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We prove upper estimates for the number of separated maximum modulus points on the
circle |z| = r of both entire and meromorphic functions of finite lower order.

E. lexanosud, 1. Mapuenko. O moukar Marxcumyma mMooysf Yeavtr u mepomopdunir Hynr-
yuit // Maremaruani Cryaii. — 2004, — T.21, Nel. — C.25-34.

JlokazaHBl ONEHKW CBEPXY HUNCAA PA3NUIHLIX TOYEK MAKCUMYMa MOAYJA TeJBIX U Mepo-
MOP(MHBIX QYHKINHA KOHETHOT O HUXKHETO TOPHTKA.

Let v(r) denote the number of maximum modulus points of an entire function ¢g(z) on the
circle |z] = r. In 1964 P. Erdés formulated the following question: is it possible to build an
entire function g(z) # ¢z such that v(r) is unbounded? In 1968 F. Herzog and G. Piranian
[6] presented an example of an entire function with v(r) — oo as r — oo.

In this paper we provide an upper estimate of the number of separated maximum modulus
points on the circle |z| = r for both entire and meromorphic functions of finite lower order.

We shall use the standard notations of value distribution theory of meromorphic func-
tions: N(r,a, f) and T(r, f) [4, 8]. In 1969 V.P. Petrenko constructed his own theory of
growth of meromorphic functions. Let us remind the basic terms of this theory.

For each a € C we put :

1
L(r,00, ) = maxlog® |f()], £(r,a, ) = £(r,00, 5= )

The quantity

g £ra )
ﬁ(avf) - lr_mof T(T,f)

is called Petrenko’s magnitude of the deviation of the meromorphic function f(z) at num-
ber a.
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Theorem A [9]. If f(z) is a meromorphic function of finite lower order X, then for each
acC

sin A

A if A>05.

A .
MmﬁgBuy:{ it A<05,

Let f(z) be a meromorphic function. For 0 < n <1 and r > 0 we denote by p,(r, oo, f)
the number of component intervals of the set

{0 log | f(re”)] > (1 =m)T(r, f)}
possessing at least one maximum modulus point of the function f(z). We set:
pn(OO, f) = llggfpﬁ(r7 o, f) and p(007 f) = S{ul}?pﬁ(oov f) :
7
Theorem 1. For a meromorphic function f(z) of finite lower order A,

MmJjSmM(P@£%ﬂ’Q’

where [x] is the integer part of .

Corollary 1. For an entire function g(z) of finite lower order A, we have

p(oo, g) < max([2mA], 1) .

Let now g(z) be an entire function and let M(r, g) = max),=.|¢g(2)|. For 0 <7 <1 and
r > 0 we denote by ¢,(r, 0o, f) the number of component intervals of the set

{0 :loglg(re)| > (1 —n)log M(r,g)}

possessing at least one maximum modulus point of the function g(z). We set

¢y(20,9) = lim inf¢,(r, o0, g) and ¢(oc, g) = Sup s(00, 9)-
n

Theorem 2. For an entire function g(z) of finite lower order A and for 0 < n <1,

g,(00, g) < max ([(2 - ”)WA] ,1) :

n

where [x] is the integer part of .

1. Auxiliary results. For 0 < n <1 we consider the function
un(z) = max(log | f(2)[, (1 = n)T(|z], /),

where f(z) is a meromorphic function in C.

Lemma 1. The function u,(z) is a d-subharmonic function in C.
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Proof. Let g1(z) and g2(z) be entire functions without common zeros such that f(z) = o)
Then we can write

uy(2) = max(log [g1(z)| —log|g:(2)[, (1 = n)T(|z], f)) =

= max(log |g1(2)[, (1 —n)T'(|2]) + log |g2(2)]) — log |ga(2)|-

The characteristic function T'(r, f) is a nondecreasing and convex function of logr for r > 0,
hence the function T'(|z|, f) is a subharmonic function in C [10]. Therefore, u,(z) is a
difference of two subharmonic functions,

Ur(z) = max(log |g1(2)], (1 = n)T'(|z]) + log |g2(2)])
and Us(z) = log |g2(2)]. O

As log M(|z|,g) is a convex function of log r for entire functions, it is also a subharmonic
function in C . Therefore, we have the following lemma.

