Maremaruani Crymgii. T.21; Nel Matematychni Studii. V.21, No.1

YIK 517.547

I. E. CHYZHYKOV

AN ESTIMATE OF A SIZE OF THE SET WHERE THE MODULUS
OF AN ANALYTIC FUNCTION IS GREATER THAN 1

I. E. Chyzhykov. An estimate of a size of the set where the modulus of an analytic function is
greater than 1, Matematychni Studii, 21 (2004) 35-46.

For an entire function f of arbitrary rapid growth we obtain a sharp estimate of a measure of
the set |f(2)| > 1 in terms of the growth of M (r, f) = max{|f(z)| : |z| = r}. The corresponding
example is constructed. We also consider the similar problem for analytic functions in the unit
disc.

N. 9. YmkukoB. OQuenrxa Mepvl MHONCECTNEA, HA KOMOPOM MOOYAb anasumuueckol dynkyuu
boavwe 1 // Maremaruuani Cryaii. — 2004. — T.21, Nel. — C.35-46.

[ast meqoit pyHKIME f CKOIb yroaHo GLICTPOro pocTa B TepMuHAX BozpacTanua M (r, f) =
max{|f(z)| : |z| = r} noayduena TowHas oueHKa MepBI MHOXKECTBa, Ha KoTopoM |f(z)| > 1.
[MocTpoen cooTBeTcTBYIOMMI NpuMep. PaccMoTpena monoGHas 3a1ada 1A aHATHTHIECKUX B
eIMHUIHOM KpyTe (DyHKIMII.

1. Introduction and main results. Let f(z) be an analytic or meromorphic function
in {z: |z2] < R < 400}, M(r,f) = max{|f(2)| : |z] = r} be its maximum modulus,
T(r,f) = m(r, f) + N(r, f) be the Nevanlinna characteristic of the function f (m(r, f) =

1

o 0% Int |f(re?)| de, N(r, f) is Nevanlinna’s counting function of the poles).

The order p and the lower order p of a meromorphic function in C, f # const, are defined

by the formulas

o= Tm 2LOA g RIS

r—+co  Inr rotoo DT

If f is an entire function, then one can take T'(r, f) in the definition of the (lower) order
instead of In™ M(r, f). The Nevanlinna deficiency and the quantity of deviation in the sense
of V. P. Petrenko, which characterize the rate of approaching f to oo, is defined as

. m(r, f) . InT M(r, f)
6(o0 = lim ——= 00 = lim ———~~
( 7f) T_TOO T(T'7 f) 2 6( 7f) T_TOO T(T'7 f) 2

respectively.
Let I' ={z:|z] =r}, 0 <r < co. For a function ¢: Ry — R we put

D.={z€C:In|f(2)| > c(|z])}
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What can be said on a size of the set D, depending on ¢(|z])?7 The question has been
considered by many authors in different cases.

An approach consists in estimating of the angular measure of D. N T', as r — +oc0. In
1965 A. Edrei [1] introduced the notion of the spread of a meromorphic function

o(oo, f) = lim mes{p:re' € Dy},
r—+0oo
where Do = {z: |f(2)| > 1}.

In 1973 A. Baernstein [2] with the aid of introduced by himself *-function obtained the
sharp estimate (the so called spread relation) for this value via the lower order p and the
deficiency é(o0, f): o(o0, f) > min{27r, %arcsin \/5(oo,f)/2}. It had been conjectured, in-
dependently, by Teichmuller and Edrei. The spread relation remains valid if in the definition
of o(c0, f) we take an arbitrary ¢(|z|) satisfying |e(r)| = o(T'(r, f)) (r — +00), instead of
¢(|z]) = 0. Therefore, there are two principal cases ¢(r) = ¢ = const and ¢(r) = aT'(r, f),
a € R. In the second case, sharp estimates were obtained in [3] in terms of a, o > 0, and
the lower order p even in more general situation when In |f(2)| is replaced by an arbitrary
d-subharmonic function u(z) of the lower order p. If o < 0, the problem is still open (see [3]).
. I. Marchenko proved a sharp estimate for o(oo, f) via quantity of Petrenko’s deviation
B0, f) instead of §(o0, f) [4].

