¢t € [r,, rpy1)

t—rcos(pr—0) t—rcos(pipr —0)
‘ |Z—t€i‘pl|2 N |Z_tei@l+1|2
Nr+wu—rmm@H;Wsm@Hﬁw4€‘

2
|z — tetv1 2|2 — teivr|?

\g

<

[t — r|lr2=2

<|t — 24 c2l2r%—25>2

r2[t —r||lews — illpip — 0|
(It = r[2 + Lrt]pr — 0]2)"

const.

< const.

where the positive constant ¢ depends only on a,b,s. Using the Abel transform, the last
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inequality and (4.13) we get

t—rcos(pr—0)
‘/Z |z — teien|? l(t)dt‘ =

n41

!
t— .y
ZVm(t)‘dt—l—const.r;‘_l_l / | TCOS(‘{Q!J )|dt.

|z — tetwa|?
m=2

1
[t —r| lr2=2
< const. Z n
= _ 2 272,.2—2512
J & T /

The last integral can be estimated just as in (4.19). By (4.13), the first integral in the
right-hand side can be estimated by

const. r Z/ 2 25 )dt
ntl (t—r) —|—c2l2 2~ 25)2

L —r\2
The change of variable x = < r > shows that the last sum is equal to

clrli—s

q 1/ dx < t.1 < t.log |2|
g — —— < const. lo const. log |z
122l (x+1)2 = 84> &

where for last step we use (4.11).
Thus, we have the estimate

‘ / log |z — &| dl/(f)‘ < const. N log |z| + const. |z]” log |z] < const. N|z|” log |z|
Qi)

when z lies outside exceptional set (2.7).
Main Theorem is proved.

§ 5. PrRoOOFs OF COROLLARIES 1 AND 3

Proof of Corollary 1. Choose v > v and set s =1+ p —a++', N =1. Then, according to
conditions (1.6), it is easy to construct an s-narrow system (2.1) satisfying conditions (2.5)
with py = g and pe = v. Further, it is enough to apply Main Theorem. O

Proof of Corollary 3. If we put A = y,, in Corollary 2 then there is a d-subharmonic function
v with the Riesz charge g, > 0 satisfying (1.9) outside E, = J,—, D(zk. tx), tx < |2x]/2,
and (1.8) holds as well. Then A(u —v) = 0 and by Weil lemma the function H = u — v is
harmonic. In view of (1.9) |u(z) — H(z)| = |v(2)| = O(]z|"log|z|) as = — oo outside E.,.
Hence

H(z) <u(z)+ O(]z]"log|z]) as = — oo outside E,. (5.1)
In view of (1.8) there is an increasing sequence of positive numbers r; — oo such that
rer1/re = O(1), B — oo, and z ¢ E, if |z] = rg. Therefore, by (5.1) we get H(z) <
u(z) + O<|Z|plog |Z|> when |z| = r, > 1, and H is the harmonic function of order p. Every

harmonic function H of finite order p can be represented in the form H = Rep where p is
a polynomial of the degree < p. Therefore, |H(z)| = O(]|z|?), = = co. The last relation
together with (5.1) complete the proof. O
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Remark. Analogues of results of this paper can be proved for an arbitrary proximate order
a(r) — o (r — o) instead of a constant o > 0 in (2.5) and (1.6). For example, in this
case, the right-hand side of relation (1.7) need to be changed by

r +co
O<ra(r) log r 4 [ /ta(t)_[a]_l dt + el / (o®-lel=2 dt), r=|z| = 4o0.
0 r

§ 6. COUNTEREXAMPLES

Let w; be a function in S H, with the Riesz measure y; in the following two counterexam-
ples (see the introduction) for the implication (m)=-() of R.S. Yulmukhametov’s criterion

from [10, Theorem 1].
Note that relation (1.5) is informative only provided that v < 2.

Counterexample (for o = 0). Let p > 0, and §,, is the Dirac measure, i.e., the unit mass
at w € C. Consider uy(z) = uy(z) + log|z — w|, z € C. Then uy € SH,, and its Riesz
measure is fio = i1 + 0. For this case we obtain

0, for R < |z — w|.