Lemma 2. Let g(z) be an entire function. For 0 <n <1 the function

v,(z) := max(log [g(2)], (1 — n)log M(|2], g))
is a subharmonic function in C .

For a complex number z = re', put [1]

1 .
m*(rvevuﬁ) = Sup — uﬁ(reup)dg‘ov
|E|=264T JE

T(r,0,u,) = T*(rew) =m*(r,0,u,) + N(r,o00, f),

where r € (0,00), 6 € [0,7], |E| is the Lebesgue measure of the set F and N(r, oo, f) is
the Nevanlinna counting function. Denote by ,(z) for the circular symmetrization of the
function w,(z). The function @, (re') = 1,(r, ) is non-negative and non-increasing on the
interval [0, 7], even in o and for each fixed r equimeasurable with u,(re'?). Moreover, it
satisfies the relations:

aﬁ(rv 0) = max(log M(T, f)v (1 - U)T(Ta f))v

i, (r, ™) = max <log |1(§|1£|f(2)|, (1 —=n)T(r, f)) \
1 . 1 /f .

m™(r,0,u,) = sup — [ u,(re'”)dp = — U, (re'?)do.

) = swp 5o [ ey de = [ i)

|E|=264T m
By Baernstein’s theorem [1], the function T*(r, 6, u,) is subharmonic on
D={re?:0<r<oo0,0<8<n},

continuous on D U (—o00,0) U (0, +00) and logarithmically convex in r > 0 for each fixed
6 € [0, 7]. Moreover,

0 i, (ret?
T7(r,0,uy) = N(r,o0, f), T7(r,m,uy) < (2—=n)T(r, [), %T*(T,Q,un) = N(W )
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for 0 < @ < m, where T'(r, f) is the Nevanlinna characteristic function of f(z).

If for an entire function ¢g(z) we consider the properties of the function v,(z) and its sym-
metric rearrangement o, (re'?) = v,(r, ) in the same way as above we obtain the following
relations:

1

T*(r,0,v,) = m*(r,0,v,) = sup — vn(rew)dcp,
|B|=262T J &

1777(7“,0) = 10g M(T,g), ﬁﬁ(rvﬁ) > (1 - 77) 10g M(T,g),
1 f? :
m*(r,0,v,) = —/ Oy(re¥)dy, T7(r,0,v,) =0,
T Jo
T*(r,m,v,) < (1 —=n)log M(r,g)+T(r,g).

For a real-valued function a(r) of a real variable r let

h —hy
La(r) = lim inf afre HO‘(:; ) = 2afr),
%.

If a(r) is twice differentiable, then
Lo(r) =r—r—a(r).

Lemma 3. For all 0 < n <1, for almost all € [0, 7] and for all r > 0 such that on the set
{z 1 |z| = r} the meromorphic function f(z) has neither zeros nor poles we have

P00 ) Dig(re)

* >
LT (rvevuﬁ) - T 8(9

Proof. Assume that ro is a number satisfying the assumption. Since @,(ro,6) is a non-

increasing function of 6, the derivative W exists for almost all § € [0,27]. Choose

6 € (0,7) such that W exists. If a,(ro,0) = (1 — n)T(ro, ), then @,(ro,z) =

(1—=n)T(ro, f) for all > 6, hence Py

dun(ro.f) _ ) Ag T*(r,0,u,) is a convex function of logr,

56
we obtain LT*(rg,0,u,) > 0. Therefore, the lemma is proved in the case when w =0

or when @,(ro,8) = (1 —n)T(ro, f).
aﬂn(ro,e

Assume now that =272 < 0 and @,(ro,0) > (1 —n)T(ro, f). There exists a set
E(ro,0) [1] such that

1
m*(rovevuﬁ) = _/E( N un(r0799)d99-

27

Moreover,

o uy(ro, ) > ty(ro, )3 C E(ro,0) C{p 2 uy(ro, ) 2 ty(ro, 0)}.