Another, more old, approach consists in estimating the area of D.. It is based on Car-
leman’s method [5]. Let ¢(r) = ¢, E={r: I, ND.,=1,}, £* =[0,00)\ E. If r € E*,
then I', N D, = |_|Z(:r1) Ak(r) where Ag(r), k € {1,...,n(r)} are open arcs, the components
of I' N D.. Let r;(r) be their lengths. For r € E* we define 0¢(r) = max f1(r). The value

0¢(r) is related to the growth of f in the following way [8] (see also [9]).

Theorem A. Let f be an analytic function in {z : |z| < R}, ¢(r) = const, and 0;(r) be
defined as above. Then for an arbitrary a = a(r), 0 < a(r) < 1, we have
dt

1 1
IHIHM(T) >7T/m+§lﬂlﬂﬁ+[((ro), T0<T<R, (11)

*
T

where EX = E* N [ro,a(r)r], K(ro) is a constant depending on rq and the function f only.

Remark 1. In the case when a(r) = const, and the function f is entire, Theorem A is proved
in [8, Theorem 1]. But the proof is valid for the formulated assertion as well.

Using this theorem, A. A. Gol’dberg in [10] proved the conjecture of W. Hayman stating

that the condition - y
rdr
- 1.2

/ Inln M(r, f) < Feo (12)

defines the minimal growth providing finiteness of the area of D., ¢ = const. An example
constructed in [10] shows that condition (1.2) cannot be improved, more precisely, for any
continuous positive nondecreasing functions ®(r) on [0, c0) satisfying [, (®(r)) ™ rdr < oo,
there exists an entire function f such that Inln M(r, f) = O(®(r)), r — oo, and the area of
D, is finite for an arbitrary constant ¢ € R.

A result in another direction is due to A. Edrei and P. Erdds. Results from [11] imply
the following assertion
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Theorem B ([11, Corollary 1.1]). Let f be an entire function. If there exists a constant
¢ € R such that the area of D. is finite for ¢(r) = ¢, then

> 2.

Inlnln M(r, f)
lim

oo Inr

In [11] it is proved also that under the condition Iim InInln M(r, f)/Inr < 2 the area of

r—r0o0

the set closer to {z : r < |z| < 2r,In|f(2)| > $T(r, f)} is at least r? for sufficiently small
d > 0 and all large r.
It is not difficult to show that (1.2) implies lim Inlnln M(r, f)/Inr > 2. Therefore

r—+4co
Theorem B is a consequence of the mentioned A. Gol’dberg’s result.

Using estimate (1.1) in the paper [12] the following theorem is established.

Theorem C. Let f be an entire function of order p (1 < p < o00) and A(r) denote the area
of the region Do N{z:|z| <r}. Then

Note that A(r) > [ 0(¢)tdt.
The estimate given by Theorem C is sharp. For the Mittag-Leffler function F,(z) of

order p € [1/2,00) we have A(r) = %rz(l +o(1)) (r — o).

The latter results imply that the set D. can have zero plane density for entire functions
of infinite order. The question arises: what is the sharp below estimate for measure of the
set D.N{z:|z] <r}asr — +oo, in terms of growth of M(r, ) without restrictions on the
growth?

We generalize Theorem C onto the case of entire functions with arbitrary rapid growth
using the method from [12].

") dt
Theorem 1. Suppose that the function A(r) = / %, where A(t) is nondecreasing
1

continuous, and A(t) > 1 for t > 1, satisfies

A<r<1 . A(lr)» ~ A(r) (1.3)

- "X (D)0 () dt
Iflimwgl,thenli_mfl (1)0,(1) > .

AL TG T

Inln M — [TA)0 ()t dt

If lim L(T) <1, then lim fl (1)0,(1) > .
) AT

Remark 2. For A(t) = X € [1,00) it is easy to deduce Theorem C from Theorem 1 (see [12]).