R
O
N(ZvR;MlvﬁLZ):/ @drz /R 1
0 T
|

—dr  for R > |z — w|.

z—w| T
Hence, under the notation log™ ¢ L max{0,logt}, if R < |z| then

]
|2 — wl

when |z —w| > |w|. Thus, relation (1.4) is realized outside the exceptional set E = D(w, |w|)
for which the sum on the left-hand side of (1.5) with z; = w, t; = |w| and k& = 1 vanishes for
every R > 0. In other words, relations (1.4) and (1.5) hold for each v with o = 0, C., = log 2
and £, = D(w, |w|> = D(z1,11), i.e. in this case assertion (1) is fulfilled for o = 0.

Now let us suppose that, given v < 1, there exists a harmonic function H such that there
are a constant C” and an exceptional set B! C |J;_; D(zx,x) for which (1.5) holds and

<log™ 12 <log <1 +

|z —w| — |z — wl

N(z, R, piz) < log* ) < log2

‘ul(z) —uz(z) + H(Z)‘ = ‘—log |z — w| + H(Z)‘ <, z¢ L. (6.1)

Then by (1.5) and v < 1 there exists a sequence of positive numbers ry, r, — 400, k — oo,
such that z ¢ E! when |z| = r. Hence by (6.1) we obtain H(z) = O(logry), |2| = ry — +oo.

But such harmonic functions in C is a constant. The last fact contradicts to (6.1).

Counterexample (for ¢ = 1). Let p > 1. Consider the subharmonic function ug(z) =
log‘l/F(—z — 1)‘ where I' is the classical gamma function. Recall that 1/I'(—z — 1) is an
entire function of order 1 with zero set N and all zeros of this function are simple [2, Ch. I,
§ 11]. The latter means that the Riesz measure of the subharmonic function wg is the sum
of Dirac measures >~ &, = pio € M. Set uy = uy + up. The measure py = g + o is the
Riesz measure of uy € SH, because p > 1.

Given v < 2, we construct the exceptional set £, = U2, D(k,

(k + 1)72) for (). If
z € F., then there is a number k, € N = supp o such that |z — k.| < (

k. +1)72. Tt follows



62 B. N. KHABIBULLIN

from the agreement v < 2 that |z| > k, — (k. + 1) > k, — 1 and |z — k.| < (2| +2)7%
Therefore, |z — k| > (|z| + 2)""2 for every z ¢ E, and k € N. Besides, po(z,¢) <t + 1 for
every z € C and ¢ > 0. Thus,

R oz, 7) 0, for R < (|z] 4+ 2)72
N(ZvR;MlvﬁLZ):/ ———dr = /R T+1
(1

dr  for B> (|z] + 2)72

0 T
Z|+2)7—2 T

Hence, for R € (0,]|z|) and z ¢ E.,, we obtain the inequalities

B
([=]+2)
which give (1.4) for o = 1.

Set 2z, = k — 1 and t;, = k772 i.e. B, = U2, D(zx, 1) by the construction of E,. In
addition to (1.4) with o = 1, we have

Yooot= ) KT=0RT), R- 4o

R/2<|zx|<2R R/2<k—1<2R

The last gives (1.5). Thus, the assertion () is in this case fulfilled for o = 1.
Suppose now that, given v < 2, there exists a harmonic function H such that there are
a constant € and an exceptional set E! C |J;Z, D(zk,tx) for which hold (1.5) and

‘ul(z) —uz(z) + H(Z)‘ = ‘—log‘l/F(—z — 1)‘ + H(Z)‘ <z, =z ¢ E. (6.2)

In particular, relation (1.5) for v < 2 implies that for every angle S(oo;p, ) o {z =
te 1 o < 0 < Y} # O there exists a sequence of points (, — oo, k € N, such that
(v € S(oosp,10) \ . Since the function log‘l/F(—z — 1)‘ is a subharmonic function of
finite order 1, by (6.2), the function H is the same. Moreover, every harmonic function
H of finite order 1 can be represented in the form H = Rep where p is a polynomial of
degree < 1. Therefore, |H(z)| = O(|2|), z — oo. Hence, in view of (6.2), we obtain
‘log|F —z—1) H— (]2 |) z€ C\ B, z — co. In particular, ‘log|F —(x — 1) H— (I¢k),

k — oo, where the sequence (; is as above. This contradicts to well-known asymptotlc
behavior of the gamma function because for every ¢ > 0 there are constants ¢. > 0 and
r. > 1 such that log |I'(—z — 1)| < —c|z|log|z| as z € S(oo;w/2 + ,37/2 — &)\ D(r.) [2,
Ch. I, § 11].

Similar counterexamples can be constructed also for other values o.
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