Let us now consider the function F(¢) = log | f(r0e*¥)|. The set {¢ : F(p) = @,(ro,0)} is
finite. Otherwise, there would exist a convergent sequence {¢y } such that F(p) = t,(ro, 8).
As rq is chosen so that there are neither zeros nor poles of f(z) on the circle |z| = rg, the
function F(p) is an analytic function of ¢ for ¢ € [0,27]. Applying the uniqueness theorem
we can state that if F(pr) = @,(ro,0) then F(¢) = a,(ro,8) for all ¢ € [0,27]. This would
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mean that w,(ro,p) = t,(ro,8) for all ¢ € [0,27]. As a result W = 0, which is a
contradiction. Therefore, the set {¢ : F/(¢) = @,(ro,0)} must be finite. This, together with
our assumption that @,(rq,0) > (1 —n)T(ro, f), leads us to the conclusion that also the set

{@ 1 uy(ro,©) = ty,(ro,0)} is finite. As a result,

3 1
m (Tovevun) = %/E( N un(r0799)d997

where FEi(ro,0) ={¢ : uy(ro,©) > t,(ro,0)}.
Let us now consider for r > 0 the function [3]
1
U(r)=—
27T El(ro,e)
We have U(rq) = m*(ro,0,u,) and ¥(r) < m*(r,0,u,) for all r > 0. Hence

Lm™(ro,0,u,) > LU(rg).

wy(r, @)de.

Since the set Fi(rg,0) is an open subset of the circle |z| = rg, it implies that Fy(ro,0) =
Up(ar, Br). As Fag) = F(Br) = ty(ro,0), it follows again from the uniqueness theorem
that the family of intervals (ay, Ox) is finite. Let mg denote the number of those intervals.

The function log |f(2)| is harmonic on a certain neighborhood of the circle |z| = rq as
f(2) has neither zeros nor poles on this circle. Therefore,

1 ﬁk d d '
LY (rg) = o Z ro rd—un(re ‘) dp =
k=1 Y % r=rg

P d d . oo [ Br 0*uy(ro,
o ) R I S I e e
k=1 Y %k r=rg

= _i - [6%(7«07@)]5’“
1 ke

Finally, it follows from our previous considerations that

* 1 2o 6un(ro,<,o) Br
Lim™(ro.0,u,) = LW(ro) = = ; [T

Following the same lines as in the proof of Lemma 1 in [7], we arrive at the following
conclusion

0t (ro, 0
Lm™(ro,0,u,) > —7%.

By definition, p,(ro, 00, f) is the number of component intervals of the set {0 : | f(roe?)| >
(1—=n)T(ro, f)} possessing at least one maximum modulus point of f(z). On the other hand,
mg is the number of component intervals of the set Fi(ro,0) = {¢ : uy(ro,©) > ty(ro,0)}
and ,(rg,8) > (1 —n)T(ro, f). Therefore, we have mqg > p,(ro, 00, f). Also LT*(r,0,u,) >
Lm*(r,0,u,), so we finally obtain

yz (To, 7f) aun(%, )

LT (ro,0,u,) > — - 50
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This lemma for n = 1 was proved by one of the authors in [7].
If in the proof of Lemma 3 we consider the function ,(re?) instead of a(re'’) we shall
obtain the following result for entire functions.

Lemma 4. For 0 < n <1, for almost all § € [0, 7] and for all r > 0 such that on the set
{z : |z] = r} the entire function g(z) has no zeros we have

r,00,q) v, (re?)
T 00

2
Lm™(r,0,v,) > — qn(

In order to prove Theorems 1 and 2 we need two more lemmas.