Remark 3. Condition (1.3) does not restrict the growth of the function A in any manner.
For example, the condition 7A’(r) = o(A*(r)) (r — oo) is sufficient for (1.3).
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Corollary 1. If
— Inln M(r, f) .

lim
r—00 re

then

(Ve>0): A(r) > (m—¢) 7Y = 0.
Usually, the order of an analytic function f in the unit disc is defined as

_ o Wt M) LAY
pulfl= lim = a5 o prlfl = Tim ==

(1.4)

Since for meromorphic functions in the disc and of finite order of growth o(oo, f) can
equal zero even when (oo, f) > 0, in this case in [6] the following analogues of the spread

was introduced by I. I. Marchenko and A. I. Shcherba in [6]:
mes{y : In|f(re?)| > te(r)}
2(1 —r) 7
with ¢(r) = T(r, ), e(r) = T(r, ()1 = 1)y e(r) = WM(r, ), 0 < 7 < 1, 1 € [0,00).

Estimates obtained in [6] for w(?, f) in terms of Petrenko’s deviations and Nevanlinna’s
deficiencies are sharp for ¢t = 0.

w(t, f) = hm arctg

In this connection we should recall V. Ya. Eiderman’s result on estimates outside of
exceptional sets of d-subharmonic functions in the unit ball in R™ [7].

Let B(r) = {x € R™: ||z|| < 1}, r > 0, where || - || stands for the Euclidean norm in R,
and mes; F means k-dimensional Lebesgue measure of a set F.

Theorem D. Let u(x) be é-subharmonic in B(1), P(t) be continuous function on [0, 1) such
that P(t) T +oo (¢t T 1). Then there exists a set E C By and a constant A depending on m
only with the following properties:

a) u(xz) < P(|«|)T(|x|,u) when « € By \ E;
b) mes,,_1(FEN{x e R” :||z|]|=r}) < A/P(r),0<r<1;
c) mes,(EN{x e R™:r <|x H<1}<Af1 dt ,0<r <1,

In particular, Theorem D implies that for a functlon f meromorphic in the unit disc we
have mes{p : In|f(re’?)| > T(r, f)/(1 —=7)} = O(1 —r)asr T 1.

The class of all analytic (meromorphic) functions in the disc of positive finite order has
not such good properties as the class of all entire (meromorphic in the plane) functions. In
particular, pr[f] < pm[f] < prlf] + 1, and equalities in both inequalities are possible.

The inconvenience can be dropped, if one accepts the following definition of the order
(similarly, lower order) of an analytic function,

Jlfl= Tm In* In* Int M (r, f) (1.5)

r——1-0 —In(l —r)

For analytic in the unit disc functions the following result by K. Arima [§] is known.

Theorem E. Let f be analyticin U ={z:|z| < 1}. If F{l 0s(r)/(1 —r) < 2m, then either
r—l-

) . InlnM(r, f)
|f(Z)| < 1 1m U, or rl_l}_fln_m
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Prof. O. B. Skaskiv indicated that the last theorem admits the following generalization.
Let B be the class of all nonnegative nondecreasing on [1, 00) functions v such that v(2t) =

O(y(1)), Int = o(y(1)) (t = +00).
Theorem F. Let f be analytic in U = {z: |z| < 1}. If v € B and

b = Inf¢(r)

> 1,
r—l1— 7<1i7’>

then
. Inlnln M(r, f)
lim

> 1.
r—l- 7<1i7’>

This result is sharp in the sense that there exists an analytic function f in U such that

Infe(r) ~—(1-— r)_l, Inlnln Ms(r) < (14 0o(1))

— 11—
L e
(see Example 3).

The method of the proof of Theorem 1 can be applied to analytic functions in the disc.
But it does not yield a sharp estimate in a class of functions of finite order of the growth by
definition (1.4), but yields that for functions of positive order by definition (1.5).

Theorem 2. Suppose that the function ®(r) = for @(t)dt, where p(t) is nondecreasing,
continuous for t € [0,1) and
lim ()1 - 1) >0,

r—1—
satisfies |
—r
o(r(1+ 0] )~ o), - (1.6)
[ 2 (0)0,(1)dt
— Inln M(r) ) Of(p()f() T
If im —————= <1, then lim > T
s () R L+ 5t
[ 2 (0)0,(1)dt
. Inln M(r) _—Of(p()f() T
If im ————= <1, then lim > T
r—1— (I)(T) r—1— (I)(T) 1—|— m

Corollary 2. Suppose that conditions of Theorem 2 are fulfilled, and py[f] = +o0o. Then

P (£)0;(t)dt
llm —— > 7.

r—1— (I)(T)

o 5

Corollary 3. Suppose that conditions of Theorem 2 are fulfilled, and py[f] = +o0o. Then

lim ¢ (1)0,(1) = 7.

r—1—

The proof of Theorem 2 is similar to that of Theorem 1.
Remark 4. Condition (1.6) does not restrict the growth of ®(r),
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2. Proof of Theorem 1 and Corollary 1.

Inln M
Proof of Theorem 1. First, suppose that lim kil UV K( )( 7) < 1. Choose a(r) =1 — 1/A(r).
r—00 'S

Using the condition on A, we obtain
Ala(r)r) ~ A(r), r— oo. (2.1)

For chosen a(r) Theorem A yields

Inln M(r) > W/% — (% +o(1))InA(r), r— +oo. (2.2)

T

where E* = E* N [rg, a(r)r]. Without loss of generality we may assume that rq > 1. By the
Cauchy-Bunyakovski inequality

(f, ) = [ 240

Therefore, applying (2.2), we obtain for r > ry

/* wdt s (/ Ait)dt)?/ lﬂ - </ )\(tt)dty 1H1HM(T):1H1HA(T) 23)

' . 10(1)

Define 6(r) = 2r for r € F, and let £, = E N [ro,a(r)r]. Then

/: OON() /TO“““)?“ A2(tt)0(t)dt B 27T/ vt(t)dt.

t

T

From the last inequality and (2.3), taking into account the inequality A(¢) > 1, we deduce

o N0 () 7 (fy, 2dr)
/ fdtZZW/ —di + P!

>
Inln M(r) + InlnA(r) —

A(t) ( — [, i+ O( ))2
Zw/ert—l— lnlnM()—l—o(A( M , T — 00. (2.4)

For the set F we define

1 A(t)
wr(E) = / ——=dt.
(&) Ar) Jgopg 1
Dividing both sides of (2.4) on A(ar), using (2.1), one can obtain (R = a(r)r)

R (1)0)
/m L r((B) o))
ARy 2 TeRlE) T+ o(1) ’

R — 4o0. (2.5)
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Since ppr(E) € [0,1], and min]{m,c + (1 — p)*} = 7, we have

w€elo,1
"Xt
/ (Hoe)
1

t
lim >
r—00 A(T) -
— Inln M
If lim %)(T) <1, then (2.5) holds on the corresponding sequence and we are done.
r—co r

O

Proof of Corollary 1. For A(r) = ar® we have A(r) = r* — 1. For A(r) being the area of
{z: |z| > 1,|f(2)| = 1} the inequality A(r) > B(r) = | 0(t)tdt holds. On the other hand,

/lr e /1 FeN()dt = o /1 12°724B(t) =

[
= o*B(r)r**™? — 2a*(a — 1)/ B(t)t**3dt < o*B(r)r**?
1

Applying Theorem 1, we obtain

/T Ltt)e(”dt > (m—)A(r) = (T —&)(r* — 1), 7 — +oc.

1

Thus

O

A(r)rm_z > (m— 5);—2, r — +o0o.

For a = 1 we have A(r) > (7 — e)r. O

3. Examples on sharpness.
FExample 1. We construct an example showing that the constant 7 in the estimate given by
Theorem 1 is the best possible. The example is a modification of that constructed in [10].
Similar methods were also used in [11].

Let [(r) /" 400 (r — +0o0) be a positive differentiable function on [1,c0) such that for
some ¢ > 0 there exists r9 > 0 such that for all r > ry

) < K 1+

1
l2(r)> ~U(r), 5 foc. (3.1)
Note that the imposed conditions provide some regularity of the growth only, and does not
restrict the rate of the growth [(r) as r — 4o00. In particular, it follows from (3.1) that

S [0,
/1 Bl dr§[3—|-[2/1 e < o (3.2)

Theorem 3. Let a nondecreasing unbounded positive function A(x) on [1,00) satisfy con-
ditions (3.1), (3.2) with I(r) = X(r)/2 and A(r) = [ M(t)t™"dt. Then there exits an entire
function f such that Inln M(r, f) = (1 + o(1))A(r) (r — o0) and

T ()N (1
[,
lim & =T

o0 A(r) :

where 04(r) is defined above.
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Proof. In the z-plane (z = x 4 iy) we consider the curvilinear substrip
S(a)={z=re¥ 1ol < 5= h q>0
q) =3z=re p| < 200 ) q :

Let

S(Q)ZIHS(Q):{“)_“JFW —00 < u < 400, |v] < 2;(1”)}

here with v = Inr, v = ¢. We need the following theorem of S. Warshawski [13].