Lemma 5 ([9]). Let f(z) be a meromorphic tunction of lower order X. There exist se-
quences Sy, R tending to infinity such that klim Sy/Rr = 0 and for each e > 0, for all
—+00

k > ko(e) we have

TRy f)  T(25 1) <€/Rk T f),

A A A+1
Rk Sk Sy T

If in the proof of Lemma 5 instead of the characteristic function T'(r, g) we put log M(r, g)
for an entire function ¢(z), we obtain the following lemma.

Lemma 6. Let g(2) be an entire function of finite lower order A. There exist sequences S,
Ry tending to infinity such that klim Sk/Rr = 0 and for each ¢ > 0, for all k > ko(¢) we have
—+00

dr.

log M(2Ry,g)  log M(25k,9) /Rk log M(r, g)
+ <e —
2

DA A 5 A1
‘Rk 5% Sk r

2. Main results.

Proof of Theorem 1. If (o0, f) = 0 or p,(oc0, f) = 0 then the theorem is obvious. Therefore,
assume that #(oco, f) > 0. Then also p(co, f) > 0 . We shall first consider the case A > 0.
Let us take p,(oo, f) > 0.

Let o and v be the numbers satisfying the inequalities

. an(OO,f) an(OO,f)
< —_— A < R0
0<a_m1n<7r, ) ), ) << 7 «
Moreover, define [2]
" Mg+ )
o(r) = T(r, p,u,) cos —————=dp.
0= [Tl
Applying Fatou’s lemma we obtain
" Mg+ )
Lo(r :L/ T(r, p,u,) cos —————=dp >
e A e
« A
> / LT™(r, ¢, u,) cos Md@ >0 (1)
0 pn(OO,f)
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It follows from this inequality that o(r) is a convex function of logr, thus, ro’ (r) is an
increasing function on (0, 00). Therefore, for almost all r» > 0,

Lo(r) = r%ra (r),

where o’ (r) is the left derivative of o(r) at the point r. From inequality (1) and Lemma 3
it follows that for almost all » > 0,

d “pp(ry00, f) 0, (r,0) MO+ )
Lo(r)=r—ro’ (r) > —/0 - 90 COS (oo, f) do.

dr
By definition p,(r, o0, f) takes only integral values. Thus, for » > ro there is p,(co, f) <
pn(r, 00, f). From this and from (2) it follows that for almost all » > rq,

im > * p2(oo, f) i, (r, 0) o A0 + 1)
roros(r) 2 /0 - = pn(oo,f)‘w'

If for » > 0 there are neither zeros nor poles of f(z) on the circle |z| = r the function
uy(r, ) fulfills the Lipschitz condition in #. Therefore, w,(r,8) also fulfills the Lipschitz
condition on [0, 7] [5]. This implies that the function a,(r,8) is absolutely continuous on
[0, 7]. Integrating twice by parts we obtain for r > rq:

/“ P00, f) Oitg(1,0) MO+ ) g Po(o0S) ) AMatd)
0 m 80 pﬁ(oovf) m pﬁ(oovf)

oo, ). \ Mo
_}Mun(r, 0) cos v + Apy (00, [)T7(r; @, uy) sin %}ZJ)) -

m py(o0, f)
—Apy(o0, fIN(r, 00, f)sin M No(r) i= —hy(r,\) — XNa(r).
py(o0, f)

(2)

(3)

In this way we obtain the inequality

d
rd—ra (1) > hy(r, A) + Xoa(r). (4)
r
Dividing this inequality by !, integrating it by parts over the intervals [25%, Ry] defined
in Lemma 5 and then applying suitable estimates we obtain that for k& > ko(e)

[N, I,
255 rAtl 255 rAtl '

Therefore, for all k > ko(e) there exists ry € [25k, Rg] such that h,(rg, A) < eT'(rg, ).

From the definition of h,(r, A) and considering the fact that p,(oco, f) > 0 we obtain that
there is a sequence r, — oo such that for £ > kg

oo ) Na+) |, rhfeo.f)

U (Tk, @) COS

Ay
lo r cos —————
x pa(onf) 8 Ml f) cos ooyt
Ay

—I_)‘pﬁ(oovf) (rkv 7f) sin ———— pn( f) -

Motv) _ o
ICNTI ?