Theorem G. Let w(x) be positive and continuously differentiable for all x and suppose
that w(x) satisfies the conditions w'(x) = o(l) (z — 4o0) and fo @) g < 4o00. Let

w(ac)
¢ be a conformal mapping of the curvilinear strip {w : |Imw| < w(Rew)} onto the strip
K ={¢:|Im(| < 7/2} in such a way that ((z) — +o00 as z — +oo. Then there exists a

real constant k such that

a [ dt TV
ut)=kFk+ — — 4 0 u 0.

According to (3.1) and (3.2) the function w(u) = 7/(2[(e")) satisfies the conditions of
Theorem G. Let us apply it to the domain 5(1), and let ((z) maps g(l) onto K.

Consider the function F(z) = expexp{2((Inz)} in S(1), here In z is the principal branch
of the Ln z in S(1).

By the Warshawski theorem we have

w [ dt T
((Inr i) +2/0 w(t)—l_ZZw(lnr)—l_O( )

= /lm l(e"Ydt + Fk+ipl(r) +o(1) =
:/17’ l(t—t)dt—l-k—l-icpl(r)—l-o(l), lo] < 2[( ), r — 4oo. (3.3)
Hence

In|F(z)] = In|expexp{2((Inz)}| = Reexp{Zk +2 /j @dt + 2pl(r) + 0(1)} =

")
= eXp 2k—|—2 (Tdt—l—o COS (2pl(r) 4+ o(1)) =

_ exp(2L(r) + O(1)Heos(2pl(r) + of1)). A< gy T b 34)

The following Cauchy’s type integral determines in the domain C\ S(3/4) an analytic
function

flz) = L Fir )dT

2mi T—z
_95(3/4)
The integral is absolutely convergent, because for 7 — oo, 7 € 95(3/4) from (3.4) one can
deduce

o | F(r)] = —%expmw o)}, (3.5)
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Then, the arguments repeat those from [10, p. 516-517].
The function f admits an analytic continuation to an entire function, which we denote
by the same symbol, and is equal to

| e - ¢ S,
f(z) = ~95(3/4) ] 56
ﬁ f(_ idT +expexp{2In((z)}, 2 € S(3/4).
—85(3/4)

In fact, let S¢(2) = S(3)\ {2z : |z| < ¢}, ¢t > 0. Then

_ 1 F(r)
ft(Z) 27 / T — ZdT
—95.(3/4)

is an analytic continuation of f(z) to C\S(2)U{z : |z] < t}. For |z| <t we put f(2) = ful2),

f is entire. Moreover, for |z| <t by Cauchy’s residues theorem,

f(z) = L / @dT = L / malT + expexp{2((In z)}.

27 T —z 27 T—z
—95.(3/4) —95(3/4)
We write
1 F(r) 1 1 TF(r)
— dr = — d dr. 3.7
271 / T—z T 2miz / Flr)dr + 2miz / T—z T (3.7)
—95(3/4) —95(3/4) —95(3/4)

Since A(t) /* 400, we have Int = o(L(t)) (t — 400). This together with (3.5) yields
/ | F(7)]|dr] < +o0, / ||| F(T)||dT| < +oo. (3.8)
_95(3/4) _95(3/4)

If the distance from z to 95(3/4) is greater than 1, then by (3.5)

L,

27 T —z
—55(3/4)

= 0(1). (3.9)

If 2 & S(3/4), 2 = re*, » € (0,7/2), r > 1, and the distance from z to d5(3/4) is not
greater than 1, then we denote by K(z) the boundary of the domain

il =l <l < argp < o)
T = ) arg :

161(|7]) 8l(|7])
If |¢ —re®] < [7%(r), then |arg ¢ — ¢| < Ksr~'7%(r). Therefore, {¢ : [¢ — 2| < [72(r)}
does not intersect 95(5/8), because for ||7| —r| < [72(r), 7 € 35(5/8) the second condition
(3.1) provides arg T ~ 57/(16l(r)) as r — 4o0o. Thus, we have |7 — z| > [7*(r) for 7 €
K(z)\ 05(3/4).
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Using Cauchy’s theorem, (3.9), (3.4) and the last estimate we obtain