—)\pn(OO, f)T*(rkv a, uﬁ) sin
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Let us first assume that pn(jovf) > % Then 75 < m. We can take a = W and ¥ = 0.

In this way we have

P o Mk, £) = A0 £)(2 = )T (120 ) < T (s, )
Hence loe M
oo, 1EET) < 2 e+ -

Passing to the limit with & — oo and ¢ — ( we obtain

py(o0, f)B(o0, f) < (2 —n)mA.

This leads us to the conclusion as p,(oco, f) takes only integral values.

Let us now assume that pn(jo 7 < 1. Then 7 < W. We consider p,(co, f) > 2.

Take o = 7 and ¢ = 0 in (5). This means that for & > ko there is @, (ry, ) = (1—=n)T(rg, f).

Thus, we obtain

oo ) P pee)

- (1 —=n)T(rg, f)cos P + log M (rg, f)
) TA
—Apy (o0, [)(2—=n)T (g, f) smm <el(ry, [) .
Therefore,
log M(ry, f) . cos TA Vehsin TA
Pl I,y e ey S B e

We have not used the fact that A is the lower order of the function f(z). Therefore, the

inequality above is true for any positive number A such that pn(jo 7 < % Thus, we obtain
log M (ry, f
pn(ooaf)ﬁ <@2-npmite.

Passing to the limit as k& — oo and ¢ — 0 we receive the statement in this case.
The proof for A = 0 or in the case when p(co, f) = oo can be obtained similarly [7]. O

Proof of Theorem 2. We first consider the case A > 0. The definition of ¢,(o0,g) implies
that

qn(00,g) > 1. Let a and ¢ be the numbers satisfying the inequalities

0<a§min<ﬁ7w>7 _M§¢§M

2X 2X 2X
We put [2]

Mo + )
(cog)

Y

w0 = [ 1) cos
0
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and
; 4,(0, 9) . Mo+ )
ho(r. A\) i = ———"29(r, «a)cos ——=
q2(o0,g) . \ . Ao +9)
= 29,.(r,0)cos ———— — Ag, (o0 r. o, v,)sin —————.
—I_ ™ 77( 70) qn(OO,g) %7( 7g)T (7 7 77) qn(OO,g)

As Lemma 4 and all the considerations leading to (4) are equally true for an entire
function ¢g(z) and the subharmonic function v,(z), we obtain

d 3
rd—ral_(r) > ho(r, ) + No(r). (6)
r
Dividing this inequality by !, integrating it by parts over the intervals [2§k, fx’k] defined
in Lemma 6 and then applying suitable estimates we obtain that there is a sequence rp, — oo
such that for & > kg

_L(OO’g)ﬁ Th, Q) COS Mot ) q%(oo,g)ﬁ r cos L—
T 77( ks ) qn(oo7g) + T 77( kvo) qn(oo7g)
Mo +¢)

_)‘QU(Oovg)T*(rkvavvﬁ)Sin < 510g M(rkvg)' (7)

¢y(00, )

We first put qn(iovg) > 1. Then we have ¢,(c0,g) < 2 < 277;77#)\ for0<n<1.

Next we put - (A 5 < 1. Then m < w. We consider ¢,(c0,g) > 2. Let us take
n 00,

a=mand ¢ =0in (7). This means that for k > ko there is 0,(r, @) = (1 —n)log M (r, g).
Thus, we obtain

200, A 2(0,
—7%(00 g)(l —n)log M(rg, g) cos T + qn(oo 9)
m Gn(0, ) ™

log M(Tk,g)_

. TA
—Agy (00, 9){(1 —n)log M(ry,g) + T(rx, g)} sin ———— < elog M(r, g).

(20, 9)
Therefore, applying suitable estimates, and passing to the limit as & — oo and ¢ — 0 we

obtain
TA
qn(o0, f) < 7(2 —n) . (8)
O
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