L / L(T)dr‘ - | = / gy L / L(T)dr‘ <
2 T—z 2 T—2z 2 T—2z
_95(3/4) _95(3/4) K(2)
1
<0(1)+ —/ Mdr < O(1) + Kel*(r) max {|7||F(7)|}r = (3.10)
21 Jgepnos@ay 1T — 2 TEK(2)
=0(1)+ [&”67“2[2(7“) exp{cos gw exp(2L(r) + O(l))} =
=0(1)+o(l)=0(1), r— 4.
Similarly we deduce
1
—/ g 200), -5 (3.11)
271 _as@/4) T— %

in the other cases. In the case when z € S(3/4) we deform the integration contour such
that it coincides with a part of S(1) instead of S(5/8) in the annulus {7 : ||| — r| < 1}.
Estimates (3.6)—(3.11) imply

o(2). = 5(3/4),
flz) = 1 ~ Z — 00. (3.12)
O (;) + expexp{2((Inz)}, z € 5(3/4),
Hence, similarly to (3.4), we arrive to
Inln M(r, f) =2L(r) + O(1), r — oo. (3.13)

Relation (3.12) implies that

ef(t)NT(t):W7 t — +o0.

Together with (3.13) it yields the assertion of Theorem 3 with A(r) = 2L(r), A(r) = 2{(r). O

Remark 5. For o = 1 the conclusion of Corollary 1 is also sharp, because in this case we

/T wdt _ / 0(t)tdt = A(r) + O(1).

1 1

have

Now we construct an example which shows that the constant © from Corollary 2 is the
best possible.

FExample 2. Let f be the entire function constructed in Example 1, fi(w) = f(ﬁ), w E

D ={w: |w| <1}, and Fi(w) = F(1/(1 — w)). Suppose that [(r) satisfies the additional
condition l((l + 0(1))7“) ~A(r) (r — 4o0).

The function z = 1o, maps {w : |w| =d}, 0 < d <1 onto the circle
—w

Cd:{z: ‘Z—lde‘zl_ddZ}C{Z:|Z|<ﬁ}.
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Therefore,

Inln M(d, f,) < mmzw(li—d,f) - 2/m M g4 o),

1 [
Indeed, the inequality can be replaced by the equality. In view of the asymptotics for F in
order to find an asymptotic for 0 (¢) (t — 1—) it is sufficient to estimate the intersection
{w : |w| = d} with the preimage of the domain S(1) under the mapping z = 1/(1 — w). Let
W be the part of the preimage of S(%) under the mapping that is contained in D. W is
a curvilinear angle with the vertex w = 1 symmetric with respect to the real axis.

The points of the boundary 95(%) have the form re*+0) where pi(r) = :I:ﬁ.

Let wy = wi(d), w- = w_(d) be the complex conjugated points from W NT'y, for which
Rewy = max{Rew : w € 9W N Cy}. Let zy, z_ be their preimages. Since zp € 95(3),

zy = re=0) where pi(r) = :I:ﬁ. Moreover, the points z4 belong to the circle Cy, i.e.
re'mim — | = 1_dd2. It implies that r = IT_S) (d—1-). But wy =1— i, hence
! ! (= 1) = sin o7 = (1 o) T (3.14)
mw; —Imw_ =Im(— — —) = —sin = o(l))———— :
* 2. zy ro 2l(r) 2[(1"‘29))

Since [(x(1 4+ o(1))) ~ l(x) (x — +00), and the radian measure of the smallest arc of
the circle Cy with the ends at wy and w_ is equivalent to Imw; — Imw_ as d — 1—, from

(3.14) we deduce that

Gfl(s)w%, s—1—.
For
= s (L (2
CI)(S):Z/I @dt:2/o 1<1—_tt> dt, 99(5):21<1__58>

we have the equality in the inequality of Corollary 2.
Ezample 3. For A(t) = ¢’ from Example 2 we obtain sharpness of Theorem F.
The author thanks Prof. O. B. Skaskiv for stimulating discussions.
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